ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

551

ON THE DILATATION OF ISOMORPHISMS
BETWEEN COVERING GROUPS

BY

TUOMAS SORVALI

HELSINKI 1973
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.551


koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1973.551


Copyright © 1973 by
Academia Scientiarum Fennica
ISBXN 951-41-0126-X

Communicated 14 May 1973 by Orrt LenTo

KESKUSKIRJAPAINO
HELSINKI 1973



Introduction

A group ¢ ot Mobius transformations fixing a disk or half-plane D
is called a covering group if it is discontinuous in the following sense: For
each point z € D there exists a neighborhood U such that g(z) ¢ U
whenever g == id lies in /. Hence a covering group may contain hyper-
bolic and parabolic transformations only.

In [3] we introduced the dilatation 6(j) of an isomorphism j : G — '
defined as follows: If x(g) denotes the multiplier of a Mobius transforma-
tion g, then o(j) is the smallest number 1 <« < oo for which
#(9)" < #(jlg)) < =(g)" holds for all g €G. As examples of the case
where 6(j) <50 we have the isomorphisms j induced by quasiconformal
mappings f, ie. j(g) =fogef for all g €G. On the other hand, if
there is a parabolic g € ¢ such that j(g) is hyperbolic or vice versa,
then 0(j) = .

In § 1 we consider isomorphisms j between noncyclic covering groups
with 6(j) = oo . We show that the dilatation of j restricted to elements
whose type is preserved is also infinite. In § 2 we consider parabolic ele-
ments under an isomorphism with a finite dilatation.

In § 3 we prove the following theorem: Let { g, , ¢,,...} be a set of
generators of (/. Suppose that an isomorphism j: G — G’ preserves
the multipliers of the elements of the type (g% g)c (97 0 g¢:)* where
N, P, vy, e are integers and « = 1, 2. Then j is induced by a Mobius
transformation.

Let j: ¢ —G" be an isomorphism between covering groups acting on
the upper half-plane H . A homeomorphism ¢: R U {x} >R U {0},
where R is the set of the real numbers, is called a boundary mapping of
J if pog=jlg)op holds for all g €G. In § 4 we characterize 6(j) in
terms of the local Hélder continuity of ¢ and ¢='. As a corollary we
then obtain the following result: If ¢ has a K-quasiconformal extension
to the extended complex plane, then §(j) < K .

§ 1. Isomorphisms with an infinite dilatation

For a hyperbolic transformation ¢, let x(g) denote the multiplier
and P(g) and N(g) the attracting and the repelling fixed point. The
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parameters x(g), P(g), and N(g) determine ¢ uniquely. We have
#(g) = (z,9(), P(9), N(g9)) > 1, the cross ratio being defined as in [3,§1].
If ¢ is parabolic, we define =(g) =1 and P(g) = N(g) as the only fixed
point of g¢.

Let a parabolic or hyperbolic transformation ¢ be given in the form
2> g(2) = (az -+ b)[(cz -+ d) with ad—bc =1. Then « -~ d 1is always
real, and y(¢) = la + d| is the frace of ¢. It follows that

7(9) = =(g)V2 4 x(g) 2.

Hence x(9) > 2, where the equality holds if and only if ¢ is parabolic.

Let j: M — M be a mapping between sets of hyperbolic and para-
bolic transformations. A calculation shows that the dilatation of j can
also be defined in terms of y(g) .

Theorem 1. Suppose that for any g € M the transformations g*, n =
2,3,..., ae in M, and suppose that j(g") = jlg)". If 1 <a < x
is the smallest number for which x(g)"* < %(j(g)) < x(9)* holds for all
g €M, then a = d6(j).

