ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

551

ON THE DILATATION OF ISOMORPHISMS BETWEEN COVERING GROUPS

 $\overline{\mathbf{B}}\mathbf{Y}$

TUOMAS SORVALI

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

 $\ddot{}$

https://doi.org/10.5186/aasfm.1973.551

 $\begin{minipage}{.4\linewidth} \textbf{Copyright} & 1973 \textbf{ by} \\ \textbf{Academia} & \textbf{Scientiarum Fennica} \end{minipage}$ ISBN 951-41-0126-X

 $\ddot{}$

Communicated 14 May 1973 by OLLI LEHTO

KESKUSKIRJAPAINO HELSINKI 1973

 $\hat{\mathcal{L}}$

Introduction

A group G of Möbius transformations fixing a disk or half-plane D is called a *covering group* if it is discontinuous in the following sense: For each point $z \in D$ there exists a neighborhood U such that $g(z) \notin U$ whenever $g \neq id$ lies in G. Hence a covering group may contain hyperbolic and parabolic transformations only.

In [3] we introduced the *dilatation* $\delta(j)$ of an isomorphism $j : G \rightarrow G'$ defined as follows: If $\varkappa(g)$ denotes the multiplier of a Möbius transformation g, then $\delta(j)$ is the smallest number $1 \le a \le \infty$ for which $\varkappa(q)^{1/a} \leq \varkappa(j(q)) \leq \varkappa(q)^a$ holds for all $g \in G$. As examples of the case where $\delta(j) < \infty$ we have the isomorphisms j induced by quasiconformal mappings f, i.e. $j(g) = f \circ g \circ f^{-1}$ for all $g \in G$. On the other hand, if there is a parabolic $g \in G$ such that $j(g)$ is hyperbolic or vice versa, then $\delta(i) = \infty$.

In \S 1 we consider isomorphisms j between noncyclic covering groups with $\delta(j) = \infty$. We show that the dilatation of j restricted to elements whose type is preserved is also infinite. In \S 2 we consider parabolic elements under an isomorphism with a finite dilatation.

In § 3 we prove the following theorem: Let $\{g_1, g_2, \ldots\}$ be a set of generators of G. Suppose that an isomorphism $j: G \rightarrow G'$ preserves the multipliers of the elements of the type $(g_i^{\alpha} \circ g_i^{\beta})^a \circ (g_i^{\gamma} \circ g_i^{\epsilon})^a$ where α , β , γ , ε are integers and $a=1,2$. Then j is induced by a Möbius transformation.

Let *j*: $G \rightarrow G'$ be an isomorphism between covering groups acting on the upper half-plane H. A homeomorphism $\varphi: R \cup \{\infty\} \to R \cup \{\infty\},$ where R is the set of the real numbers, is called a *boundary mapping* of j if $\varphi \circ g = j(g) \circ \varphi$ holds for all $g \in G$. In § 4 we characterize $\delta(j)$ in terms of the local Hölder continuity of φ and φ^{-1} . As a corollary we then obtain the following result: If φ has a K-quasiconformal extension to the extended complex plane, then $\delta(i) < K$.

§ 1. Isomorphisms with an intinite dilatation

For a hyperbolic transformation g , let $\varkappa(g)$ denote the multiplier and $P(g)$ and $N(g)$ the attracting and the repelling fixed point. The

parameters $\varkappa(q)$, $P(q)$, and $N(q)$ determine q uniquely. We have $\varkappa(q) = (z, g(z), P(q), N(q)) > 1$, the cross ratio being defined as in [3, § 1]. If q is parabolic, we define $\varkappa(q) = 1$ and $P(q) = N(q)$ as the only fixed point of q .

Let a parabolic or hyperbolic transformation q be given in the form $z \mapsto q(z) = (az + b)/(cz + d)$ with $ad - bc = 1$. Then $a + d$ is always real, and $\gamma(q) = |a+d|$ is the *trace* of q. It follows that

$$
\chi(g) = \varkappa(g)^{1/2} + \varkappa(g)^{-1/2} \ .
$$

Hence $\gamma(q) > 2$, where the equality holds if and only if g is parabolic.

Let $j: M \to M'$ be a mapping between sets of hyperbolic and parabolic transformations. A calculation shows that the dilatation of j can also be defined in terms of $\gamma(q)$.

Theorem 1. Suppose that for any $g \in M$ the transformations g^n , $n =$ 2,3,..., are in M, and suppose that $j(q^n) = j(q)^n$. If $1 \le a \le \infty$ is the smallest number for which $\chi(g)^{1/a} \leq \chi(j(g)) \leq \chi(g)^a$ holds for all $q \in M$, then $a = \delta(j)$.

