ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

551

ON THE DILATATION OF ISOMORPHISMS BETWEEN COVERING GROUPS

 $\mathbf{B}\mathbf{Y}$

TUOMAS SORVALI

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.551

Copyright © 1973 by Academia Scientiarum Fennica ISBN 951-41-0126-X

Communicated 14 May 1973 by Olli Lehto

KESKUSKIRJAPAINO HELSINKI 1973

Introduction

A group G of Möbius transformations fixing a disk or half-plane D is called a *covering group* if it is discontinuous in the following sense: For each point $z \in D$ there exists a neighborhood U such that $g(z) \notin U$ whenever $g \neq id$ lies in G. Hence a covering group may contain hyperbolic and parabolic transformations only.

In [3] we introduced the dilatation $\delta(j)$ of an isomorphism $j:G\to G'$ defined as follows: If $\varkappa(g)$ denotes the multiplier of a Möbius transformation g, then $\delta(j)$ is the smallest number $1\le a\le \infty$ for which $\varkappa(g)^{1/a}\le \varkappa(j(g))\le \varkappa(g)^a$ holds for all $g\in G$. As examples of the case where $\delta(j)<\infty$ we have the isomorphisms j induced by quasiconformal mappings f, i.e. $j(g)=f\circ g\circ f^{-1}$ for all $g\in G$. On the other hand, if there is a parabolic $g\in G$ such that j(g) is hyperbolic or vice versa, then $\delta(j)=\infty$.

In § 1 we consider isomorphisms j between noncyclic covering groups with $\delta(j) = \infty$. We show that the dilatation of j restricted to elements whose type is preserved is also infinite. In § 2 we consider parabolic elements under an isomorphism with a finite dilatation.

In § 3 we prove the following theorem: Let $\{g_1, g_2, \ldots\}$ be a set of generators of G. Suppose that an isomorphism $j \colon G \to G'$ preserves the multipliers of the elements of the type $(g_i^{\alpha} \circ g_k^{\beta})^a \circ (g_m^{\alpha} \circ g_n^{\epsilon})^a$ where α , β , γ , ε are integers and a = 1, 2. Then j is induced by a Möbius transformation.

Let $j\colon G\to G'$ be an isomorphism between covering groups acting on the upper half-plane H. A homeomorphism $\varphi\colon R\cup\{\infty\}\to R\cup\{\infty\}$, where R is the set of the real numbers, is called a boundary mapping of j if $\varphi\circ g=j(g)\circ \varphi$ holds for all $g\in G$. In § 4 we characterize $\delta(j)$ in terms of the local Hölder continuity of φ and φ^{-1} . As a corollary we then obtain the following result: If φ has a K-quasiconformal extension to the extended complex plane, then $\delta(j)\leq K$.

§ 1. Isomorphisms with an infinite dilatation

For a hyperbolic transformation g, let $\varkappa(g)$ denote the multiplier and P(g) and N(g) the attracting and the repelling fixed point. The

parameters $\varkappa(g)$, P(g), and N(g) determine g uniquely. We have $\varkappa(g)=(z\,,g(z)\,,\,P(g)\,,\,N(g))>1$, the cross ratio being defined as in [3, § 1]. If g is parabolic, we define $\varkappa(g)=1$ and P(g)=N(g) as the only fixed point of g.

Let a parabolic or hyperbolic transformation g be given in the form $z \mapsto g(z) = (az + b)/(cz + d)$ with ad-bc = 1. Then a+d is always real, and $\chi(g) = |a+d|$ is the trace of g. It follows that

$$\chi(g) = \varkappa(g)^{1/2} + \varkappa(g)^{-1/2}$$
.

Hence $\chi(g) \geq 2$, where the equality holds if and only if g is parabolic. Let $j: M \to M'$ be a mapping between sets of hyperbolic and parabolic transformations. A calculation shows that the dilatation of j can also be defined in terms of $\chi(g)$.

Theorem 1. Suppose that for any $g \in M$ the transformations g^n , $n = 2, 3, \ldots$, are in M, and suppose that $j(g^n) = j(g)^n$. If $1 \le a \le \infty$ is the smallest number for which $\chi(g)^{1/a} \le \chi(j(g)) \le \chi(g)^a$ holds for all $g \in M$, then $a = \delta(j)$.