Proof. Let g€M, k==x(g) and k" = x(j(g)). Suppose that we
have x(j(9)") < x(g")* for n=1,2,.... Then

(BP™ + ()77 < (7 )
and hence
(B < (B) 4 (B) " 4 2 < (1 - B - 2 < (20"
from some n = n, on. Therefore
E < @M = (2 k),
and letting n — oo we obtain k" < k*. Similarly, if x(j(9)")
for n =1,2,..., then we get k < (£')*. Thus we have £"* <1k
Conversely, suppose that k' <k’ <1". Then
20@) =K+ UVE < WE) + UVE) < W E -+ 1VE) = 2097,

and similatly z(9) < 7(i@) . []

Let j:G — @ be an isomorphism between covering groups G and
G’ . If there is a parabolic g € @ such that j(g) is hyperbolic or vice
versa, then 6(j) = oc. By the following theorem, the dilatation of j
restricted to elements whose type is preserved is also infinite.

Theorem 2. Let j:G — Q" be an isomorphism with 0(j) = oo . De-
fine G* as the set of all hyperbolic elements g € G for which j(g) is hyper-
bolic. If @ s not cyclic, then 6(j|G*) = .
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Proof. It follows from Lemma 3.1 in [3] that G* = @ . If j preserves
the type of all transformations of &, then there is nothing to prove. In
other cases choose a hyperbolic ¢g; € G such that j(g;) is parabolic (if this
is not possible, then we consider the isomorphism j—1:6’ — @) and let
gy € G@* . Then we have ([3, (4.11)]):

|k 4 1 — 2kt o+ ky) |
(1 — =) (i)™ |

where k= x(g;) and @ =1 — (N(g7), N(g5) , P(g1), P(g,)). Thercfore

ﬂﬁWQkaﬁ@“m!
e S R

791 0 gy) =

lim

n->w

If by —2x=0, we replace g» by g¢3. Then there is a b > 1 such that
we have for n=1,2,...

(.1 (D)™ < y(gt o g2) < DRY™ .

We now consider the group @' . Since g; = j(g,) is parabolic and
¢y = §(g,) hyperbolic, we may normalize such that

n(z) =2+ o, gE) = Ek)(k— 132+ 1),

where & = x(g;) > 1. We may also assume that o > 0 since we can
replace g, by (gy)~! if necessary. Then we have

(k + nok — 1))z + no

(b — 1)z + 1

((g1)" 2 92) (2) =

and hence

( . , 1+ %+ nok —1)
(L.2) 1) = g2) = 12

kr0111 (1.1) and (

I
y (1.2), x((y
f01 any 1 <« <

.2) we conclude that ¢} o g, € G* from some n = n, on.
)" e g:) < 2nok for sufficiently large 7 . Then we have
o8}

21 o gt = (k2[D) > 2nok = y((g1)" © g2)

from some #n = n, on. Therefore ¢(j|G*) = oo by Theorem 1. [ ]

§ 2. Distortion of parabolic transformations

Let j:G — (" be an isomorphism between covering groups which
act on the upper half-plane H, and suppose that 4§(j) << o0 . In this
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section we consider the behavior of the parabolic elements of ¢ under .
A parabolic transformation ¢ € G fixing oo is of the type

(2.1) gz) =z + 0.

If ¢ is parabolic with P(g) = co, then ¢ has a unique representation
in the form

) o 1 1 ’

(22) gz) — Plg) =Pl

We call the number o = w(g) defined by (2.1—2) the translation vector
of g. From g(H) = H it follows that P(g9) and o(g) are real. If the
transformation ¢ in (2.2) is given in the form ¢(z) == (az + D)/(cz 4 d)
with @ +d = 2, then an elementary calculation shows that w(g) =c.

To interpret geometrically the translation vector w(g), consider first
the transformation (2.1) with o > 0. If we define the non-euclidean
metric in A by (Im z)~1idz!, then the non-euclidean length of the euclidean
line segment {x + ¢ |ax, <a <ay-+ o} is o. Since the non-euclidean
distances are invariant under Mobius transformations, we then obtain from
(2.2) the following interpretation for (g): Suppose that P(g) == o and
define K(g) as the circle of diameter one through P(y) and P(g) 4 .
If z€ K(g), then [w(g) is the non-euclidean length of the part of K(g)
between z and g¢(z). From this it follows that we have wo(g) =
w(h o goh1) for all translations A: z+>z -0, b real.

