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1. Introduetion

1. Let R be a Riemann surface and P a density, that is, a C1 func-
tion which depends on the local parameter so that the elliptic partial
differential equation

(1) Jdu = Pu

is invariantly defined on R . We suppose that P is acceptable which means
that there exists a positive P -superelliptic function o on R . This situa-
tion is introduced and investigated in [1] and [2]. Especially the class of
densities acceptable by 1 is the class of non-negative densities.

Now we first form in a non-compact region L the « -measures of the
region, its ideal boundary and its relative boundary. Then we consider
the existence of singular solutions of (1), that is, solutions with prescribecl
singularities on R . The local situation is known (Cf. [3]). Using the o -
measures in a similar way as the harmonic ones in the harmonic case (Cf.
[6]) we arc able to show that the existence of two positive linearly inde-
pendent P - superelliptic functions implies the existence of a singular
solution of (1). Especially the condition is necessary for the existence of
a positive solution of (1) with a positive singularity. Consequently the
condition is equivalent to the existence of the Green’s function of (1) on R .

2. First we state some terms and results from [1] and [2] we are going
to use. A density P is called completely acceptable if it is acceptable and
has the Green’s function Gp on R . A function u is said to be a P -solu-
tion in a region K if w € C2(K) and it is a solution of (1) in K. By I}{f)
we mean a P -solution in the parametric disc V' with boundary values f.

A continuous function v is said to be P -subelliptic in a region K
if to any point z, € K there exists a parametric disc (V,, z,), V,C K ,
such that in every disc (V, z)), V € V,, the first boundary value prob-
lem has a unique solution and v(z)) <X I}(v, z,) . A function » is said to
be P -superelliptic if —wv is P -subelliptic. If v and o' are P -sub-
elliptic, ~ a non-negative constant and V a parametric disc, then x~e¢,
max (v, v’) and v,, the P -modification of » in 7V,

]vin K-V

P —
o Iy(w) in TV,
are P -subelliptic.
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The usual weak and strong forms of maximum principle are valid.
Let P be acceptable by o on a Riemann surface R and v a P -subellip-
tic function. If

then either v << Mo or v=Mew in R. If K is a compact region,
supv = 0 and
K

<

lim
z>L €0K U)(

()

IA

M < .

~

then either v < Mo or v= Mo in K.

A non-empty family F(K) of P -subelliptic functions » in a region
K is called a Perron family if the following two conditions are fulfilled:

() If »,, v, € F(K), then max (v;, v,) € F(K).

(b) If » € F(K), then its P -modification v, € F(K) for every para-
metric disc V, Vc K.

If F(K) is a Perron family, then the function

uy = sup {v ' v € F(K)]

is either a P -solution or identically -+ oo.

Let then K be a compact region whose boundary is the union of two
disjoint sets %k, and k, and let P be acceptable by w . The P -solution
op(K , k;) is said to be the « -measure of k; with respect to K if it is
identically @ on k; and zero on £k, . If especially 4, is empty, we say
that wp(K , 0K) = wp(K) is the o -measure of K. If {R,} is an ex-
haustion of R, then the non-increasing sequence {wp(R,)} converges
to a P -solution wp which is called the o -measure of R with regard
to P. It is uniquely determined by being the greatest P -subelliptic
function » with » < .

3. Let K be aregion, z, € K and (V, z,) a parametricdisc, V< K .
By a singularity at z, we mean a function S in T~ which has a represen-
tation in terms of the local parameter

ks

(2) Sz, 2p) = — aylog |z —zy = > a; = —z
i=1

where @, and «; arereal numbersand k; positive integers, ¢ =1,...,7n.
We speak especially of a positive singularity if all the coefficients a; are
non-negative, 1 =0,...,n. It is denoted by S . If we denote by
— 8 a singularity with non-positive coefficients, then S is also
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a positive singularity and every singularity S can be represented in the
form

(3) Sz, z9) = Sz, zp) — 8Tz, 2) .

As usual, we mean by a singular P -solution in K, or by a P -solution
with the given singularity S(z, z,) in K, a function w which is a P -
solution in K — {z,} so that wu(z, z)) — S(z, ) is bounded in (V, 2,) .
Similarly we speak of a P -solution with a positive singularity.