Proof. Let $g \in M$, $k = \varkappa(g)$ and $k' = \varkappa(j(g))$. Suppose that we have $\chi(j(g)^n) \leq \chi(g^n)^a$ for $n = 1, 2, \ldots$ Then

$$(k')^{n/2} + (k')^{-n/2} \le (k^{n/2} + k^{-n/2})^a$$
,

and hence

$$(k')^n \le (k')^n + (k')^{-n} + 2 \le (k^n + k^{-n} + 2)^n \le (2k^n)^n$$

from some $n = n_1$ on. Therefore

$$k' \leq (2k^n)^{a/n} = (2^{1/n} k)^a$$
,

and letting $n \to \infty$ we obtain $k' \le k^a$. Similarly, if $\chi(j(g)^n) \ge \chi(g^n)^{1/a}$ for $n = 1, 2, \ldots$, then we get $k \le (k')^a$. Thus we have $k^{1/a} \le k' \le k^a$. Conversely, suppose that $k^{1/a} < k' < k^a$. Then

$$\chi(j(g)) = \sqrt{k'} + 1/\sqrt{k'} \le (\sqrt{k})^a + (1/\sqrt{k})^a \le (\sqrt{k} + 1/\sqrt{k})^a = \chi(g)^a,$$

and similarly $\chi(g) \leq \chi(j(g))^a$.

Let $j:G\to G'$ be an isomorphism between covering groups G and G'. If there is a parabolic $g\in G$ such that j(g) is hyperbolic or vice versa, then $\delta(j)=\infty$. By the following theorem, the dilatation of j restricted to elements whose type is preserved is also infinite.

Theorem 2. Let $j: G \to G'$ be an isomorphism with $\delta(j) = \infty$. Define G^* as the set of all hyperbolic elements $g \in G$ for which j(g) is hyperbolic. If G is not cyclic, then $\delta(j | G^*) = \infty$.

Proof. It follows from Lemma 3.1 in [3] that $G^* \neq \emptyset$. If j preserves the type of all transformations of G, then there is nothing to prove. In other cases choose a hyperbolic $g_1 \in G$ such that $j(g_1)$ is parabolic (if this is not possible, then we consider the isomorphism $j^{-1}: G' \to G$) and let $g_2 \in G^*$. Then we have ([3, (4.11)]):

$$\chi(g_1^n \circ g_2) = \left| \frac{k_1^n k_2 + 1 - x(k_1^n + k_2)}{(1 - x) (k_1^n k_2)^{1/2}} \right|$$

where $k_i = \varkappa(g_i)$ and $x = 1 - (N(g_1), N(g_2), P(g_1), P(g_2))$. Therefore

$$\lim_{n \to \infty} \frac{\chi(g_1^n \circ g_2)}{k_1^{n/2}} = k_2^{-1/2} \left| \frac{k_2 - x}{1 - x} \right|.$$

If $k_2 - x = 0$, we replace g_2 by g_2^2 . Then there is a $b \ge 1$ such that we have for $n = 1, 2, \ldots$

$$(1.1) (1/b)k_1^{n/2} \le \chi(g_1^n \circ g_2) \le bk_1^{n/2}.$$

We now consider the group G'. Since $g_1'=j(g_1)$ is parabolic and $g_2'=j(g_2)$ hyperbolic, we may normalize such that

$$g'_1(z) = z + \omega$$
, $g'_2(z) = \frac{(kz)}{((k-1)z+1)}$,

where $k = \varkappa(g_2') > 1$. We may also assume that $\omega > 0$ since we can replace g_1' by $(g_1')^{-1}$ if necessary. Then we have

$$((g_1')^n \circ g_2')(z) = \frac{(k + n\omega(k-1))z + n\omega}{(k-1)z + 1},$$

and hence

(1.2)
$$\chi((g_1')^n \circ g_2') = \frac{1 + k + n\omega(k-1)}{k^{1/2}}.$$

From (1.1) and (1.2) we conclude that $g_1^n\circ g_2\in G^*$ from some $n=n_0$ on. By (1.2), $\chi((g_1')^n\circ g_2')\leq 2n\omega k$ for sufficiently large n. Then we have for any $1\leq a<\infty$

$$\chi(g_1^n \circ g_2)^{1/a} \ge (k_1^{n/2}/b)^{1/a} > 2n\omega k \ge \chi((g_1')^n \circ g_2')$$

from some $n=n_a$ on. Therefore $\delta(j \mid G^*) = \infty$ by Theorem 1.

