ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

547

ON EXCEPTIONAL VALUES OF FUNCTIONS MEROMORPHIC OUTSIDE A SET OF POSITIVE HAUSDORFF DIMENSION

BY

SAKARI TOPPILA

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.547

Copyright © 1973 by Academia Scientiarum Fennica ISBN 951-41-0118-9

Communicated 9 April 1973 by Olli Lehto

KESKUSKIRJAPAINO HELSINKI 1973

1. Introduction

1. Let E be a closed set in the complex plane and f a non-constant meromorphic function outside E omitting a set F. We shall consider the following problem: How thick E ought to be to find f such that F is thick, too? It is known that if the Hausdorff dimension of E Dim (E) is greater than one then there exists a non-constant function f which is regular and bounded outside E. If E has linear measure zero then Dim $(F) \le 1$. If the logarithmic capacity of E Cap (E) is zero then Cap (F) = 0. In [3], it is given a geometrical condition under which Dim $(F) \le D$ im (E). Carleson [1] has proved that there exists a set E with Cap (E) > 0 such that if E omits 4 values outside E then E is rational.

In this paper, we shall prove that $\operatorname{Dim}(E)>0$ does not guarantee that F is thick, too. We construct a set E with $\operatorname{Dim}(E)$ uniformly positive such that if f is meromorphic outside E with a singularity at all points of E, then f omits at most 4 values. Here » $\operatorname{Dim}(E)$ uniformly positive» means that there exists a>0 such that if A is open then either $A\cap E=\emptyset$ or $\operatorname{Dim}(A\cap E)\geq a$. Then we shall prove that there exists a set E with $\operatorname{Dim}(E)>0$ such that if f is meromorphic and non-rational outside E omitting F then $\operatorname{Cap}(F)=0$.

2. Notations and lemmas

2. Given positive numbers $\xi_{n,k}$, $0 < \xi_{n,k} < 1/3$, n = 0, $1, \ldots$, $k = 1, 2, \ldots, 2^n$, and a sequence $\{q_n\}$ of real numbers, we construct the corresponding Cantor set E in the following manner.

Let $\eta_0=1$, $z_{0,1}=0$ and $l_{0,1}=1$. Inductively $(n\geq 1)$, we define $\eta_n=\eta_{n-1}e^{iq_n}$ and for k=2p-1, 2p $(1\leq p\leq 2^{n-1})$, we set $\mu_{n,k}=\xi_{n-1,p}$, $l_{n,k}=\xi_{n-1,p}$ and

$$z_{n,k} = z_{n-1,p} + (-1)^k \, \eta_{n-1} \, (1 - \xi_{n-1,p}) \, l_{n-1,p} \, .$$

We set

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{2^n} D_{n,k}$$

where $D_{n,k} = \{z : |z - z_{n,k}| \le l_{n,k} \}$.

3. We need the following lemmas in our considerations. Let Σ be the Riemann sphere with radius 1/2 touching the w-plane at the origin. The chordal distance of the images on Σ of two points w and w' in the plane is denoted by [w,w'] and $C(w,\delta)$ is the spherical open disc with centre at the image of w and with chordal radius δ .

We set

$$S_{n,k} = \left\{ z : l_{n,k} < |z - z_{n,k}| < \frac{l_{n,k}}{3 \mu_{n,k}} \right\}$$

and

$$ec{arGamma_{n,k}} = \left\{ \! z: |z-z_{n,k}| = rac{l_{n,k}}{\sqrt{3\mu_{n,k}}} \!
ight\}.$$

We have (see Carleson [1], Matsumoto [2])

Lemma 1. There exists a constant A such that if f is analytic in $S_{n,k}$ and omits 0 and 1 then $f(\Gamma_{n,k})$ is contained in a spherical disc $C_{n,k}$ with radius $\delta_{n,k}$ less than $A\sqrt{\mu_{n,k}}$.