2. The o -measures of non-compact regions

4. Let R be an open Riemann surface and L a non-compact region
of R. We suppose that the boundary of L in R consists at most of a
countable number of analytic curves I; so that I N Ij, 7 #j, is
either empty or a common endpoint, and every compact set of R con-
tains at most points from a finite number of curves. The set 9L = | I}

is called the relative boundary of L . The ideal boundary of L is denoted
by B or, if necessary, f(L) . In the same way we denote the ideal bound-
ary of R by B of B(R).If {R,} is an exhaustion of R, we denote
L,=R,NL.l,=R,NoL and I.=LNoR,. Then oL, =1, UL, .

5. We define the o -measures of L which are needed in the continu-
ation. The o -measures of the exhaustion of L form a non-increasing
sequence {wp(L,)} which converges to a P -solution wp(L) in L. It is
uniquely determined by being the greatest P -subelliptic function » in
L with v <0 and lim v(z) < w(z). By the weak maximum principle

2>z, E0L
either wp(L) <o or wp(l)=ow .~
Next we form the following family:

(4)  Fy(L) = {v|v P -subelliptic in L, v =, lim»() < 0}.
3>z, €0L

It is easy to see that 0 € Fy(L) and Fy(L) is a Perron family. Because
it is bounded from above by , the function

wp(L, p) = sup{v |v € Fy(L)}

is a P -solution in L. It is called the o -measure of the ideal boundary
of L. Clearly
0 =owp(L, f) = wpl) .

On the relative boundary of L, wp(L, §) = 0. In fact, let 2z, € 9L and
let g be a continuous function on the boundary of LN (V, z)) so that
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gz)) =0, 0 =g =0 on aLN TV and g =o on LN 3V . The function

v,
1 o in L —T

Vy ==
" Ifag) in LOT
= n, fora

is P -superellipticin L . If v € F\(L), then v < v, on 0L, .n
value n, wherefore the same must hold in L . Therefore

0 § h'_In_U)P(Lz ﬂ: 2) g ma)P(L H ﬁa :) é: 270(:0) = 0.
Of alz,

In the same way we can form wp(L ., 0L), the o -measure
by taking a family
(3) F_. (L) ={v v P -subellipticin L, v=0, lim 2(z) = — o(z)}
z->3,€0L

and defining
v €F (L))

wp(L, 0L) = — sup {v |
. Morcover

This is a P -solution in L and it is equal to » on 0oL
0 = wp(L, 0L) = op(L).
Because wp(L) — wp(L, 0L) belongs to Fy(L) and mp(L, ) — mp(L)

to F__(L) we must have
(6) op(L, 0L) + wp(L, f) = op(L) .
If L; and L, are non-compact regions with L, C L,, then wp(L, . p(L,))
= wp(Ly, B(Ly)) and wp(L,, 0L;) = wp(Ly, 0L,) in L.
If the relative boundary of L is compact, then
op(L, B) =lim wp(L, . 1))

7 ”
and
(8) wp(L, 0L) = lim wp(L, . 1,) .

6. The extremum property of the o -measure of 4. implies the maxi-

v =

mum principle for L.

Lemma 1. Let P be acceptable by o on an open Riemann surface R, I
a non-compact region and v a P -subelliptic function in L with =
Maop(L, 0L) for a constant M . If

v(z)
=m,

lim
s>z €0L ()

then either v <<m wp(L, 0L) or v = m wp(L, 0L)
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Proof: We suppose that m << M . The function
v, = (M — m) (v — M op(L, 0L))
is P -subelliptic and non-positive. Moreover

Im  v,(z) = — ofz) ,
3>z, €0L

wherefore v, € F_ (L) in (5). So v, = — wp(L, 0L) which implies

v Emop(L, oL) .

-

If there exists a point z, with v(z)) = mp(L, 0L, z,), then in a para-
metric disc (V' , z,)

m (')P(L ’ oL ) 2'0) = IIIJ(m (OP(L ’ aL) s 20) 2 I};(v s ’ZO) 2 U(zo) .

Therefore If(m wp(L, L) — v, 2,) = 0 for every disc (V, z,) which
gives the statement.

From this result we get a uniqueness property.

Lemma 2. Let P be acceptable by » on an open Riemann surface R
and w a P -solution in a non-compact region L . If w vanishes on 0L and

w = Mawp(L, oL)

in L for a constant M , then w =0.
Proof: By lemma 1 both # and —wu are non-positive in L .