§ 2. Distortion of parabolic transformations

Let $j:G\to G'$ be an isomorphism between covering groups which act on the upper half-plane H, and suppose that $\delta(j)<\infty$. In this

section we consider the behavior of the parabolic elements of G under j. A parabolic transformation $g \in G$ fixing ∞ is of the type

$$(2.1) g(z) = z + \omega.$$

If g is parabolic with $P(g) \neq \infty$, then g has a unique representation in the form

(2.2)
$$\frac{1}{g(z) - P(g)} = \frac{1}{z - P(g)} + \omega.$$

We call the number $\omega = \omega(g)$ defined by (2.1-2) the translation vector of g. From g(H) = H it follows that P(g) and $\omega(g)$ are real. If the transformation g in (2.2) is given in the form g(z) = (az + b)/(cz + d) with a + d = 2, then an elementary calculation shows that $\omega(g) = c$.

To interpret geometrically the translation vector $\omega(g)$, consider first the transformation (2.1) with $\omega>0$. If we define the non-euclidean metric in H by $(\operatorname{Im} z)^{-1}|dz|$, then the non-euclidean length of the euclidean line segment $\{x+i\mid x_0\leq x\leq x_0+\omega\}$ is ω . Since the non-euclidean distances are invariant under Möbius transformations, we then obtain from (2.2) the following interpretation for $\omega(g)$: Suppose that $P(g)\neq \infty$ and define K(g) as the circle of diameter one through P(g) and P(g)+i. If $z\in K(g)$, then $|\omega(g)|$ is the non-euclidean length of the part of K(g) between z and g(z). From this it follows that we have $\omega(g)=\omega(h\circ g\circ h^{-1})$ for all translations $h\colon z\mapsto z+b$, b real.

For a hyperbolic transformation h fixing H, let Ax(h) be the axis of h (i.e. the circle through P(h) and N(h) orthogonal to R). If $z \in Ax(h)$, then $\log \varkappa(h)$ is the non-euclidean length of the part of Ax(h) between z and h(z). Thus $|\omega(g)|$ has some analogy with $\log \varkappa(h)$. However, if we normalize such that j fixes the translation $z \mapsto z + 1$, then $|\omega(g)|$ does not behave under j as $\log \varkappa(h)$ but like $\varkappa(h)$.

Theorem 3. Suppose that the transformation $g_0: z \mapsto z + 1$ lies in $G \cap G'$. Let $j: G \to G'$ be an isomorphism such that $a = \delta(j) < \infty$. If $j(g_0) = g_0$, then $|\omega(g)|^{1/a} \leq |\omega(j(g))| \leq |\omega(g)|^a$ holds for all parabolic transformations g of G.

Proof. We first note that for any parabolic element $h \neq g_0$ of G we have $|\omega(h^{-1} \circ g_0 \circ h)| = \omega(h)^2$. To prove this, let h be the transformation $z \mapsto ((1 + \omega x)z - \omega x^2)/(\omega z + 1 - \omega x)$, where x = P(h) and $\omega = \omega(h)$. Then

$$(h^{-1} \circ g_0 \circ h) (z) = \frac{(1 + \omega - \omega^2 x)z + (1 - \omega x)^2}{-\omega^2 z + 1 - \omega + \omega^2 x}.$$

Hence $\omega(h^{-1}\circ g_0\circ h)=-\omega^2$.

Let $g \neq g_0$ be a fixed parabolic transformation of G. Define $g_1 = g^{-1} \circ g_0 \circ g$ and inductively $g_n = g_{n-1}^{-1} \circ g_0 \circ g_{n-1}$ for $n = 2, 3, \ldots$. Then $\{g_n\}$ is a sequence of parabolic elements of G. By the above remark we have $|\omega(g_n)| = \omega(g_{n-1})^2$. Therefore

$$|\omega(g_n)| = \omega(g)^{2^n}$$

for $n = 1, 2, \ldots$

Since $a = \delta(j) < \infty$, $\{j(g_n)\}$ is a sequence of parabolic elements of G'. Because $j(g_0) = g_0$, (2.3) holds if g_n and g are replaced by $j(g_n)$ and j(g), respectively.