For a hyperbolic transformation & fixing H , let Ax(h) be the axis
of k (ie. the circle through P(h) and N(&) orthogonal to R). If
z € Ax(h), then log x(h) is the non-euclidean length of the part of Ax(h)
between z and A(z) . Thus |w(g)] has some analogy with log x(h). How-
ever, if we normalize such that j fixes the translation zw-z -~ 1. then
w(g)! does not behave under j as log x (h) but like x(h).

Theorem 3. Suppose that the transformation g,:z—>z -1 lies in
GNG . Let j:G—G be an isomorphism such that a = 0(j) < o .
If 5(90) = g5, then o(g) ' < o(jg) < olg) " holds for all parabolic
transformations g of G .

Proof. We first note that for any parabolic element 7 =g, of G we
have |w(h=tog,oh) = w(h)?. To prove this, let 7 be the transformation
2 (I 4 o)z — o2?)/(wz + 1 — o), where » = P(h) and o = w(h).
Then

(1 4+ o — o)z -~ (1 —or)?

— 0% =1 — o 0.

(ht o gyoh) (2) =

Hence o(htogyoh) = — o?.
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Let ¢ #¢, be a tixed parabolic transformation of G . Define
g, = g Logyog and inductively g, = gl ogeoGay for m=2,3,....
Then {g.} is a sequence of parabolic elements of & . By the above remark
we have w(g,) = o(g,_1)?. Therefore

(2.3) ()| = o)

Since @ = 0(j) < ©, {j(g.)} is a sequence of parabolic elements of
@' . Because j(g,) = o, (2.3) holds if g, and ¢ are replaced by j(ga)
and j(g), respectively.

For any parabolic transformation % =g, of G we have

(2.4) 2Ggooh) =12+ o) .
Since y(g, e h~") > 2, it follows that |w(k)] = 4. We apply (2.4) to the
transformations ¢. and j(¢.) . Then by Theorem 1

2 o) I < 2+ o(ilg) = 2+ olg) [

Formula (2.3) and the triangle inequality yield
0 < (0(g) — 2" = (jolg), — 2)" < 2+ o) =<
2 4+ 0(jlga)] < 2 + olilg) -

Hence

[((!)(g)zn - 2)1/2"]1/a S [2 + (I)(j(g))zn]l’zn ,

and letting 7 — o we obtain |w(g)|" < |o(j(g))] . It follows similarly
that lo(jig) = olg)*. ]

Remark. Let G be a covering group containing the transformation
Jo: 2>z + 1. As remarked above, it follows from (2.4) that [w(g)| = 4
for all parabolic elements ¢ == g, of G . This bound is sharp: Let ¢,(z) =
z/(42 + 1) and let G, be the group generated by ¢, and g,. Then
is a covering group and we have w(g;) = 4.

§ 3. Isomorphisms with dilatation one

For a set M of Mébius transformations, let Fix{M) denote the set
of fixed points of non-identity transformations of A7 . If the set Fix(()
is dense in a circle or a straight line, then the covering group & is said
to be of the first kind. If not, then G is of the second kind.

Let j:G— @G be an isomorphism with §(j) = 1. If G and G’ are
of the first kind, then by Theorem 4.3 in [3] there is a Mdbius transformation
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h inducing j, i.e., j(g) =hogoh™! for all ¢ € G. This result is valid
in the following more general form also for groups of the second kind.

Theorem 4. Let E ={g,,¢,,...} be a set of generators of a covering
group G . Let F consist of the transformations of the form (¢¥ o gi)* o (g% © g2)" ,
where x, B, v, ¢ are integersand a = 1,2 . If an isomorphism j: G — G’
preserves the multipliers of the elements of ¥, then j is induced by a Mobius
transformation.

Proof. It suffices to show that there is a Mobius transformation % such
that j(g:) =hogioh™ for all ¢;€E .