7. By Harnack’s inequalities (Cf. [1]) either wp(L , ) is positive or

identically zero. In the former case
2
) T 2L )
B [0)

In fact, if it were smaller than one we could choose a constant ~, &« > 1,
so that the function xwp(L, B) belongs to the family F (L) in (4). This
is a contradiction with the definition of wp(L , f).

If in the latter case the non-compact region L is of the form R — K ,
K a compact region, then its ideal boundary is for every K the same
as the one of R. It would be natural to expect that the vanishing of
wp(R — K, B) would not depend on the particular region K. We can.
in fact, prove even little more.

Theorem 3. Let P be acceptable by o on an open Riemann surface R .
Then the following statements are equivalent:

(a) For every compact region K , wp(R — K, ) =0.

(b) For some compact region K , op(R — K, ) =0.
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(¢) Let L be a non-compact region and ¢ a non-negative constant. Then
every P -solution w in L for which u/ow is bounded from above
L and which satisfies w = cw on 0L must also satisfy u = cow
m L.

Proof: (a) = (¢): Let K be a compact region, K € R — L. Then

(10) 0= wpl, p) =B —K, f) = 0.
If w/o <M in L, we have by the definition of wp(L) and by (6)
u < Mwp(l)=Mwp(L, oL).

Therefore by lemma 1
w=copl, 0L) < co .

(¢) = (b): R — K is a non-compact region and wp(R — K, ) = 0
on 0K .

(b) = (a): Let K be a compact region with wp(R — K, ) = 0 and
let K, be another compact region. There exists a compact region K,
containing both K and K,. For R — K, we have

(11) 0=Zwp(l —K,, p)Swp(R— K, p)=0.

If now wp(R — K, ) > 0, then we could by (9) find a constant x,
1 <« << 2, so that the P -subelliptic function %, = xwp(R — K, , ) — o
is positive at some point z, € R — K, but is non-positive on 9K, . More-
over uy =w. So u, belongs by (4) to the Perron family Fy(R — K,)
and is positive at some point z, € R — K, which is impossible by (11).
Therefore we must have wp(R — K,, f)=0.

The theorem is thus proved.

Notice that if o is not a P -solution then the statements of theorem
3 can be shown to be equivalent to the vanishing of op(R) (Cf. [2]).

8. The existence of a P -solution in a non-compact region L with
given, suitable bounded, continuous boundary values on 8L can now
be shown in the usual way.

Lemma 4. Let P be acceptable by o on an open Riemann surfuce R
and L a non-compact region. Let f be a continuous function on ¢l so
that |f} Jo < M < oo . Then there exists exacily one P -solution u in L
with w=/f on oL and

! = M owp(L, oL)
in L.

Proof: By lemma 2 there exists at most one such P -solution. Let us
consider a family Fy(L) of such P -subelliptic functions » in L for which
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v =< Mop(L, aL), lim v(z) < f(z,) .

2>, €0L
Fy(L) is a Perron family, —M wp(L, 0L) € Fy(L). So
u = sup {v | v € Fg(L)}
is a P -solution.
In order to see that » has the right boundary values we take a point

zy € 0L and a continuous function ¢ on the boundary of LN (V, z,)
so that ¢(zp) = f(z), —Mwp(L, 0L) <g<f on LNV and g=
—M wp(L, 0L) in LN oV . Then the function v,

. f —Mwp(L, 0L) in L—7T

Nl Lalg) in LNV
belongs to Fy(L). Therefore

lim u(z) = lim v,(z) = f(z) .

2—>3 33
As in verifying the boundary values of wp(L, §) in 5 we see that

Trm () < f(z,) -

3=>3y

So w has the right boundary values on 0L . By construction
—M wp(L, 0L) < uw = M op(L, oL)

which proves the result.
Notice that f/ow is bounded if 9L is compact and f is bounded. If
J/ is non-negative, then 0 € Fy(L) and wu, too, is non-negative.

3. On singular P -solutions

9. Let R be an open Riemann surface. We examine if there exists
on R a P -solution with a given behaviour on the ideal boundary. This
problem can then be used in the study of our main problem.

Theorem 5. Let P be acceptable by o on an open Riemann surface R .
Let R be divided by a compact analytic curve 1" into tico parts R, and R,
so that

(12) op(BRy, I' <o

wm Ry . Let moreover the functions w; be P -solutions on. R; and continu-
ous on I, i =1, 2. Then there exists on R exactly one P -solution u,
with
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[\9)

(13) wy — i, = Mop(Ri, IN), 1 =1,

for a constant M .
Proof: In the following the index ¢ always takes values 1 and 2. Let
K be a regular region containing [’ so that oK =k, U#k,, kiC R;.
We first show the uniqueness. If «’ and «’’ are two such functions
and % = %' — ', then

w Z2M op(R,, T).

u
We denote m = sup— . Then m = 2 and by lemma 1
I o
w=maop(R,, I').
If m>0,
w _m wp(R:, I') [ <m on Ik
o = ® “ ]l <m on k, .