We choose $\delta > 0$ such that $C(1, 8\delta) \cap C(0, 8\delta) = \Theta$. Now we assume that $A\sqrt{\xi_{n,k}} < \delta$ for any n and k. Let $\triangle_{n,k}$ be the triply connected domain bounded by $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$ and $\Gamma_{n+1,2k}$. An easy modification of Matsumoto's [2] Lemma 2 gives us

Lemma 2. Let f be analytic in $\triangle_{n,k} \cup S_{n,k} \cup S_{n+1,2k-1} \cup S_{n+1,2k}$ and omit the values 0 and 1. Then only two possibilities can occur:

- (1) The spherical discs $C_{n,k}$, $C_{n+1,2k-1}$ and $C_{n+1,2k}$ containing the images of the boundary components of $\triangle_{n,k}$, contain the origin, the point w=1, and the point at infinity, one by one, and f takes each value outside the union of these discs once and only once in $\triangle_{n,k}$.
- (2) There exists a spherical disc with radius less than $2A(\sqrt{\mu_{n,k}} + 2\sqrt{\xi_{n,k}})$ which contains $f(\overline{\triangle}_{n,k})$.

Let $T_{n,k}$ be the bounded disc with $\Gamma_{n,k}$ as boundary. We denote be L(r) (r>0) the union of the spherical disc C(0, r). C(1, r) and $C(\infty, r)$. We choose $\xi_0 > 0$ such that

$$(1) 12A\sqrt{\xi_0} < \frac{\delta}{64}$$

and we assume that $\xi_{n,k} \leq \xi_0$ for any n and k.

Lemma 3. Let f be analytic outside E and omit the values 0 and 1. If $f(\Gamma_{n,k}) = L(\delta) \neq \emptyset$ then $f(T_{n,k} = E) \subset C_{n,k}$ where $C_{n,k}$ is the spherical disc defined in Lemma 1.

Proof. Let us suppose that $f(T_{n,k}) = L(\delta) \neq 0$. Then f takes on $T_{n,k}$ a value outside $C(0,\delta)$ and we see from Lemma 1 that $C_{n,k}$ cannot

contain the origin. Similarly, 1 and ∞ lie outside $C_{n,k}$, and it follows from (1) and Lemma 2 that $f(\overline{\triangle}_{n,k}) \cap L(\delta/2) = \emptyset$.

Let \triangle_p be the domain bounded by $\varGamma_{n,k}$ and the circles $\varGamma_{n+p,s}$ lying in $\varGamma_{n,k}$. Then $f(\overline{\triangle}_1) \cap L(\delta/16) = \emptyset$. Let us suppose that $f(\overline{\triangle}_p) \cap L(\delta/16) = \emptyset$ ($p \ge 1$). Then it follows from (1) and Lemma 2 that $f(\overline{\triangle}_{p+1}) \cap L(\delta/32) = \emptyset$. Let $a \in \varGamma_{n+p,s} \subset \varGamma_{n,k}$. By Cauchy's integral theorem we have

$$f(a) = \frac{1}{2\pi i} \int_{T_{n,k}} \frac{f(z)}{z - a} dz - \frac{1}{2\pi i} \sum_{T_{m}} \int_{z - a} \frac{f(z)}{z - a} dz$$

where the sum is taken over all $\gamma_m = \Gamma_{n+p+1,m} \subset T_{n,k}$. On $\overline{\triangle}_{p+1}$ we have $|f(z)| \leq 32/\delta$, and on $\Gamma_{n,k}$ we have the better estimate $|f(z)| \leq 2/\delta$.

If $a \in \overline{T}_{n+q,2j-1}$, $1 \le q \le p$, and $\gamma_m \subset T_{n+q,2j}$, or vice-versa, then

$$\left|\frac{1}{2\pi i}\int\limits_{r_{uv}}\frac{f(z)}{z-a}\,dz\,\right|\leq \frac{64\;\xi_0^{p-q+1}}{\delta}\,.$$

Therefore

$$|f(a)| \le \frac{4}{\delta} + \frac{128\xi_0}{\delta} + \frac{64}{\delta} \sum_{q=1}^{p} 2^{p-q+1} \xi_0^{p-q+1}$$
$$< \frac{4}{\delta} + \frac{128\xi_0}{\delta} \left(1 + \frac{1}{1 - 2\xi_0} \right).$$

Now it follows from (1) that $|f(\alpha)| < 5/\delta$ and we see that $f(\overline{\triangle}_p) \cap U(\infty, \delta/8) = \emptyset$. Considering the functions 1/f and 1/(1-f), we get $f(\overline{\triangle}_p) \cap L(\delta/8) = \emptyset$. Applying Lemma 2 again, we get $f(\overline{\triangle}_{p+1}) \cap L(\delta/16) = \emptyset$ and by induction, we see that $f(T_{n,k} - E) \cap L(\delta/16) = \emptyset$. Since E has linear measure zero, the lemma follows from the maximum principle.