(A) Suppose first that E contains at least one hyperbolic element.

If B ={¢;}, g hyperbolic, then j is induced by any Mobius trans-
formation sending P(g;) to P(j(g;)) and N(g;) to N(j(g,)). Let
E ={g;,9,} with ¢; parabolic and g, hyperbolic. We show that the
Mébius transformation which sends P(g) to P(j(g:)), i=1,2, and
N(g,) to N(j(g,)) induces j. Since we can replace ¢ and G’ by con-
jugate groups G; = hGh1 and G = '@ (K')~1, we may assume that
g, and j(g,) both are the transformation z> kz/((k — 1)z + 1) and that
P(gy) = P(j(g1)) = oo . Since we have y(g7egy) = x(j(g1)" < j(g5)) , it fol-
lows from (1.2) that

Ltk 4+ nk — Dolgy) = 1+ &+ nk — Do(jlg).

for n=1,2,.... Therefore w(g;) = »(j(g;)) , and the assertion follows.

Let Fix(F) contain at least four distinct points. Choose z; € Fix (£)
such that (z;, 2y, 23, 7)) > 1. Suppose that z; = N(h;), 2z, = N(h,),
23 = P(hy), 2z, = P(h,), where foreach ¢, ¢+ =1,2,3,4, either h; €L
or hy'€E. If

wy = N(j(hy)) , wy = N(j(hy))

wy = P(j(hs)) , wy = P(j(hy))
then the points w; are well-defined and distinct. We show that
(3.1) (215 22, 235 29) = (wy, Wy, Uy, wy) .

To prove (3.1), set ¢,, = hi ok} and g¢,, = h}oh;. Then by Lemma 3.1
in [3], N(gu)—=z., Pl —2. and similarly  N(j(g;,)) — w;,
P(j(g:n) = wipe as n— o0, t=1,2. Thus it suffices to show that

(3.2) (N(912) » N(92n) » Plg1a) » Plg2n)) =
(N((912) » N(G(92) > P(i(g12) » P(5(9.)))

for sufficiently large values of n . Choose n, such that for » >,
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(N(gln) b N(gzn) H P(gln) ’ P(gzn)) > L.

Since j preserves the multipliers of ¢y, , an, f1n°g2n and gi, 0 g5, , We
can apply the proof of Theorem 4.3 in [3] by replacing g: by ¢in. Then
it follows that (3.2) holds for »n > n,, and (3.1) is proved. By (3.1) there
is a Mobius transformation % such that A(P(gF')) = P(j(g)*") for all
g: € E. By the previous part of the proof we have j(gi) =hogich™
for g; € E. Thus case (A) is proved.
(B) Suppose secondly that E contains only parabolic elements.

The case when E consists of one parabolic element is clear. Let
E ={g,, g,} with g, and g, parabolic. We may suppose that g; and
j(g,) both are the transformation z+>z -1 and that P(g,) = P(j(g,)) -
Since we have (g © g3) = x(j(¢1) ° j(gs)") , it follows from (2.4) that

12 L nog) = 12+ no(jgs)

for n = 1,2,.... Therefore w(g,) = o(j(g,)) , and it follows that j = id .

Let B ={g,0s,9s} with ¢, g5, g5 parabolic. We show that the
Mébius transformation sending P(g:) to P(j(g:)) induces j. We normalize
such that

P(gy) = P(j(g1)) = o, Plg) = P(j(g.)) = 0, P(gs) = P(jlgs)) = — 1.

