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Boundary mappings of geometric isomorphisms of Fuchsian groups

The object of the present paper is to apply certain ergodic theoretical
results of E. Hopf ([2], [3]) to the study of boundary mappings of geometric
isomorphisms of Fuchsian groups.

1. An isomorphism j:G;— G, of two Fuchsian groups acting in the
unit dise D = {z € C: |z] < 1} is said to be geometric if there exists a
homeomorphism @ : D — D inducing the isomorphism j, i.e. if we have

(1) Dog=73(9) oD

for all g € G, . If both groups @,, G, are the first kind, then @ has a
unique homeomorphic extension @ : D — D, so that also the boundary
mapping ¢ = @ |pap satisfies

(2) pog=39)eop, gE€EG,.

Unlike @, the homeomorphism ¢: T — T of the unit circle T = Bd D
is uniquely determined by the isomorphism j ([5] §3, [6] 3.B). In the
following, all Fuchsian groups are supposed to be of the first kind.

Occasionally we may study Fuchsian groups which act in the upper
half plane H instead of D . In that case we assume that the boundary
mapping v fixes the point oo, so that y will be a strictly monotone
mapping : R—R.

2. We normalize the Lebesgue measure 7, on T by 7,(T)=1,
and the torus T X T has the product measure 7, = 7; X 75 .

As a homeomorphism of the unit circle a boundary mapping ¢ : T — T
has a derivative ¢’ € C a.e. on T. Similarly a real-valued boundary
mapping w: R-— R which corresponds to Fuchsian groups acting in H
has a finite derivative y" € R a.e. on R. Because p is monotone, the
derivative @’ cannot change its sign.

Since the cross ratio [z, 2, , 25, 24] is preserved under Moebius trans-
formations it follows that also the differential
(3) dzydzy (29— 29)2 = — [z, 25, 21 + d2y, 2y + dz,)]
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remains invariant. Let now ¢:T— T be the boundary mapping corre-
sponding to a geometric isomorphism j:(G; — G, . The invariance of (3)
implies that also the expression

9tz — 0] 2
+) Lolers 2 = 0 9') |

“1

2

is invariant under Moebius transformations. Thus if %, &k are two Moebius
transformations, we have

(3) 2:(k(21) 5 B(22)) = 24(215 22)

for E=hopok™:kT—hT. Since G; and (', have conjugate groups
acting in H, we see that y :TXT-—-R is a non-negative measurable
function. Further it follows from (2) that y,  is automorphic with respect
to ¢;; that is,

(6) L9215 9%3) = %, (21 %2)
for all g €.

3. The class Ogg . Suppose that the Riemann surface S = D/G corre-
sponding to a Fuchsian group @ is of class Opp, i.e. S does not have
non-constant bounded harmonic functions, or equivalently that there
is no non-constant G -automorphic bounded harmonic function in D .
Using the Poisson representation we see that all @' -automorphic bounded
harmonic functions are constant if and only if the action of ¢ on T is
metrically transitive, i.e. if and only if a measurable G -invariant subset
E cC T has either measure 7,(£) =0 or 7.(£)=1.

Theorem 1. Let ¢ be the boundary mapping of a geometric isomor-
phism j: G, — G, . If one of the Riemann surfaces Si =D G;, i =1, 2,
is of class Opyp, then the mapping ¢ is either absolutely continuous or
completely singular.

Proof. Suppose that S, is of class Oyp. If ¢ is not absolutely con-
tinuous, there exists a Borelset £ € T such that 7 (E) =0, 7,(¢(£)) > 0.
The set F,= G, E is invariant under G,. and F, = ¢(F;) =G, ¢(k)
under @,. Now 17,(F,) =0, and 7,(F,) =1 since (, is metrically
transitive. Thus both ¢ and ¢! are completely singular.