Proof. Let $g \in M$, $k = \varkappa(g)$ and $k' = \varkappa(j(g))$. Suppose that we have $\chi(j(g)^n) \leq \chi(g^n)^a$ for $n = 1, 2, \ldots$ Then

$$
(k')^{n/2} + (k')^{-n/2} \leq (k^{n/2} + k^{-n/2})^a,
$$

and hence

$$
(k')^n \le (k')^n + (k')^{-n} + 2 \le (k^n + k^{-n} + 2)^a \le (2k^n)^a
$$

from some $n = n_1$ on. Therefore

$$
k' \le (2k^n)^{a/n} = (2^{1/n} k)^a,
$$

and letting $n \to \infty$ we obtain $k' \leq k^a$. Similarly, if $\chi(j(g)^n) \geq \chi(g)^{n+1/a}$ for $n = 1, 2, \ldots$, then we get $k \leq (k')^a$. Thus we have $k^{1/a} \leq k' \leq k^a$.

Conversely, suppose that $k^{1/a} \leq k' \leq k^a$. Then

$$
\chi(j(g)) = \sqrt{k'} + 1/\sqrt{k'} \leq (\sqrt{k})^a + (1/\sqrt{k})^a \leq (\sqrt{k} + 1/\sqrt{k})^a = \chi(g)^a,
$$

and similarly $\chi(g) \leq \chi(j(g))^a$.

Let $j: G \to G'$ be an isomorphism between covering groups G and G'. If there is a parabolic $g \in G$ such that $j(g)$ is hyperbolic or vice versa, then $\delta(i) = \infty$. By the following theorem, the dilatation of j restricted to elements whose type is preserved is also infinite.

Theorem 2. Let $j: G \to G'$ be an isomorphism with $\delta(j) = \infty$. Define G^* as the set of all hyperbolic elements $g \in G$ for which $j(g)$ is hyperbolic. If G is not cyclic, then $\delta(j | G^*) = \infty$.

Proof. It follows from Lemma 3.1 in [3] that $G^* \neq \emptyset$. If j preserves the type of all transformations of G , then there is nothing to prove. In other cases choose a hyperbolic $g_1 \in G$ such that $j(g_1)$ is parabolic (if this is not possible, then we consider the isomorphism $j^{-1}: G' \to G$ and let $g_2 \in G^*$. Then we have ([3, (4.11)]):

$$
\chi(g_1^n \circ g_2) = \left| \frac{k_1^n k_2 + 1 - x(k_1^n + k_2)}{(1 - x) (k_1^n k_2)^{1/2}} \right|
$$

where $k_i = \varkappa(g_i)$ and $x = 1 - (N(g_1), N(g_2), P(g_1), P(g_2))$. Therefore

$$
\lim_{n\to\infty}\frac{\chi(g_1^n\circ g_2)}{k_1^{n/2}}=k_2^{-1/2}\left|\frac{k_2-x}{1-x}\right|.
$$

If $k_2 - x = 0$, we replace g_2 by g_2^2 . Then there is a $b \ge 1$ such that we have for $n = 1, 2, \ldots$

$$
(1.1) \t\t\t (1/b)k_1^{n/2} \leq \chi(g_1^n \circ g_2) \leq bk_1^{n/2} .
$$

We now consider the group G'. Since $g'_1 = j(g_1)$ is parabolic and $g'_2 = j(g_2)$ hyperbolic, we may normalize such that

$$
g_1'(z) = z + \omega , \quad g_2'(z) = (kz)/((k-1)z+1) ,
$$

where $k = \varkappa(g_2) > 1$. We may also assume that $\omega > 0$ since we can replace g'_1 by $(g'_1)^{-1}$ if necessary. Then we have

$$
((g_1')^n \circ g_2') (z) = \frac{(k + n\omega(k-1))z + n\omega}{(k-1)z + 1}
$$

and hence

(1.2)
$$
\chi((g'_1)^n \circ g'_2) = \frac{1 + k + n\omega(k-1)}{k^{1\,2}}
$$

From (1.1) and (1.2) we conclude that $g_1^n \circ g_2 \in G^*$ from some $n = n_0$ on.

By (1.2), $\chi((g_1')^n \circ g_2') \leq 2n\omega k$ for sufficiently large n. Then we have for any $1 \leq a < \infty$

$$
\chi(g_1^n \circ g_2)^{1/a} \ge (k_1^{n/2}/b)^{1/a} > 2n\omega k \ge \chi((g_1')^n \circ g_2')
$$

from some $n = n_a$ on. Therefore $\delta(j | G^*) = \infty$ by Theorem 1.

§ 2. Distortion of parabolic transformations

Let $j: G \to G'$ be an isomorphism between covering groups which act on the upper half-plane H, and suppose that $\delta(j) < \infty$. In this section we consider the behavior of the parabolic elements of G under j.