Then it suffices to show that j = id.
Let w; =w(g:), i =1,2,3. Then we have (cf. 2.4))

2t e gi) = 12 + oy
for i =2,3. A simple calculation yields

(1 — nowymy; — mg) 2 — g

(3:3) (922 92) (=) =

(1 y — ROye5 — m3) 2 - 05 — 17

Hence

n

195 ° 92

and we also obtain similar expressions for

) = 12 — nwm;,

29" < j(g:)) and  x(j(g5) © j(g2)") -

Let o, = o(j(g:)) . Then we have the following equations

. r o, N <
12 4+ noqwi] = 2 + now; |, ©=2,3,

. il

> oy
[2 — noymg] = 2 — Ny

- ’ . .
for w =1,2,.... Hence o;0, = o, holds for ¢ =%, and we have
either w;, = o] or w; = — o, for 1 =1, 2, 3. To verify that the latter
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case is impossible, consider the transformation ¢;0g,°¢97. It follows
from (3.3) that

2G50 gy o g1) = |2 — w05 + n{wy0, 4+ 005 -+ 0;0503)] .

From z(gs o ga 1) = 7(jgs)  j(g) * j(g2)") we infer that o, and o] have
the same sign. Hence we have j(g:) =¢; for i =1, 2, 3 and it follows
that j = ¢d as asserted.

Suppose finally that Fix(Z) contains at least four points. Similarly
as in (A) we can show that there is a Mobius transformation % such that
k (P(gi")) = P(jlgi)”") for all g; € E. From the case of three generating
transformations it then follows that A induces j.[ ]

About results related to Theorem 4 we refer to [2] pp. 150—151.

If we only know that x(g:) = »(j(g:)) for all ¢; € E, then j need
not be induced by any Mobius transformation. This is seen considering
e.g. the case when the Riemann surfaces corresponding to ¢ and (' are
compact.

§ 4. The boundary mapping of an isomorphism with a finite dilatation

Let ¢ and &' be covering groups acting on the upper half-plane H .
A homeomorphism ¢: RU{w}— RU{w} is called a boundary mapping
of an isomorphism j: G — G’ if gog=jg)c¢ forall g €G. Thus we
have ¢ (P(g)) = P(j(g)) for ¢ € ('. (Therefore, if ¢ and G’ are of the
first kind, an isomorphism j: G — ' has at most one boundary mapping.)
In this section we consider the interrelation between ¢ and 6(j).

Let A, and KA, be circles or straight lines and v : K; — K, a homeo-
morphism. Let z, € K| be a finite point such that u(z,) ¢ oo . We say
that v is Holder continuous with the exponent ~, 0 <<x <1, at z, if
there is a constant 4 >>1 and a neighborhood U"c K; of z;, such that

(1/A) 22 < pe) — plzy) < A2z

for all z € U'. The mapping v is Hoélder continuous with the exponent
x at the point o« or at a point z, where y(z) = = if w»(1/z) has this
property at the origin or 1/y(z) at z,, respectively. If y is Hélder con-
tinuous with the exponent ~ = 1 at z,. then we sav that y is a Lip-
schitz mapping at z,.

The Holder continuity of y is invariant under Mébius transformations,
ie., if h; and h, are Mobius transfcrmations and y is Holder continuous
with the exponent ~ at z;, then the same is true of %, oy o hT' at the
point %,(z,) .
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Theorem 5. Suppose that ¢ is a boundary mapping of an tsomorphism
j:G—G . Let B(j) be the set of the real numbers x, 0 <<« <1, such
that ¢ s Holder continuous with the etponem‘ x at the fixed points of all
hyperbolic elements of G . Then B(j) # @ if and only if () oo . If
B(j) # O, then we have 1/6(j) = max~, « € B(j).

Proof. Let g € (¢ be hyperbolic. From the existence of ¢ we conclude
that j(g) is also hyperbolic. Since the x-Holder continuity of ¢ at a point
is invariant under Mobius transformations, we may assume that

N(g) = N(j(g)) =0, P(g) = P(j(g) = >

and ¢(l) = 1.
Suppose that ~ € B(j). Then there is an A4 > 1 such that

g9 (1) — @(0)] = ¢(g™"(1)) = jlg)~"(1)
= x(j(g))"" < AlgT"(1) — 0% = Ax(9)™™

from some 7 = n, on. Thus x(j(g)) = A ""x(¢g)*, and letting n — o
we obtain =(j(g)) = x(g)* . Similarly it follows that x(g) > =(j(g))*. Hence
0(j) < 1.