3. Functions with a singularity at all points of E

4. Let $0 < a < b < \xi_0$, and let n_k be an increasing sequence of even positive integers. We construct the Cantor set E with $\varphi_n = 0$, n = 1, $2, \ldots$, and with the successive ratios $\xi_{n,k}$ defined in the following manner. We set $\xi_{n,k} = a$ for $0 \le n < n_1$, $1 \le k \le 2^n$, $\xi_{n_i,k} = a/i$, i = 1, $2, \ldots$, $1 \le k \le 2^{n_i}$, and for $n_i < n < n_{i+1}$ we set

$$\xi_{\it n,k} = a + (b-a) \, (p-1)/2^i$$

for $(p-1)2^{n-i} < k \le p2^{n-i}$, $p = 1, 2, ..., 2^i$.

Theorem 1. It is possible to choose a and b such that if f is meromorphic outside E with an essential singularity at each point of E, then f omits at most four values (The choice of a and b does not depend on the sequence $\{n_k\}$). If n_k tends to infinity with a sufficient rapidity as $k \to \infty$ then for any open set G either $E \cap G = \emptyset$ or $Dim(E \cap G) \ge (\log(3/4))/\log a$.

The proof of the first assertion will be given in 5—9. The second assertion is quite trivial and the proof of it will be omitted.

- 5. Let f be meromorphic outside E with an essential singularity at all points of E omitting 5 values a_i , $i=1,\ldots,5$. It does not mean any essential restriction to assume that $a_1=0$, $a_2=1$, and $a_3=\infty$. f is not bounded, and it follows from Lemma 3 that the case (1) of Lemma 2 occurs for at least one $\triangle_{n,k}$. Therefore f takes every value outside the union of the discs $C(0,\delta)$, $C(1,\delta)$ and $C(\infty,\delta)$. By means of a linear transformation, we may suppose that $a_4 \in C(0,\delta)$ and $a_5 \in C(\infty,\delta)$.
- 6. Let $a < b^{18}$, and let c > 0 be chosen such that $a < c^6$ and $c < b^3$. We choose a real number ξ , $a \le \xi \le b$, in the following manner. We set $a_6 = \max{(|a_4|, 1/|a_5|)}$ and $a_7 = \min{(|a_4|, 1/|a_5|)}$.
- (A) If $a_7 \ge \sqrt{a}$, we set $\xi = a$.
- (B) If $a_7 < \sqrt{a}$ and $a_6 \ge c$ then there exist ξ , $c^4 < \xi < c^2$, and a positive integer q such that $a_7 = \xi^{q+1/2}$.
- (C) If the cases (A) and (B) do not occur then $a_7 \leq a_6 < c$. There exist $\xi_{1/2}$, $b^4 < \xi_{1/2} < b^2$, and a positive integer p such that $a_6 = \xi_{1/2}^{p+1/2}$. We set $a_6 = \xi_r^{p+r}$ where $1/4 \leq r \leq 3/4$. Then we have $b^5 \leq \xi_r \leq b$. Let now $a_7 = \xi_r^{t_r}$. We get $t_r = K(p+r)$ where $K = (\log a_7)/\log a_6 \geq 1$. Therefore there exists r, $1/4 \leq r \leq 3/4$, such that $t_r = q + s$ where q is a positive integer and $1/4 \leq s \leq 3/4$, and we choose $\xi = \xi_r$.
- 7. Let E' be the Cantor set with $\varphi_n = 0$ and $\xi_{n,k} = \xi$ for any n and k. In connection with E' we write $\Gamma'_{n,k}$, $T'_{n,k}$, . . . , corresponding to $\Gamma_{n,k}$, $T_{n,k}$, . . . in connection with E. Let \triangle'_p be the connected domain with

$$H = \left\{ z : |z| = \frac{1}{2\sqrt{3\,\xi}} \right\}$$

and $\Gamma'_{p,s}$, $s = 1, 2, \ldots, 2^p$, as boundary.