A parabolic transformation $g \in G$ fixing ∞ is of the type

$$
(2.1) \t\t\t g(z) = z + \omega.
$$

If g is parabolic with $P(g) \neq \infty$, then g has a unique representation in the form

(2.2)
$$
\frac{1}{g(z) - P(g)} = \frac{1}{z - P(g)} + \omega.
$$

We call the number $\omega = \omega(q)$ defined by $(2.1-2)$ the translation vector of q. From $q(H) = H$ it follows that $P(q)$ and $\omega(q)$ are real. If the transformation g in (2.2) is given in the form $g(z) = (az + b)/(cz + d)$ with $a + d = 2$, then an elementary calculation shows that $\omega(q) = c$.

To interpret geometrically the translation vector $\omega(q)$, consider first the transformation (2.1) with $\omega > 0$. If we define the non-euclidean metric in H by $(Im z)^{-1}$ dz , then the non-euclidean length of the euclidean line segment $\{x + i \mid x_0 \le x \le x_0 + \omega\}$ is ω . Since the non-euclidean distances are invariant under Möbius transformations, we then obtain from (2.2) the following interpretation for $\omega(q)$: Suppose that $P(q) \neq \infty$ and define $K(q)$ as the circle of diameter one through $P(q)$ and $P(q) + i$. If $z \in K(q)$, then $|\omega(q)|$ is the non-euclidean length of the part of $K(q)$ between z and $q(z)$. From this it follows that we have $\omega(q)$ $\omega(h \circ q \circ h^{-1})$ for all translations $h: z \mapsto z + b$, b real.

For a hyperbolic transformation h fixing H , let $Ax(h)$ be the axis of h (i.e. the circle through $P(h)$ and $N(h)$ orthogonal to R). If $z \in Ax(h)$, then $\log \varkappa(h)$ is the non-euclidean length of the part of $Ax(h)$ between z and $h(z)$. Thus $|\omega(g)|$ has some analogy with $\log z(h)$. However, if we normalize such that j fixes the translation $z \mapsto z + 1$, then $[\omega(q)]$ does not behave under j as $\log z(h)$ but like $z(h)$.

Theorem 3. Suppose that the transformation $q_0:z\mapsto z+1$ lies in $G \cap G'$. Let $j: G \to G'$ be an isomorphism such that $a = \delta(j) < \infty$. If $j(g_0) = g_0$, then $|\omega(g)|^{1/a} \leq |\omega(j(g))| \leq |\omega(g)|^a$ holds for all parabolic transformations g of G .

Proof. We first note that for any parabolic element $h \neq g_0$ of G we have $|\omega(h^{-1} \circ g_0 \circ h)| = \omega(h)^2$. To prove this, let h be the transformation $z \mapsto ((1 + \omega x)z - \omega x^2)/(\omega z + 1 - \omega x)$, where $x = P(h)$ and $\omega = \omega(h)$. Then

$$
(h^{-1}\circ g_0\circ h)\ (z)=\frac{(1+\omega-\omega^2 x)z+(1-\omega x)^2}{-\omega^2 z+1-\omega+\omega^2 x}.
$$

Hence $\omega(h^{-1} \circ g_0 \circ h) = -\omega^2$.

be a fixed parabolic transformation of G . Define Let $q \neq q_0$ $g_1 = g^{-1} \circ g_0 \circ g$ and inductively $g_n = g_{n-1}^{-1} \circ g_0 \circ g_{n-1}$ for $n = 2, 3, \ldots$. Then $\{q_n\}$ is a sequence of parabolic elements of G. By the above remark we have $|\omega(g_n)| = \omega(g_{n-1})^2$. Therefore

$$
|\omega(g_n)| = \omega(g)^{2^n}
$$

for $n=1,2,\ldots$.

Since $a = \delta(j) < \infty$, $\{j(g_n)\}\$ is a sequence of parabolic elements of G'. Because $j(g_0) = g_0$, (2.3) holds if g_n and g are replaced by $j(g_n)$ and $i(q)$, respectively.

For any parabolic transformation $h \neq g_0$ of G we have

(2.4)
$$
\chi(g_0 \circ h) = |2 + \omega(h)|.
$$

Since $\chi(g_0 \circ h^{\pm 1}) \geq 2$, it follows that $|\omega(h)| \geq 4$. We apply (2.4) to the transformations g_n and $j(g_n)$. Then by Theorem 1

$$
| 2 + \omega(g_n) |^{1/a} \leq | 2 + \omega(j(g_n)) | \leq | 2 + \omega(g_n) |^{a} .
$$

Formula (2.3) and the triangle inequality yield

$$
0 < (\omega(g)^{2^n} - 2)^{1/a} = (\omega(g_n)^1 - 2)^{1/a} \leq |2 + \omega(g_n)|^{1/a} \leq
$$

$$
|2 + \omega(j(g_n))| \leq 2 + \omega(j(g))^2^n.
$$

Hence

$$
[(\omega(g)^{2^n}-2)^{1/2^n}]^{1/a}\leq [2+\omega(j(g))^{2^n}]^{1/2^n},
$$

and letting $n \to \infty$ we obtain $|\omega(g)|^{1/a} \leq |\omega(j(g))|$. It follows similarly that $|\omega(j(g))| \leq |\omega(g)|^a$.