Conversely, suppose that « = 6(j) << oo . Choose ¢ such that 0 <t <1
and let n be the natural number for Which 1 // il <t < 1/x(g)" . Since
p(1) =1, we have 1/x(j(g))"** < ¢(t) < 1/x(j(g))" . Hence

W) A g
S g S gy O

and similarly  ¢(f)/t* = 1/=z(g)*. If —1<t<<0, then we obtain
GO < (1) 29 and q(t) 10 = ¢(—1) x(g)*. Hence

1/0(j) € B(j)
and the first assertion is proved. Moreover, by the first part of the proof
we have 0(j) < 1/x for all x € B(j). Thus 1/6(j) =max«, x €B(j). [ ]

As in Theorem 4, let E = {g,,¢,,...} be a set of generators of
and let F be thb set of the t1ansformations (g‘j‘ ° gi)“ (gm og:)*. Then

«««««

Theorem 6. If an isomorphism j:G —G' has a boundary mapping
which is a Lipschitz mapping at the points of Fix (F), then j is induced
by a Mobius transformation.

Theorem 6 follows from Theorem 4 and the proof of Theorem 5.

The following theorem shows that the Holder continuity of a boundary
mapping ¢ of j:G —G" at the fixed points of the parabolic elements
of G does not depend on 4(j) .
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Theorem 7. If g € G s parabolic, then all boundary mappings of an
isomorphism j: G — G are Lipschilz mappings at P(g).

Proof. We may assume that g and j{g) both are the transformation
z>z[(z + 1) and that ¢(o)= . Choose ¢ such that 0 <t <1
and let n be the natural number for which 1/(n - 1) <<¢ << 1/n. Since
g"(©) = j(g)"(©) = 1/n, we have 1/(n 4+ 1) < ¢(t) < 1/n. Therefore
nf(n 4+ 1) < @)t < (n + 1)/n, and it follows that 2 < ¢(t) < 2¢.
Replacing g by g we obtain //2 < lg(t)] < 21| for —1 <t<<0.[]

By Theorem 4.1 in [3] we have 0(j) < K if j is induced by a K-
quasiconformal mapping f: H — H . This theorem is a special case of
the following more general result:

Theorem 8. Let ¢:RU{w}-—>RU{cx} be a boundary mapping of
JjiG—G" . If there is @ K-quasiconformal mapping f: H - H such thal
fRU{) = ¢, then 8(j) <K .

Proof. Let h and %' be Mébius transformations mapping H onto
the unit disk such that f; = A’ofo k1 fixes the origin. By Theorem II.
3.2 in [1], the restriction of f; to the unit circle is Holder continuous with
the exponent 1/K . Then the same holds true of ¢ at every point of
RU{co} and we have §(j) < K by Theorem 5. [ ]

Let p:RU{o}— RU{c0} be an increasing homeomorphism fixing
oo . If for an interval I € R there is a constant 1, 1 <1 < o, such
that

pl 4 1) — y(@) <

I3
. VA= =y — 1
holds whenever « -t €1, we say that v is Ji-quasisymmetric on 1.
The mapping o is called 2-quasisymmetric if (4.1) holds for all z and
t. Note that y is 1-quasisymmetric if and only if y is the restriction of
a Mobius transformation z+>az - b with @ > 0 and b real.

If an isomorphism j:G — (G’ has a /-quasisymmetric boundary
mapping ¢ , then

(+2) 5(j) = log 2]log (1 -+ 1/7)

by Theorem 4.2 in [3]. On the other hand, there is a A-quasiconformal
extension f: H -—>H of ¢ with K = min (84, 22) (see [1, 11.6.5]). Hence
we have 6(j) << min (84, 22) by Theorem 8. However, one can verify by
calculation that log 2/log (1 + 1/2) < min (82, /%) for all values 1 >1.
Hence Theorem 8 implies (4.2) only if a A-quasisvmmetric ¢ always has
a  (log 2/log (1 4 1/4))-quasiconformal extension f:H —H .