Therefore # << mw in K and especially on /", which is impossible. So
w =<0 on I' and by lemma 1 on R, too. By replacing « with —u we
see that also —u <0 on R . This gives the uniqueness.

Now we turn to the existence of u,. First we change the situation so
that the given functions vanish on I'.

By lemma 4 there exists a P -solution », on R, with » =%, on
I" and

(14) | < awp(R,, T)
in R, for a constant «. The function », =, —u; is a P -solution
in R, which vanishes on I'.

Let then » be a P -solutionin R, with boundary values wp(R, U K, k)

on [I' so that » is non-negative and bounded from above by wp(R,, I') .
Because

(15) wp(RyU K | k) <op(R . I') <o
in R, v<wo on I'. Therefore

(16) 0<v<wpR,. I

in R, and especially

(17) v <<op(R; UK. k)

in R,N A by the strong maximum principle.
Using v and the o -measures we construct two P -superelliptic func-
tions on R . Let g be the following function
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(orBy, ) oy UK, ) in RyUT
g“lwp(Rz,F)—%v in R,.

(learly ¢ is positive and continuous in R and a P -solution in R;.
Let then b be a positive constant so that

blw — wp(Ry, 1) = lv,!
in KNR, and
bwp(Ry UK, k) —v) = |v,
in KN R,. This is possible by (12), (17) and because »; is a P-solution
in R; vanishing on I'. Now the functions h; = bg + v and h, = bg — v;

are P -superelliptic on R . This is obvious at every point z € R;. If
z€1 and (V, z) is a parametric disc, ¥V € K, then

(18) hi £ bl + op(R UK, L))
in ¥ by the construction of g and the choice of &. The upper bound
in (18) is P -superelliptic in V. Therefore
hi(z) = b(w(z) + op(RL UK | ky, 2)

= IP(b(w + op(R,U K , k), 2)

= I3, =)
which shows the P -superellipticy.

Let us now consider the family F of P -subelliptic functions « in

R which are bounded from above by #%;. We notice that —hA, € F and
F is a Perron family. So

uy = sup {u  uw€rF;

is a P -solution in R . It has the required behaviour because by (14),
(15) and (16) we have on one hand

g — 1w, = hy — vy —w; = (20 - a)op(R; . T
and on the other hand
Uy — Wy = —hy — v — u; = —(2b — a)op(Ri, T).

This proves the theorem.
Notice that theorem 5 is also valid if R, isa compact region, oR, = I,
provided that wp(R,, I') is replaced by p(R)) .

10. Let R be a Riemann surface and let a positive singularity S™(z , z))
be given at a point z, € R . Using theorem 5 we can now form a necessary
and sufficient condition for the existence of a positive P -solution on R
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with the singularity S™) at z,. This condition is related to the assump-
tion (12). We are also able to present two formulations to this condition.
Theorem 6. Let R be a Riemann surface and P an acceptable density.
The following statements are equivalent:
(a) There exists on R a positive P -solution with a given positive singu-
larity.
(b) There exist on. R two positive linearly independent P -superelliptic
SJunctions.
(¢) There exists on R « positive P -superelliptic function which is not
a P -solution.
Proof: (a) = (b): Let P be acceptable by w and wu(z, z) be the
positive P -solution with the given positive singularity at z,. We choose
a constant ¢ so that on the boundary of a parametric disc (V, z))

u(z, z) < co(z).
The function

o) = | min (u(z, z,), co(z)) if z #z
] cw(zy) if z=z2,
is positive and P -superelliptic on R . In a neighbourhood of z,, v =
co <u and on 9V, v = u < cw . Therefore v and o are linearly inde-
pendent.

(b) = (¢): If u,; and wu, are positive linearly independent P -super-
elliptic functions on R, then there exists a positive constant ¢ so that
cu; has both greater and smaller values than wu,. The function

¥ = min (cu;, Uy)

is positive and P -superelliptic on R . If v were a P -solution, the func-
tion 4 =wv — u, would be P -subelliptic. Because % is non-positive,
uw(z;) = 0 and wu(z,) < 0 at some points z,, z, € R, this is a contra-
diction with the maximum principle. So v is not a P -solution.