We choose a sequence $\{\xi_{s_i,t_i}\}$ such that $\lim \xi_{s_i,t_i} = \xi$ and $s_{i+1} > s_i$. Let i be fixed. It follows from Lemma 3 that the case (1) of Lemma 2 occurs for at least one $\triangle_{s,t} \subset T_{s_i,t_i}$. Let $n_{j-1} < s \le n_j$. Then we can choose $q_i \le n_j$ and $\triangle_{q_i,m_i} \subset T_{s,t}$ such that the case (1) of Lemma 2

occurs for \triangle_{q_i,m_i} , and for any $\triangle_{n,k} \subset T_{q_i,m_i}$, $q_i < n \le n_j$, occurs the case (2) of Lemma 2 (possibly $q_i = n_i$).

We choose the function g being one of the functions f, f/(1-f) and 1/f such that

(3)
$$g(T_{q_i,m_i}) \subset C(\infty, \delta)$$

for infinitely many i. Taking a subsequence, we see that we may assume that (3) is true for each i. If g=f we set $a_8=a_4$, if g=f/(1-f) then $a_8=a_4/(1-a_4)$, and if g=1/f we set $a_8=1/a_5$. Then g omits the values 0, 1, ∞ and a_8 outside E and $a_8 \in C(0$, $\delta)$.

8. We define $g_i(z) = g(l_{q_i,m_i}z + z_{q_i,m_i})$. If $g(\Gamma_{q_i+1,2m_i}) \subset C(1, \delta)$ we set $f_i(z) = g_i(z)$, otherwise we set $f_i(z) = g_i(-z)$. We set $G = \{z : 2 < |z| < 1/(12\xi)\}$. Taking any \triangle_p' , $p \geq 2$, we see that for sufficiently large i, f_i is defined on $G \cup \triangle_p'$. Applying Lemma 2, it follows from the definition of f_i that $f_i(H) \subset C(\infty, 8A\sqrt{\xi})$, $f_i(\Gamma'_{1,1}) \subset C(0, \delta)$, $f_i(\Gamma'_{1,2}) \subset C(1, \delta)$, and f_i takes on \triangle_1' exactly once every value outside the union of the discs $C(\infty, 8A\sqrt{\xi})$, $C(0, \delta)$ and $C(1, \delta)$. Applying Lemma 3, it follows from the choice of the sequence $\{\triangle_{q_i,m_i}\}$ that $f_i(T'_{1,1} \cap \triangle_p') \subset C(0, 2\delta)$ and $f_i(T'_{1,2} \cap \triangle_p') \subset C(1, 2\delta)$ if i is large enough.

Let $D=\{z:|z|<1/(12\xi)\}$. We can choose a subsequence $\{f_{i_k}\}$ which converges uniformly on compact subsets of D-E' towards a limit function f_0 , f_0 being defined in D-E'. It is easily seen that $f_0(H) \subset C(\infty, 9A\sqrt{\xi})$, f_0 omits the values 0, 1, ∞ and a_8 in D-E' and that f_0 takes the value -1 exactly once in $\triangle'-E'$ where \triangle' is the disc bounded by H. Further on, $f_0(T'_{1,1}-E') \subset C(0$, $3\delta)$ and $f_0(T'_{1,2}-E') \subset C(1$, $3\delta)$ and since E' has linear measure zero then f_0 has an analytic continuation in D. We denote by f_0 this continuation, too. Applying Rouché's theorem, we see that f_0 takes the values outside $C(\infty, 9A\sqrt{\xi})$ exactly once in \triangle' . Now we choose z_0 , $z_8 \in T'_{1,1} \cap E'$ and $z_1 \in T'_{1,2} \cap E'$ such that $f_0(z_0) = 0$, $f_0(z_1) = 1$ and $f_0(z_8) = a_8$.