By the following theorem, (4.2) can be deduced also from the local
J-quasisymmetry of ¢ .
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Theorem 9. Let ¢:RU{0}—>RU{w} be a boundary mapping of
an isomorphism j: G —G' . If for every hyperbolic g € G satisfying
P(g) # oo there is an interval I3 P(g) on which ¢ is A-quasisymmetric,
then 6(j) <log 2/log (1 4+ 1/4).

Proof. Let g € ¢ be hyperbolic, P(g9) 4 o and h, A’ Mébius trans-
formations fixing H such that A(P(g)) = 2" (P(j(g)) =0, k(N(g) =
R (N(j(g))) = oo . For every &> 0 there is an interval I containing the
origin such that the mapping ¢, =h"o@o k1 is (1 -+ &)-quasisymmetric
on I. Then there are 1-quasisymmetric mappings %, and h; fixing the
origin such that ¢, = hy o ¢, 0 h{' is (4 -~ ¢)-quasisymmetric on the closed
unit interval. Replacing ¢ by ¢; and 2 by 4 - & in the proof of Theorem
4.2 in [3] we can show that x(g)"* < x%(j(g)) < #(g)* holds for

a = log 2flog (1 + 1/(A + ¢)) . ]

Suppose that all boundary mappings of an isomorphism j:G — &
are increasing and fix the point oo . To our knowledge, it is an open ques-
tion whether 0(j) << oo then implies that j has a boundary mapping
which is A-quasisymmetric for some fixed 2 >1 in a neighborhood of
the attracting fixed point of every hyperbolic element of . However,
the following theorem tells that all boundary mappings of j have a quasi-
symmetry property at the fixed points of the parabolic elements of G .

Theorem 10. Suppose that the transformation ¢y:zr>z--1 lies in
GNG . Let ¢:RU{w0}—RU{co} be a boundary mapping of an iso-
morphism j: G — G for which j(9,) = ¢o. If g # g, is a parabolic ele-
ment of G, wxy=P(g) and a = 6(j) < o, then we have for all t >0

P(ry + 1) — ¢(a,)
T glry) — gy — 1)

—a

o(g) = o(g)".

Proof: It means no restriction to consider only the case when ¢ is
increaging. Using l-quasisymmetric mappings of the type z+>2 - b we
normalize such that P(g) = P(j(g)) = 0. Then w(g), o(j(g)) and (g,
are not changed. We may assume that w(g) and o(j(g)) are positive.
Then by Theorem 3, w(9)"* < w(j(g)) < o(g)*.

Let t>1 and n» be the natural number for which n <t <n 4+ 1.
From -+ n = g3™(0) = j(g,)="(0) we infer that » < + @ (L ¢) <n + 1.
It follows that =/(n + 1) < ¢(t)/(— ¢(— 1)) < (n + 1)/n, and we have
12 < gt)/(— p(— 1) < 2.

Let 1/w(g) <t <1. Since ¢g(w) = 1ljw(g), we obtain

Ho(jlg) <o) <1,
and similarly —1/o(j(g)) > ¢(—t) > —1. Hence
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Finally, let 0 <<t < 1jw(g) and = be the natural number for which
((n + Do(g)) <t < 1/(no(g)) . From ¢="(wc) = 1/(-- nn(g)) it follows
that 1/(n + De(j(g)) < -+ ¢(= 1) < 1/(no(jg)) . Hence

nw(j(g)) @(1) (n -+ Do(j(g))
(n + Do) — —g(=10) =  no(j(g)
and we conclude that 1/2 < g(t)/(— ¢(—1t)) < 2.
Since w(g) > 4 (cf. Remark in § 2), it follows that

o(g)™" < ¢et)/(— q(= 1) = og)

o(g)” < ¢®)/(— g(— 1)) <o)

>

forall t>0.[]
Observe that Theorem 10 does not follow from Theorem 7.
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