Remark. Let G be a covering group containing the transformation $g_0: z \mapsto z+1$. As remarked above, it follows from (2.4) that $|\omega(g)| \geq 4$ for all parabolic elements $g \neq g_0$ of G. This bound is sharp: Let $g_1(z) =$ $z/(4z+1)$ and let G_1 be the group generated by g_0 and g_1 . Then G_1 is a covering group and we have $\omega(g_1) = 4$.

§ 3. Isomorphisms with dilatation one

For a set M of Möbius transformations, let $Fix(M)$ denote the set of fixed points of non-identity transformations of M. If the set $Fix(G)$ is dense in a circle or a straight line, then the covering group G is said to be of the first kind. If not, then G is of the second kind.

Let $j: G \to G'$ be an isomorphism with $\delta(j) = 1$. If G and G' are of the first kind, then by Theorem 4.3 in [3] there is a Möbius transformation h inducing j, i.e., $j(g) = h \circ g \circ h^{-1}$ for all $g \in G$. This result is valid in the following more general form also for groups of the second kind.

Theorem 4. Let $E = \{g_1, g_2, \ldots\}$ be a set of generators of a covering group G. Let F consist of the transformations of the form $(q_i^{\alpha} \circ q_i^{\beta})^a \circ (q_w^{\gamma} \circ q_n^{\beta})^a$, where α , β , γ , ε are integers and $a=1$, 2. If an isomorphism $j:G\rightarrow G'$ preserves the multipliers of the elements of F , then j is induced by a Möbius transformation.

Proof. It suffices to show that there is a Möbius transformation h such that $j(q_i)=h\circ q_i\circ h^{-1}$ for all $q_i\in E$.

(A) Suppose first that E contains at least one hyperbolic element.

If $E = \{g_1\}$, g_1 hyperbolic, then j is induced by any Möbius transformation sending $P(g_1)$ to $P(j(g_1))$ and $N(g_1)$ to $N(j(g_1))$. Let $E = \{g_1, g_2\}$ with g_1 parabolic and g_2 hyperbolic. We show that the Möbius transformation which sends $P(q_i)$ to $P(j(q_i))$, $i=1,2$, and $N(g_2)$ to $N(j(g_2))$ induces j. Since we can replace G and G' by conjugate groups $G_1 = hGh^{-1}$ and $G_1' = h'G'(h')^{-1}$, we may assume that g_2 and $j(g_2)$ both are the transformation $z \mapsto kz/((k-1)z + 1)$ and that $B(z)$ is $E(z)$ $\mathcal{P}(g_1) = \mathcal{P}(j(g_1)) = \infty$. Since we have $\chi(g_1^n \circ g_2) = \chi(j(g_1)^n \circ j(g_2))$, it follows from $(1,2)$ that

$$
|1 + k + n(k - 1)\omega(g_1)| = |1 + k + n(k - 1)\omega(j(g_1))|
$$

for $n = 1, 2, \ldots$. Therefore $\omega(g_1) = \omega(j(g_1))$, and the assertion follows.

Let Fix(E) contain at least four distinct points. Choose $z_i \in \text{Fix}(E)$ such that $(z_1, z_2, z_3, z_4) > 1$. Suppose that $z_1 = N(h_1)$, $z_2 = N(h_2)$, $z_3=\mathrm{P}(h_3)$, $z_4=\mathrm{P}(h_4)$, where for each i, $i=1,2,3,4$, either $h_i \in E$ or $h_i^{-1} \in E$. If

$$
w_1 = N(j(h_1)), \t w_2 = N(j(h_2)),
$$

$$
w_3 = P(j(h_3)), \t w_4 = P(j(h_4)),
$$

then the points w_i are well-defined and distinct. We show that

$$
(3.1) \qquad (z_1, z_2, z_3, z_4) = (w_1, w_2, w_3, w_4).
$$

To prove (3.1), set $g_{1n} = h_3^n \circ h_1^n$ and $g_{2n} = h_4^n \circ h_2^n$. Then by Lemma 3.1 in [3], $N(g_{in}) \to z_i$, $P(g_{in}) \to z_{i+2}$ and similarly $N(j(g_{in})) \to w_i$, $P(j(q_{in}))\to w_{i+2}$ as $n\to\infty$, $i=1,2$. Thus it suffices to show that

(3.2)
$$
(N(g_{1n}), N(g_{2n}), P(g_{1n}), P(g_{2n})) =
$$

$$
(N(j(g_{1n})), N(j(g_{2n})), P(j(g_{1n})), P(j(g_{2n})))
$$

for sufficiently large values of n . Choose n_0 such that for $n \geq n_0$

$$
(\mathrm{N}(q_{1n}), \ \mathrm{N}(q_{2n}), \ \mathrm{P}(q_{1n}), \ \mathrm{P}(q_{2n})) > 1.
$$