For any parabolic transformation $h \neq g_0$ of G we have

(2.4)
$$\chi(g_0 \circ h) = |2 + \omega(h)|.$$

Since $\chi(g_0 \circ h^{\pm 1}) \geq 2$, it follows that $|\omega(h)| \geq 4$. We apply (2.4) to the transformations g_n and $j(g_n)$. Then by Theorem 1

$$|2 + \omega(g_n)|^{1/a} \le |2 + \omega(j(g_n))| \le |2 + \omega(g_n)|^a$$
.

Formula (2.3) and the triangle inequality yield

$$0 < (\omega(g)^{2^{n}} - 2)^{1/a} = (|\omega(g_{n})| - 2)^{1/a} \le |2 + \omega(g_{n})|^{1/a} \le |2 + \omega(j(g_{n}))| \le 2 + \omega(j(g))^{2^{n}}.$$

Hence

$$[(\omega(g)^{2^{n}}-2)^{1/2^{n}}]^{1/a} \leq [2+\omega(j(g))^{2^{n}}]^{1/2^{n}},$$

and letting $n \to \infty$ we obtain $|\omega(g)|^{1/a} \le |\omega(j(g))|$. It follows similarly that $|\omega(j(g))| \le |\omega(g)|^a$.

Remark. Let G be a covering group containing the transformation $g_0: z \mapsto z+1$. As remarked above, it follows from (2.4) that $|\omega(g)| \geq 4$ for all parabolic elements $g \neq g_0$ of G. This bound is sharp: Let $g_1(z) = z/(4z+1)$ and let G_1 be the group generated by g_0 and g_1 . Then G_1 is a covering group and we have $\omega(g_1) = 4$.

§ 3. Isomorphisms with dilatation one

For a set M of Möbius transformations, let $\operatorname{Fix}(M)$ denote the set of fixed points of non-identity transformations of M. If the set $\operatorname{Fix}(G)$ is dense in a circle or a straight line, then the covering group G is said to be of the first kind. If not, then G is of the second kind.

Let $j: G \to G'$ be an isomorphism with $\delta(j) = 1$. If G and G' are of the first kind, then by Theorem 4.3 in [3] there is a Möbius transformation

h inducing j, i.e., $j(g) = h \circ g \circ h^{-1}$ for all $g \in G$. This result is valid in the following more general form also for groups of the second kind.

Theorem 4. Let $E=\{g_1\,,g_2\,,\ldots\}$ be a set of generators of a covering group G. Let F consist of the transformations of the form $(g_i^\alpha\circ g_k^\beta)^a\circ (g_n^\gamma\circ g_n^\varepsilon)^a$, where α , β , γ , ε are integers and a=1, 2. If an isomorphism $j:G\to G'$ preserves the multipliers of the elements of F, then j is induced by a Möbius transformation.

Proof. It suffices to show that there is a Möbius transformation h such that $j(g_i) = h \circ g_i \circ h^{-1}$ for all $g_i \in E$.

(A) Suppose first that E contains at least one hyperbolic element. If $E = \{g_1\}$, g_1 hyperbolic, then j is induced by any Möbius transformation sending $P(g_1)$ to $P(j(g_1))$ and $N(g_1)$ to $N(j(g_1))$. Let $E = \{g_1, g_2\}$ with g_1 parabolic and g_2 hyperbolic. We show that the Möbius transformation which sends $P(g_i)$ to $P(j(g_i))$, i = 1, 2, and $N(g_2)$ to $N(j(g_2))$ induces j. Since we can replace G and G' by conjugate groups $G_1 = hGh^{-1}$ and $G'_1 = h'G'(h')^{-1}$, we may assume that g_2 and $j(g_2)$ both are the transformation $z \mapsto kz/((k-1)z+1)$ and that $P(g_1) = P(j(g_1)) = \infty$. Since we have $\chi(g_1^n \circ g_2) = \chi(j(g_1)^n \circ j(g_2))$, it follows from (1.2) that