(¢) = (a): We first suppose that R is open. Let « be the positive
P -superelliptic function which is not a P -solution. By lemma 3.3.2 in
[1] @ cannot fail to be a P -solution only at one point. So, if the positive
singularity S*) is given at z, € R, there exists a parametric disc V so
that z, € V and o fails to be a P -solution outside T . Therefore

(19) wp(R—TV, 0V) Zwp(R —T) <<o.

In V we can form a P -solution u, with the singularity S™) at z,
(Cf. [3]). Now we use theorem 5 in the case I'= 0V, R, =R —V, R, =
V — {2}, u; =0 and u, = u,. By (19) we get a P -solution wu,(z, 2
in R —{z} so that in V
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[y — uy) = M wp(V — {25}, 0V) = M wp(V)
and in R—7T
(20) el =M wp(R—V, 9V).

The function v, = u, + Mo is a positive P -superelliptic function in
R —{z}.

Let F be the family of those P -subelliptic functions in R — {2}
which are bounded from above by wv,. The function max (u,, 0) € F
and F is seen to be a Perron family. Therefore

w=sup{v|vE€LF}

is a P -solution in R — {z,} with max (4, 0) =u = v,. So % is posi-
tive by Harnack’s inequalities and has the singularity S at z,.

If R is closed the proof is the same except that wp(R — V, 9V) is
replaced by wp( — V).

The proof is thus complete.

Corollary 7. Let P be acceptable by o on an open Riemann surface R .
If wp(R— K, B) > 0 for some compact region K , then the statements (a),
(b) and (c) of theorem 6 are wvalid on R .

Pmof. By (6) and theorem 3

(21) opR— TV, aV) <opR — V) <o

for every parametric disc V7 . Now we get the statement (a) quite as in
the last part of the previous proof by replacing (19) by (21). This implies
then (b) and (c) by theorem 6.

It is to be noticed that the condition of corollary
one.

-

7 is not a necessary

11. In the preceding paragraph we considered only positive singular-
ities. The situation is easily generalised.

Theorem 8. Let R be a Riemann surface and P an acceptable density.
Let there be given at m points z; singularities Si(z, z) of the form (2)
If one of the statements (a)—(c) of theorem 6 or the conditions of corollary 7
are valid, then there exists a P -solution with these singularities on R .

Proof: We express each singularity in the form S;(z, z) = S(z, ;) —
SNz, z) where S&) and S are positive singularities. The assump-
tions guarantee, by theorem 6 and corollary 7, the existence of P -solu-
tions «{" and «{~) with singularities S{*) and S{~) respectively at the
point z,, ¢ =1,...,m. The P -solution

=S ) — )

i=1

has the required properties.
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12. We now treat the existence of the Green’s function on R for an
acceptable density P. L. Myrberg has proved in [4] that all non-negative
densities P, P = 0, are completely acceptable. All acceptable den-
sities, however, are not completely acceptable (Cf.[5]). It was shown
in [1] and [2] that a density P is completely acceptable if either there
exists an acceptable density @, @ <P, @ =P, or if R is open and
P is acceptable by o so that the « -measure of the ideal boundary of R
is positive. Now we get directly from theorem 6 a necessary and sufficient
condition, even in two formulations, for a density P to be completely
acceptable.

Theorem 9. Let P be a density on a Riemann surface R . Then the
Jollowing statements are equivalent:

(a) P s completely acceptable.

(b) There exist on R two positive linearly independent P -superelliptic

Sfunctions.
(¢) There exists on R a positive P -superelliptic function which is not
a P -solution.

Proof: We have only to show that (c) implies (a). By theorem 6, (c)
implies the existence of a positive P -solution with a logarithmic sin-
gularity. On the other hand the Green’s function can be defined as a mini-
mum of such functions (Cf.[1] and [2]). This proves the theorem.

This result implies those mentioned earlier as one easily notices.

Finally we remark that the situation now is not the same as for har-
monic functions even if theorems 3 and 9 together with corollary 7 seem
to indicate it. In fact, Royden has shown in [7] that a non-negative density
P, P =0, which is always completely acceptable, may have a vanishing
1-measure of the ideal boundary even on a hyperbolic surface.

University of Helsinki
Helsinki, Finland
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