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Boundary mappings of geometric isomorphisms of Fuchsian groups

The object of the present paper is to apply certain ergodic theoretical
results of E. Hopf ([2], [3]) to the study of boundary mappings of geometric
isomorphisms of X'uchsian groups.

1. An isomorphism j:Gr-->G, of two Fuchsian groups acting in the
unit disc D: {z € C: lzl ( 1} is said to be geometrio if there exists a
homeomorphism @ : D --> D inducing the isomorphism y , i.e. if we have

@og-j(g)"@

for all g e Gr. If both groups G1 , Gz are the first kind, then @ has a
unique homeomorphic extension 6: D -* D , so that also lhe bound,ary
nxa,ppi,ng p -
(2)

(1)

(3)

6 luo, satisfies

V"g_j(g)og, geGt

Unlike @, the homeomorphism g : T -> T of the unit circle T : Bd, D
is uniquely determined by the isomorphism j (t5l §3, [6] 3.8). In the
following, all Fuchsian groups are supposed to be of the first kind.

Occasionally we may study X'uchsian groups rvhich act in the upper
half plane ä instead of D .In that case we assume that the boundary
mapping g fixes the point oo , so lhab rp rvill be a strictly monotone
mapping g:R-+R.

2. We normalize the Lebesgue measure rL orl T by zr(T) : I ,

and the torus T X T has the product measure rz: trt X 'rt .

As a homeomorphism of the unit circle a boundar5' mapping E : T -> T
has a derivative E' e C a.e. on T . Similarly a real-valued boundary
mapping g : R -> R which corresponds to Fuchsian groups acting in H
has a finite derivative ?' € R a.e. on R. Because rp is monotone, the
derivative lp' cannot change its sign.

Since the cross ratio Lzt, zz, 23, ?4) is preserved under }loebius trans-
formations it follows that also the differential

drrdr, (2, - zz)-z - lzr, zz, zt * drr, zz * dzrl
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remains invariant. Let now E : T -> T be the boundary mapping corre-
sponding to a geometric isomorphism 3 : Gr--> Gr. The invariance of (3)

implies that also the expression

[-r^ r --r^ rl-r
(4) X*(?r, zr) : E'@r) V'@r) l\:lL .l J

is invariant under Moebius transformations. Thus if lr, ,lt are t'x.o }loebius
transformations, we have

(5) yu(k(zt) , lt(zr)) : L*(zt , zz)

for f : h"golt-l :hT--->hT. Since G, and G, have conjugate groups

acting in H, we see that XE:TXT+R is a non-negative measurable
function. I-urther it follov,s from (2) that y, is automorytlzfc u-ith respect
to Gr; that is,

(6)

for all g€Gt

3. The class O*r. Suppose that the Riemann surface S: DIG corre-
sponding to a X'uchsian group G is of class Oor, i.e. § does not have
non-constant bounded harmonic functions, or equivalently that there
is no non-constant G -automorphic bounded harmonic function in D .

Using the Poisson representation 'vi'e see that all G -automorphic bouuclecl

harmonic functions are constant if and only if the action of G on T is

metrically transitive, i.e. if and only if a measurable G -invariant subset

E cT has either me&sure zr(E) : 6 o, rr(D): t .

Theorem l. Let g be the bounclalv mapping of a geouretric isomor-
phism j : Gr->Ga. Tfone of the Riernamr sutftrces S, : D,(];, i : 7, 2,
is of class Oru , then the mapping g is either alrsoluteh- coutiuuous or
completely singular"

Proof . Suppose that §, is of class OHB. If g i,< uot altsolutel)- con-

tinuous, there existsaBorelset .E c T suchtliat zr(E) :0 ,rrtl(E)) > 0.
The set Ir: GtE is invariant uncler G' ancl F.z: g(Ir) : Gt ct.@)

under Gr. I{ow rJEt): 0, and tr(Fr): I since Gz is rletrically
transitive. Thus both g and V-7 are completelv singular.

4. The Hopf classi,ficat'i,on. Let B be a hyperbolic Riemann sutface,
7(S) the tangent manifold of §, and o,(u, w), r€,S,1),u)e T"(S),
the hyperbolic metric of B. Since § is a complete Riemannian manifolcl
with respect to the hyperbolic metric, Lhe geod,esi,c flow p, determined
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by the Lagrangian L@, å1 : o*(ir, i; is globally defined on 7(§) , i.e.