4. The Hopf classification. Let S be a hyperbolic Riemann surface,
T(S) the tangent manifold of S, and o.v, w), v €S, v, w €TS),
the hyperbolic metric of S . Since S is a complete Riemannian manifold
with respect to the hyperbolic metric, the geodesic flow f, determined
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by the Lagrangian L(z, x) = o«(v, 2) is globally defined on 7(S), i.e.
Bi:T(S)—T(S), t € R, is a one-parameter transformation group. The
surfaces ‘&, € T'(S) of constant energy, L(x, v) = ¢, are invariant under
the geodesic flow, and since the flow f, is essentially similar on every
‘“., ¢ > 0, we can consider only ‘¢ = ‘¢, . The geodesic flow f; restricted
to ¢ is simply the flow of unit speed along geodesics.

E. Hopf has shown that the geodesic flow f, of a hyperbolic Riemann
surface S always is either ergodic or dissipative on ¢ ([2], [3]). The sur-
face S is said to be of the first class in the ergodic case, and of the second
class in the dissipative case. Suppose now that the surface § is represented
by a Fuchsian group @ acting in D, S = D/G . It follows then further
that § is of the first class if and only if the action

(7) 9,@, y)j = (v, 9y, g€G, (v, y) €ETXT,

of G on the torus TxT is metrically transitive, i.e. if and only if each
measurable G -invariant subset £ € TXT has either measure 7,(f) =0
or 7,(F)=1 ([2] 8.1). It follows immediately that every surface of the
first class is always of class Oy .

Theorem 2. Suppose that one of the Riemann surfaces S;= D/G;,
t =1, 2, is of the first cless. Then for each geometric isomorphism
j: G, — G, either the boundary mapping ¢ is completely singular or
the isomorphism is induced by a Moebius transformation on T.

Proof. Let S; be of the first class, so that the boundary mapping is
either absolutely continuous or completely singular by the preceding
theorem. Since y, is /; -automorphic by (6), it is equal to a constant
a.e.on TXT . Obviously we must have y = 1 a.e.in the case of absolute
continuity, and y = 0 a.e. in the singular case.

Suppose now that ¢ is absolutely continuous. Using appropriate
Moebius transformations A, k& we can find groups G, = hG A1, Gy =
kG okt acting in H with a real-valued boundary mapping

w=kogpoh1:R—R.

We may further suppose that v (0) = 0, ¢'(0) = 1, so that y satisfies
on R the differential equation

(8) y'(@) = ()] 22

because 7, =1 ae. on RXR. But given the initial value y(0) =0,
p(x) = « is the only solution of (8) continuous on all of R. Thus
@ = k' oh, so that the isomorphism j is induced on T by a Moebius
transformation.
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5. A Riemann surface S = D/G can obviously be of the first class only
if G is a Fuchsian group of the first kind, but this condition is by far
insufficient. If S c G is a hyperbolic planar surface, the covering group
of 8 is of the first kind if the complement €\ S is totally disconnected,
but S is of class Opy if and only if €\ S has vanishing logarithmic
capacity.

If A is the hyperbolic area of a hyperbolic Riemann surface S, the
volume of € is 2mx A (cf. n:o 4), so that all Riemann surfaces of finite
hyperbolic area are of the first class by Poincaré’s recurrence theorem ([2]
7.1,[3]). Now the hyperbolic area of a Riemann surface S = D/ is finite if
and only if G is a finitely generated group of the first kind ([4], Theorem 5).
Thus the Riemann surface S = D/G is of the first class for all finitely
generated Fuchsian groups @ of the first kind.

Theorem 3. Suppose that the geometric isomorphism j:G, — G, of
two finitely generated Fuchsian groups of the first kind acting in H has
an increasing boundary mapping y: R— R. Then y is either affine or
a completely :ingular quasisymmetric function.

Proof. If @ is a finitely generated Fuchsian group of the first kind,
the Riemann surface S = (S¢, n;) = H/G is a pointed surface of finite
type, i.e. S is a compact surface 8’ with finitely many punctures; further,
the support of n¢ is finite. Thus in the case of finitely generated groups
of the first kind there always exists a quasiconformal mapping @ : H — H
inducing the given isomorphism j (cf. [5] Theorem 2.1, [6] 2.B), so that
the boundary mapping % :R—R must be quasisymmetric, and the
conclusion follows now from theorem 2.

Recently Sorvali has obtained results of a similar kind (cf. [5] Theorem
5.1). For quasisymmetric functions, cf. also Beurling — Ahlfors [1], for
singular functions especially §7.
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