9. Let $B = \{w : |w| < r\}$ where $r = 1/(18A\sqrt{\xi})$. f_0 is schlicht in $f_0^{-1}(B) \cap \triangle'$ and it has an inverse function g which is schlicht in B. We write

$$h(w) = \frac{g(rw) - z_0}{r \, g'(0)} \, .$$

Then h is schlicht in |w| < 1, h'(0) = 1, and applying the distortion theorem for schlicht functions we see that

$$\left| \frac{z_1 - z_0}{r \, g'(0)} \right| = |h(1/r)| \le \frac{1}{r(1 - 1/r)^2}$$

and that h takes every value of |z|<1/4. Then g takes in B every value of $|z-z_0|<\frac{1}{4}\,|z_1-z_0|\,r(1-1/r)^2$. We have $1/r=18A\sqrt{\xi}<\delta/32<1/500$, and we see that f_0 is schlicht in |z|< r/4. Then it follows from the distortion theorem that $\frac{1}{4}|z_8-z_0|<|a_8|<|z_8-z_0|$.

Since z_8 and z_0 belong to $E' \cap T'_{1,1}$, then there exists $D'_{n,k}$, $n \ge 1$, such that $D'_{n+1,2k-1}$ contains one of the points z_0 and z_8 , and $D'_{n+1,2k}$ contains the other one. Therefore we have $\xi^n \le |z_8 - z_0| \le 2 |\xi^n|$ and we get

$$\frac{1}{4} \xi^n \le |a_8| \le 2 \xi^n$$

where n is a positive integer.

On the other hand, it follows from the choice of ξ and the definition of a_8 that either $|a_8| \geq \frac{1}{2} \xi^{1/2}$ or $\frac{1}{2} \xi^{p+r} \leq |a_8| \leq 2 \xi^{p+r}$ where p is a positive integer and $1/4 \leq r \leq 3/4$. In both cases we have a contradiction with (4) and the first assertion of Theorem 1 is proved.

10. **Remark.** Modifying a little the proof of Theorem 1 we see that our set E has the following local property: Let A be an open domain such that $A \cap E \neq \emptyset$, and let f be meromorphic in A - E with an essential singularity at all points of $E \cap A$. Then f omits in A - E at most a finite number of values.

4. Non-rational functions

11. A set A is said to have logarithmic measure zero if given $\varepsilon > 0$, then we can cover A with open spherical discs $C(b_i, \delta_i)$, $0 < \delta_i < 1$, such that

$$\sum rac{1}{\log (1/\delta_i)} < arepsilon$$
 .

Let a and b be as in the proof of Theorem 1 and let $\{n_k\}$ be a sequence of positive even integers such that $n_{k+1} > 2n_k$, k=1, 2, ... We construct the Cantor set E with $\xi_{n,k} = \xi_n$, k=1, ..., 2^n , and φ_n defined in the following manner. Let $\{r_i\}$ be a sequence of all rational numbers satisfying the condition $a \le r_i \le b$. We set $\xi_n = r_1$ and $\varphi_n = 0$ for $0 \le n < n_1$, $\xi_{n_i} = a/i$ and $\varphi_{n_i} = \pi/2$, i=1, 2, ..., and $\xi_n = r_i$, $\varphi_n = 0$ for $n_{i-1} < n < n_i$, $i \ge 2$.

Theorem 2. It is possible to choose a, b and the sequence $\{n_k\}$ such that $\operatorname{Dim}(E)>0$ and if f is meromorphic and non-rational outside E and omits F, then F has logarithmic measure zero.

12. Proof. Let f be meromorphic and non-rational outside E omitting a set F with positive logarithmic measure. We may assume that $\{0, 1\}$

1, $\infty \} \subset F$. It follows from Lemma 3 and Lemma 2 that f takes every value outside $C(0, \delta) \cup C(1, \delta) \cup C(\infty, \delta)$. Making a linear transformation, if necessary, we may assume that the sets $F \cap C(0, \delta)$ and $F \cap C(\infty, \delta)$ have positive logarithmic measure.