Since j preserves the multipliers of g_{1n} , g_{2n} , $g_{1n} \circ g_{2n}$ and $g_{1n}^2 \circ g_{2n}^2$, we can apply the proof of Theorem 4.3 in [3] by replacing g_i by g_{in} . Then it follows that (3.2) holds for $n \geq n_0$, and (3.1) is proved. By (3.1) there is a Möbius transformation h such that $h(P(q_i^{\pm 1})) = P(j(q_i)^{\pm 1})$ for all $g_i \in E$. By the previous part of the proof we have $j(g_i) = h \circ g_i \circ h^{-1}$ for $q_i \in E$. Thus case (A) is proved.

(B) Suppose secondly that E contains only parabolic elements.

The case when E consists of one parabolic element is clear. Let $E = \{g_1, g_2\}$ with g_1 and g_2 parabolic. We may suppose that g_1 and $j(g_1)$ both are the transformation $z \mapsto z + 1$ and that $P(g_2) = P(j(g_2))$. Since we have $\chi(g_1 \circ g_2^n) = \chi(j(g_1) \circ j(g_2)^n)$, it follows from (2.4) that

$$
|2 + n \omega(g_2)| = |2 + n \omega(j(g_2))|
$$

for $n = 1, 2, \ldots$. Therefore $\omega(g_2) = \omega(j(g_2))$, and it follows that $j = id$.

Let $E = \{g_1, g_2, g_3\}$ with g_1, g_2, g_3 parabolic. We show that the Möbius transformation sending $P(g_i)$ to $P(j(g_i))$ induces j. We normalize such that

$$
P(g_1) = P(j(g_1)) = \infty , P(g_2) = P(j(g_2)) = 0 , P(g_3) = P(j(g_3)) = -1 .
$$

Then it suffices to show that $j = id$.

Let $\omega_i = \omega(g_i)$, $i = 1, 2, 3$. Then we have (cf. 2.4))

$$
\chi(g_1^n \circ g_i) = |2 + n \omega_1 \omega_i|
$$

for $i=2,3$. A simple calculation yields

$$
(3.3) \qquad \qquad (g_3 \circ g_2^n)\ (z) = \frac{(1-n\omega_2\omega_3-\omega_3)\,z-\omega_3}{(n\,\omega_2+n\omega_2\omega_3-\omega_3)\,z+\omega_3+1}\,.
$$

Hence

$$
\chi(g_3 \circ g_2^n) = |2 - n \omega_2 \omega_3|,
$$

and we also obtain similar expressions for

$$
\chi(j(g_1)^n \circ j(g_i))
$$
 and $\chi(j(g_3) \circ j(g_2)^n)$.

Let $\omega'_i = \omega(j(g_i))$. Then we have the following equations

$$
|2 + n\omega_1\omega_i| = |2 + n\omega'_1\omega'_i|, \ \ i = 2, 3,
$$

$$
|2 - n\omega_2\omega_3| = |2 - n\omega'_2\omega'_3|
$$

for $n = 1, 2, \ldots$. Hence $\omega_i \omega_k = \omega'_i \omega'_k$ holds for $i \neq k$, and we have either $\omega_i = \omega'_i$ or $\omega_i = -\omega'_i$ for $i = 1, 2, 3$. To verify that the latter

case is impossible, consider the transformation $g_3 \circ g_2 \circ g_1^n$. It follows from (3.3) that

$$
\chi(g_3 \circ g_2 \circ g_1^n) = |2 - \omega_2 \omega_3 + n(\omega_1 \omega_2 + \omega_1 \omega_3 + \omega_1 \omega_2 \omega_3)|.
$$

From $\chi(g_3 \circ g_2 \circ g_1^n) = \chi(j(g_3) \circ j(g_2) \circ j(g_1)^n)$ we infer that ω_i and ω'_i have the same sign. Hence we have $j(q_i) = q_i$ for $i = 1, 2, 3$ and it follows that $i = id$ as asserted.

Suppose finally that $Fix(E)$ contains at least four points. Similarly as in (A) we can show that there is a Möbius transformation h such that $h(P(q_i^{\pm 1})) = P(j(q_i)^{\pm 1})$ for all $q_i \in E$. From the case of three generating transformations it then follows that h induces j.

About results related to Theorem 4 we refer to $[2]$ pp. $150-151$.

If we only know that $\varkappa(q_i) = \varkappa(j(q_i))$ for all $q_i \in E$, then j need not be induced by any Möbius transformation. This is seen considering e.g. the case when the Riemann surfaces corresponding to G and G' are compact.