B,:T(S)-+7(/S) , r€R, is a one-parameter transformation group. The
surfaces i|" c 7(B) of constant energy, L(x , u) : c, are invariant under
the geodesic flow, and since the flow p, is essentially similar on every
'r\" , c ) 0, we can consider only '8 :'i:L. The geodesic flou, p, restricted
to Z is simply the flow of unit speed along geodesics.

E. Hopf has shown that the geodesic flolv p, of a hyperbolic Riemann
surface § always is either ergodic or dissipative on 'ä ([2], [3]). The sur-
face B is said to he of the first class itt the ergodic case, and of the second,

class in the dissipative case. Suppose now that the surface § is represented
by a n'uchsian group G actingin D, S: DIG.It follou's then further
that S is of the first class if and only if the action

(7) {9,(*, y)t\ *> (gr, gy), g e G, Qt, y) € TXT,

of G on the torus T x T is metrically transitive, i.e. if and only if each

measurable G-invariant subset E cT XT has either measure rr(E):0
or tr(E):1 (t2l 8.1). It follows immediately that every surface of the
first class is always of class Ouu .

Theorem 2. Suppose that one of the Riemann surfaces Bi: DIG;,
'i, : I , 2 , is of the first class. Then for each geometric isomorphism
j:Gr--->G, either the boundary mapping g is completely singular or
the isomorphism is inclucecl b5' a }foebius transformation on T .

Proof , Let §, be of the first class, so that the boundary mapping is
either absolutely continuous or completelr- sing-ular by the preceding
theorem. Since X, is G, -automorphic by (6), it is equal to a constant
a.e. on TxT. Obviously we must, have yr: 1 a.e. in the case of absolute
continuity, and Xr: 0 a.e. in t'he singular case.

Suppose no'n, that E is absolutely continuous. Using appropriate
Moebius transformations ä , k we can find groups Gi : hGrh*' , GL:
ld)rk*t acting in 11 with a real-valued boundar;. mapping

V:fuoEofu-r:R-+R.
We may further suppose that y (0) :0, y,'(0):1, so that tp satisfies
on R the differential equation

(8)

because L1, : I
,p(x) '..:r tr is the

V- -: k-t'h, so

transformation.

v'@) - vU))'l*'

only solution of (8) continuous on all of R . Thus
that the isomorphism j is incluced on T by a Moebius
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5. A Riemann surface S : DIG can obviously be of the first class only
if G is a X'uchsian group of the first kind, but this condition is by far
insufficient. If § c 0 ir a hyperbolic planar surface, the covering group
of B is of the first kind if the complement 0 \ ,S is totally disconnected,
but B is of class OHB if and only if 0 \ § has vanishing logarithmic
capacity.

If ,4 is the hyperbolic area of a hyperbolic Riemann surface §, the
volume of 'd is 2nA (cf. n:o 4), so that all Riemannsurfacesoffinite
hyperbolic area &re of the first class by Poincar6's recuffence theorem ([2]
7.1, f3l). Now the hyperbolic area of a Riemann surface S : DIG is finite if
and only if G is a finitely generated group of the first kind ([4], Theorem 5).

Thus the Riemann surface S : DIG is of the first class for all ,fi'nitely
generated, ?uchsi,an groups G of the first ldnd,.

Theorem 3. Suppose that the geometric isomorphism i:Gr-->G, of
two finitely generated X'uchsian groups of the first kind acting in ä has

an increasing boundary mapping rp : R -> R . Then g is either affine or
a completely ringular quasisymmetric function.

Proof . If G is a finitely generated X'uchsian group of the first kind,
the Riemann surface § : (S" , %c) : H lG is a pointed surface of finite
type, i.e. § is a compact surface §' with finitely many punctures; further,
the support r:f n6 is finite. Thus in the case of finitely generated groups

of the first kind there always exists a quasiconformal mappirlg @ : H --> H
inducing the given isomorphism j ("f. [5] Theorem 2.1, 16) 2.B), so that
tlle boundary mapping g : R -> R must be quasisymmetric, and the
conclusion follows now from theorem 2.

Recently Sorvali has obtained results of a similar kind (cf. [5] Theorem
5.I). n'or quasisymmetric functions, cf. also Beurling - Ahlfors [I], for
singular functions especially §7.
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