We choose a sequence $\{\triangle_{s_i,t_i}\}$ such that the case (1) of Lemma 2 occurs for any \triangle_{s_i,t_i} and $s_{i+1} > s_i$. Let $n_{p_i-1} < s_i \le n_{p_i}$. If $\liminf(n_{p_i} - s_i) < \infty$ then it follows from Lemma 3 and Rouché's theorem that two of the discs $C(0,\delta)$, $C(1,\delta)$ and $C(\infty,\delta)$ contain only a finite number of points of F, because $f(\Gamma_{n_{p_i}+1,k})$ is contained in a small spherical disc if i is large. Therefore $\lim (n_{p_i} - s_i) = \infty$, and we assume that $\{s_i\}$ is chosen such that for any n and k, $s_i < n \le n_{p_i}$, $1 \le k \le 2^n$, the case (2) of Lemma 2 occurs for $\triangle_{n,k}$.

Let now $\{\triangle_{s_i,t_i}\}$ be chosen such that $\lim \xi_{s_i} = \xi$. Since f omits at least 5 values it follows from the proof of Theorem 1 that all values of ξ , $a \le \xi \le b$, are not allowed. In fact, we can choose c and d, a < c < d < b, such that if $c \le \xi_n \le d$ then the case (2) of Lemma 2 occurs for $\triangle_{n,k}$. Therefore we may assume that the sequence $\{\triangle_{s_i,t_i}\}$ is chosen such that the case (2) of Lemma 2 occurs for $\triangle_{n,k}$ if $n_{p_i} \le n \le n_{p_i+1}$. Further on, since a linear transformation does not essentially change the logarithmic measure, we may assume that $f(\Gamma_{s_i,t_i}) \subset C(\infty, \delta)$, $f(\Gamma_{s_i+1,2t_i-1}) \subset C(0, \delta)$ and $f(\Gamma_{s_i+1,2t_i}) \subset C(1, \delta)$.

13. As in the proof of Theorem 1, we now construct the Cantor set E' with $\varphi_n=0$ and $\xi_{n,k}=\xi$ for any n and k, and setting

$$f_i(z) = f(\eta_{s_i} l_{s_i} z + z_{s_i,t_i}) ,$$

we find a limit function f_0 which is schlict in $D=\{z:|z|< r\}$ where $r=1/(72A\sqrt{\xi})$. We have $f_0(D-E')\cap F=\emptyset$, $0\in f_0(T'_{1,1}\cap E')$ and $1\in f_0(T'_{1,2}\cap E')$, and therefore F has the following property: If $w_j\in F$, $|w_j|\leq 2$, j=1, 2, $w_1\neq w_2$ and $\mathrm{Re}\ w_1\leq \mathrm{Re}\ w_2$ then

(5)
$$|\arg(w_2 - w_1)| \le \pi/12$$
.

14. For the sake of simplicity, we write s, t and p instead of s_i , t_i and p_i . Let \triangle be the domain bounded by $\Gamma_{s,t}$ and $\gamma_v = \Gamma_{n_{p+1},v}$, $v = \alpha, \ldots, \omega$, where $\alpha = 2^{n_{p+1}-s} (t-1) + 1$ and $\omega = 2^{n_{p+1}-s} t$. We write f = g + h where

$$g(z) = \frac{1}{2\pi i} \int_{\Gamma_{s,t}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

and

$$h(z) = \frac{-1}{2\pi i} \sum_{v=\alpha}^{\omega} \int_{z_{\alpha}} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Then g and h are regular in \triangle .

Let \triangle_1 be the domain bounded by $\Gamma_{s,t}$ and the circles $\Gamma_{n_p+m,q}$ lying in $T_{s,t}$ where $m=(n_{p+1}-n_p)/2$. It follows from Lemma 3 that |f(z)|<3 on each $\gamma_v \subset T_{s,t}$, and on $\overline{\triangle}_1$ we get

(i)
$$\begin{split} |h(z)| & \leq 6(\omega - \alpha + 1)l_{n_{p+1}}/l_{n_{p}+m} \\ & < \left(2b^{1/4}\right)^{n_{p+1}}. \end{split}$$