§ 4. The boundary mapping ot an isomorphism with a finite dilatation

Let G and G' be covering groups acting on the upper half-plane H . A homeomorphism $\varphi : R \cup \{\infty\} \to R \cup \{\infty\}$ is called a boundary mapping of an isomorphism $j:G\to G'$ if $\varphi\circ g=j(g)\circ\varphi$ for all $g\in G$. Thus we have $\varphi(P(g)) = P(j(g))$ for $g \in G$. (Therefore, if G and G' are of the first kind, an isomorphism $j: G \to G'$ has at most one boundary mapping.) In this section we consider the interrelation between φ and $\delta(j)$.

Let K_1 and K_2 be circles or straight lines and $\psi: K_1 \to K_2$ a homeomorphism. Let $z_0 \in K_1$ be a finite point such that $\psi(z_0) \neq \infty$. We say that ψ is Hölder continuous with the exponent $x, 0 < x \leq 1$, at z_0 if there is a constant $A \geq 1$ and a neighborhood $U \subset K_1$ of z_0 such that

$$
(1/A) |z - z_0|^{1/\alpha} \leq |\psi(z) - \psi(z_0)| \leq A |z - z_0|^{1/\alpha}
$$

for all $z \in U$. The mapping ψ is Hölder continuous with the exponent x at the point ∞ or at a point z_0 where $\psi(z_0) = \infty$ if $\psi(1/z)$ has this property at the origin or $1/\psi(z)$ at z_0 , respectively. If ψ is Hölder continuous with the exponent $\alpha = 1$ at z_0 , then we say that ψ is a Lipschitz mapping at z_0 .

The Hölder continuity of ψ is invariant under Möbius transformations, i.e., if h_1 and h_2 are Möbius transformations and ψ is Hölder continuous with the exponent α at z_0 , then the same is true of $h_2 \circ \psi \circ h_1^{-1}$ at the point $h_1(z_0)$.

Theorem 5. Suppose that φ is a boundary mapping of an isomorphism $j: G \to G'$. Let $B(j)$ be the set of the real numbers α , $0 < \alpha \leq 1$, such that φ is Hölder continuous with the exponent α at the fixed points of all hyperbolic elements of G. Then $B(j) \neq \emptyset$ if and only if $\delta(j) < \infty$. If $B(j) \neq \emptyset$, then we have $1/\delta(j) = \max \alpha$, $\alpha \in B(j)$.

Proof. Let $q \in G$ be hyperbolic. From the existence of φ we conclude that $j(q)$ is also hyperbolic. Since the *x*-Hölder continuity of φ at a point is invariant under Möbius transformations, we may assume that

$$
N(g) = N(j(g)) = 0
$$
, $P(g) = P(j(g)) = \infty$

and $\varphi(1) = 1$.

Suppose that $\alpha \in B(j)$. Then there is an $A \geq 1$ such that

$$
|\varphi(g^{-n}(1)) - \varphi(0)| = \varphi(g^{-n}(1)) = j(g)^{-n}(1)
$$

= $\varkappa(j(g))^{-n} \le A |g^{-n}(1) - 0|^{\alpha} = A \varkappa(g)^{-n\alpha}$

from some $n = n_0$ on. Thus $\varkappa(j(q)) \geq A^{-1/n} \varkappa(q)^{\alpha}$, and letting $n \to \infty$ we obtain $\varkappa(j(g)) \geq \varkappa(g)^{\alpha}$. Similarly it follows that $\varkappa(g) \geq \varkappa(j(g))^{\alpha}$. Hence $\delta(i) \leq 1/\alpha$.

Conversely, suppose that $a = \delta(i) < \infty$. Choose t such that $0 < t < 1$ and let *n* be the natural number for which $1/\varkappa(q)^{n+1} < t < 1/\varkappa(q)^n$. Since $\varphi(1) = 1$, we have $1/\varkappa(j(q))^{n+1} \leq \varphi(t) < 1/\varkappa(j(q))^{n}$. Hence

$$
\frac{\varphi(t)}{t^{1/a}} \leq \frac{\varkappa(g)^{(n+1)/a}}{\varkappa(j(g))^n} \leq \frac{\varkappa(g)^{(n+1)/a}}{\varkappa(g)^{n/a}} = \varkappa(g)^{1/a} \, ,
$$

and similarly $\varphi(t)/t^a \geq 1/\varkappa(g)^a$. If $-1 < t < 0$, then we obtain $|\varphi(t)|/|t|^{1/a} \leq |\varphi(-1)| \times (\overline{g})^{1/a}$ and $|\varphi(t)|/|t|^a \geq |\varphi(-1)|/\varepsilon|g|^a$. Hence

$$
1/\delta(j) \in B(j)
$$

and the first assertion is proved. Moreover, by the first part of the proof we have $\delta(j) \leq 1/\alpha$ for all $\alpha \in B(j)$. Thus $1/\delta(j) = \max \alpha, \alpha \in B(j)$.

As in Theorem 4, let $E = \{g_1, g_2, ...\}$ be a set of generators of G and let F be the set of the transformations $(g_i^{\alpha} \circ g_k^{\beta})^a \circ (g_m^{\gamma} \circ g_n^{\varepsilon})^a$. Then we have the following generalization for Theorem 5.1 in [3]:

Theorem 6. If an isomorphism $j: G \rightarrow G'$ has a boundary mapping which is a Lipschitz mapping at the points of $Fix(F)$, then j is induced by a Möbius transformation.

Theorem 6 follows from Theorem 4 and the proof of Theorem 5.

The following theorem shows that the Hölder continuity of a boundary mapping φ of $j: G \to G'$ at the fixed points of the parabolic elements of G does not depend on $\delta(j)$.

Theorem 7. If $g \in G$ is parabolic, then all boundary mappings of an isomorphism $j: G \to G'$ are Lipschitz mappings at P(g).

Proof. We may assume that g and $i(q)$ both are the transformation $z \mapsto z/(z+1)$ and that $\varphi(\infty) = \infty$. Choose t such that $0 < t < 1$ and let *n* be the natural number for which $1/(n + 1) < t < 1/n$. Since $g^{n}(\infty) = j(g)^{n}(\infty) = 1/n$, we have $1/(n + 1) < \varphi(t) < 1/n$. Therefore $n/(n+1) \leq \varphi(t)/t \leq (n+1)/n$, and it follows that $t/2 < \varphi(t) < 2t$. Replacing g by g^{-1} we obtain $|t|/2 \leq |\varphi(t)| \leq 2|t|$ for $-1 < t < 0$.

By Theorem 4.1 in [3] we have $\delta(i) \leq K$ if j is induced by a \overline{K} quasiconformal mapping $f: H \rightarrow H$. This theorem is a special case of the following more general result:

Theorem 8. Let $\varphi : R \cup \{\infty\} \to R \cup \{\infty\}$ be a boundary mapping of $j:G\to G'$. If there is a K-quasiconformal mapping $f: H\to H$ such that $f|(R\cup\{\infty\}) = \varphi$, then $\delta(i) \leq K$.

Proof. Let h and h' be Möbius transformations mapping H onto the unit disk such that $f_1 = h' \circ f \circ h^{-1}$ fixes the origin. By Theorem II. 3.2 in [1], the restriction of f_1 to the unit circle is Hölder continuous with the exponent $1/K$. Then the same holds true of φ at every point of $R \cup \{\infty\}$ and we have $\delta(i) \leq K$ by Theorem 5.

Let $\psi : R \cup \{\infty\} \to R \cup \{\infty\}$ be an increasing homeomorphism fixing ∞ . If for an interval $I \subset R$ there is a constant λ , $1 \leq \lambda < \infty$, such that

(4.1)
$$
1/\lambda \leq \frac{\psi(x+t)-\psi(x)}{\psi(x)-\psi(x-t)} \leq \lambda
$$

holds whenever $x + t \in I$, we say that ψ is λ -quasisymmetric on I . The mapping ψ is called λ -quasisymmetric if (4.1) holds for all x and t. Note that ψ is 1-quasisymmetric if and only if ψ is the restriction of a Möbius transformation $z \mapsto az + b$ with $a > 0$ and b real.

If an isomorphism $j: G \to G'$ has a λ -quasisymmetric boundary mapping φ , then

(4.2)
$$
\delta(j) \leq \log 2/\log (1 + 1/\lambda)
$$

by Theorem 4.2 in [3]. On the other hand, there is a K -quasiconformal extension $f: H \to H$ of φ with $K = \min (8\lambda, \lambda^2)$ (see [1, II.6.5]). Hence we have $\delta(j) \le \min (8\lambda, \lambda^2)$ by Theorem 8. However, one can verify by calculation that $\log 2/\log (1 + 1/\lambda) \le \min (8\lambda, \lambda^2)$ for all values $\lambda \ge 1$. Hence Theorem 8 implies (4.2) only if a λ -quasisymmetric φ always has a (log 2/log (1 + 1/ λ))-quasiconformal extension $f: H \to H$. $(\log 2/\log (1 + 1/\lambda))$ -quasiconformal extension $f : H \to H$.

By the following theorem, (4.2) can be deduced also from the local λ -quasisymmetry of φ .

Theorem 9. Let $\varphi : R \cup \{\infty\} \to R \cup \{\infty\}$ be a boundary mapping of an isomorphism $j: G \to G'$. If for every hyperbolic $g \in G$ satisfying $P(q) \neq \infty$ there is an interval $I \ni P(q)$ on which φ is λ -quasisymmetric, then $\delta(j) < \log 2/\log (1 + 1/\lambda)$.