Now we suppose that n_{p+1} is so large that $(2b^{1/4})^{n_{p+1}} \le \sqrt{a}/1000$. Then it follows from Rouché's theorem that g takes every value outside $C(\infty, 8A\sqrt{\xi_s}) \cup C(0, 2\delta) \cup C(1, 2\delta)$ exactly once in $\triangle_{s,t}$. g is analytic in $T_{s,t}$ and applying Rouché's theorem again, we see that g takes every value outside $C(\infty, 8A\sqrt{\xi_s})$ exactly once in $T_{s,t}$. Now $0 \in g(T_{s+1,2t-1})$ and $1 \in g(T_{s+1,2t})$ because if for instance $0 \in g(\overline{\triangle}_{s,t})$ then we see that f takes the value 0 in \triangle_1 . Furthermore, we see that g is schlicht in

$$\triangle_4 = \left\{ z : |z - z_{s,t}| < \frac{l_s}{72A\sqrt{\varepsilon}} \right\}.$$

Let $\Gamma_{n_n,j} \subset T_{s,t}$. We set

$$L_{\!\scriptscriptstyle j} = \{z : z = z_{{\scriptscriptstyle n_{\!\scriptscriptstyle p}},j} + \lambda \eta_{{\scriptscriptstyle n_{\!\scriptscriptstyle p}}} \, l_{{\scriptscriptstyle n_{\!\scriptscriptstyle p}}} \, , \, \, -2 \le \lambda \le 2 \} \, .$$

Then $g(L_j)$ has the following property: If $w_k \in g(L_j)$, k=1, 2, $w_1 \neq w_2$ and ${\rm Im}\ w_1 \leq {\rm Im}\ w_2$, then

(6)
$$|\pi/2 - \arg(w_2 - w_1)| \le \pi/12$$
.

Furthermore, if $j\neq k$ then the distance between $g(L_j)$ and $g(L_k)$ is at least $l_{n_0-1}/(4l_s)>\xi_s^{n_p}$. We denote

$$U_{\boldsymbol{j}}(\boldsymbol{r}) = \left\{\boldsymbol{w} : \text{distance between } \boldsymbol{w} \ \text{ and } \ \boldsymbol{g}(L_{\boldsymbol{j}}) \leq \boldsymbol{r} \right\}.$$

Let $\beta_q = I_{n_p+m,q} \subset T_{n_p,j}$. Then $\beta_q \cap L_j \neq \emptyset$ and we see that $g(\beta_q) \subset U_j(b^{n_p+1/4})$. Then it follows from (i) that $f(\beta_q) \subset U_j(r)$ where $r = 2(2b^{1/4})^{n_p+1}$.

Now we assume that the sequence $\{n_k\}$ is chosen such that

(7)
$$\lim \frac{2^{n_k}}{n_{k+1}} = 0.$$

Then for large i, $U_j(r) \cap U_k(r) = \emptyset$ if $j \neq k$ and we see that f takes in \triangle_1 every value outside $C(\infty, \delta) \cup (\cup U_j(r))$ where the number of the sets $U_j(r)$, $\Gamma_{n_p,j} \subset T_{s,t}$, is at most 2^{n_p} . We see that $F \cap C(0, \delta) \subset \cup U_j(r)$. It follows from (5) and (6) that $F \cap U_j(r)$ is contained in a disc B_j with radius 4r, and we get from (7) that

$$\frac{2^{n_p}}{\log \frac{1}{4r}} = \frac{2^{n_p}}{-n_{p+1} \log (2b^{1/4}) - \log 8} \to 0$$

as $i\to\infty$. Therefore $F\cap C(0,\delta)$ has logarithmic measure zero. We are led to a contradiction and the second assertion of Theorem 2 is proved. The proof of the assertion concerning Dim (E) will be omitted.

University of Helsinki Helsinki, Finland

References

- [1] Carleson, L.: A remark on Picard's theorem. Bull. Amer. Math. Soc. 67 (1961), 142-144.
- [2] Matsumoto, K.: Some remarks on Picard sets. Ann. Acad. Sci. Fenn. A I 403, 1967.
- [3] Toppila, S.: Some remarks on the value distribution of meromorphic functions. Ark. Mat 9 (1971), 1-9.