Proof. Let $q \in G$ be hyperbolic, $P(q) \neq \infty$ and h, h' Möbius transformations fixing H such that $h(P(q)) = h'(P(j(q))) = 0$, $h(N(q)) =$ $h'(N(j(q))) = \infty$. For every $\varepsilon > 0$ there is an interval I containing the origin such that the mapping $\varphi_1 = h' \circ \varphi \circ h^{-1}$ is $(\lambda + \varepsilon)$ -quasisymmetric on I. Then there are 1-quasisymmetric mappings h_1 and h'_1 fixing the origin such that $\varphi'_1 = h'_1 \circ \varphi_1 \circ h_1^{-1}$ is $(\lambda + \varepsilon)$ -quasisymmetric on the closed
unit interval. Replacing φ by φ'_1 and λ by $\lambda + \varepsilon$ in the proof of Theorem 4.2 in [3] we can show that $\varkappa(g)^{1/a} \leq \varkappa(j(g)) \leq \varkappa(g)^a$ holds for

$$
a = \log 2/\log (1 + 1/(\lambda + \varepsilon)) \cdot \Box
$$

Suppose that all boundary mappings of an isomorphism $i: G \rightarrow G'$ are increasing and fix the point ∞ . To our knowledge, it is an open question whether $\delta(j) < \infty$ then implies that j has a boundary mapping which is λ -quasisymmetric for some fixed $\lambda > 1$ in a neighborhood of the attracting fixed point of every hyperbolic element of G . However, the following theorem tells that all boundary mappings of j have a quasisymmetry property at the fixed points of the parabolic elements of G .

Theorem 10. Suppose that the transformation $g_0: z \mapsto z + 1$ lies in $G \cap G'$. Let $\varphi : R \cup \{\infty\} \to R \cup \{\infty\}$ be a boundary mapping of an isomorphism $j: G \to G'$ for which $j(g_0) = g_0$. If $g \neq g_0$ is a parabolic element of G, $x_0 = P(g)$ and $a = \delta(j) < \infty$, then we have for all $t > 0$

$$
\omega(g)^{-a} \le \frac{\varphi(x_0+t)-\varphi(x_0)}{\varphi(x_0)-\varphi(x_0-t)} \le \omega(g)^a \, .
$$

Proof: It means no restriction to consider only the case when φ is increasing. Using 1-quasisymmetric mappings of the type $z \mapsto z + b$ we normalize such that $P(g) = P(j(g)) = 0$. Then $\omega(g)$, $\omega(j(g))$ and $\omega(g_0)$ are not changed. We may assume that $\omega(q)$ and $\omega(j(q))$ are positive. Then by Theorem 3, $\omega(q)^{1/a} \leq \omega(j(q)) \leq \omega(q)^a$.

Let $t > 1$ and n be the natural number for which $n \leq t < n + 1$. From $\pm n = g_0^{\pm n}(0) = j(g_0)^{\pm n}(0)$ we infer that $n \leq \pm \varphi (\pm t) < n + 1$. It follows that $n/(n+1) \leq \varphi(t)/(-\varphi(-t)) \leq (n+1)/n$, and we have $1/2 \leq \varphi(t)/(-\varphi(-t)) \leq 2$.

Let $1/\omega(g) < t \leq 1$. Since $g(\infty) = 1/\omega(g)$, we obtain

$$
1/\omega(j(g)) < \varphi(t) \leq 1 \; ,
$$

and similarly $-1/\omega(j(q)) > \varphi(-t) \geq -1$. Hence

Finally, let $0 < t < 1/\omega(g)$ and n be the natural number for which $1/((n+1)\omega(g)) < t \leq 1/(n\omega(g))$. From $g^{\pm n}(\infty) = 1/(\pm n\omega(g))$ it follows that $1/((n + 1)\omega(j(g))) \leq \pm \varphi(\pm t) \leq 1/(n\omega(j(g)))$. Hence

$$
\frac{n\omega(j(g))}{(n+1)\omega(j(g))} \leq \frac{\varphi(t)}{-\varphi(-t)} \leq \frac{(n+1)\omega(j(g))}{n\omega(j(g))},
$$

and we conclude that $1/2 \leq \varphi(t)/(-\varphi(-t)) \leq 2$. Since $\omega(g) \geq 4$ (cf. Remark in § 2), it follows that

$$
\omega(g)^{-a} \leq \varphi(t)/(-|\varphi(-|t)) \leq \omega(g)^a
$$

for all $t > 0$.

Observe that Theorem 10 does not follow from Theorem 7.

References

- [1] LEHTO, O. and K. I. VIRTANEN: Quasiconformal Mappings in the Plane. Springer-Verlag 1973.
- $[2]$ SELBERG, A.: On discontinuous groups in higher-dimensional symmetric spaces. Contributions to Function Theory, $147-164$. Tata Institute 1960.
- [3] SORVALI, T.: The boundary mapping induced by an isomorphism of covering groups. Ann. Acad. Sci. Fenn. A I 526, 1-31 (1972).

Department of Mathematics University of Helsinki

Printed August 1973

 $\ddot{}$