$$|1+k+n(k-1)\omega(g_1)| = |1+k+n(k-1)\omega(j(g_1))|$$

for n=1, 2, Therefore $\omega(g_1)=\omega(j(g_1))$, and the assertion follows. Let $\operatorname{Fix}(E)$ contain at least four distinct points. Choose $z_i\in\operatorname{Fix}(E)$ such that $(z_1\ ,\ z_2\ ,\ z_3\ ,\ z_4)>1$. Suppose that $z_1=\operatorname{N}(h_1)\ ,\ z_2=\operatorname{N}(h_2)\ ,\ z_3=\operatorname{P}(h_3)\ ,\ z_4=\operatorname{P}(h_4)\ ,$ where for each i, i=1, 2, 3, 4, either $h_i\in E$ or $h_i^{-1}\in E$. If

$$\begin{split} w_1 &= \mathcal{N}(j(h_1)) \;, \qquad w_2 &= \mathcal{N}(j(h_2)) \;, \\ w_3 &= \mathcal{P}(j(h_3)) \;, \qquad w_4 &= \mathcal{P}(j(h_4)) \;, \end{split}$$

then the points w_i are well-defined and distinct. We show that

$$(3.1) \hspace{3.1em} (z_1\,,z_2\,,z_3\,,z_4) = (w_1\,,w_2\,,w_3\,,w_4)\,.$$

To prove (3.1), set $g_{1n} = h_3^n \circ h_1^n$ and $g_{2n} = h_4^n \circ h_2^n$. Then by Lemma 3.1 in [3], $N(g_{in}) \to z_i$, $P(g_{in}) \to z_{i+2}$ and similarly $N(j(g_{in})) \to w_i$, $P(j(g_{in})) \to w_{i+2}$ as $n \to \infty$, i = 1, 2. Thus it suffices to show that

(3.2)
$$(\mathbf{N}(g_{1n}), \mathbf{N}(g_{2n}), \mathbf{P}(g_{1n}), \mathbf{P}(g_{2n})) = (\mathbf{N}(j(g_{1n})), \mathbf{N}(j(g_{2n})), \mathbf{P}(j(g_{1n})), \mathbf{P}(j(g_{2n})))$$

for sufficiently large values of $\,n\,.$ Choose $\,n_0\,$ such that for $\,n\geq n_0\,$

$$(N(g_{1n}), N(g_{2n}), P(g_{1n}), P(g_{2n})) > 1.$$

Since j preserves the multipliers of g_{1n} , g_{2n} , $g_{1n} \circ g_{2n}$ and $g_{1n}^2 \circ g_{2n}^2$, we can apply the proof of Theorem 4.3 in [3] by replacing g_i by g_{in} . Then it follows that (3.2) holds for $n \geq n_0$, and (3.1) is proved. By (3.1) there is a Möbius transformation h such that $h(P(g_i^{\pm 1})) = P(j(g_i)^{\pm 1})$ for all $g_i \in E$. By the previous part of the proof we have $j(g_i) = h \circ g_i \circ h^{-1}$ for $g_i \in E$. Thus case (A) is proved.

(B) Suppose secondly that E contains only parabolic elements.

The case when E consists of one parabolic element is clear. Let $E = \{g_1, g_2\}$ with g_1 and g_2 parabolic. We may suppose that g_1 and $j(g_1)$ both are the transformation $z \mapsto z + 1$ and that $P(g_2) = P(j(g_2))$. Since we have $\chi(g_1 \circ g_2^n) = \chi(j(g_1) \circ j(g_2)^n)$, it follows from (2.4) that

$$|2 + n \omega(q_2)| = |2 + n \omega(j(q_2))|$$

for n=1, 2, Therefore $\omega(g_2)=\omega(j(g_2))$, and it follows that j=id. Let $E=\{g_1\,,g_2\,,g_3\}$ with g_1 , g_2 , g_3 parabolic. We show that the Möbius transformation sending $P(g_i)$ to $P(j(g_i))$ induces j. We normalize such that

$$P(q_1) = P(j(q_1)) = \infty$$
, $P(q_2) = P(j(q_2)) = 0$, $P(q_3) = P(j(q_3)) = -1$.

Then it suffices to show that j = id.

Let $\omega_i = \omega(g_i)$, i = 1, 2, 3. Then we have (cf. 2.4))

$$\chi(g_1^n \circ g_i) = |2 + n \, \omega_1 \omega_i|$$

for i=2, 3. A simple calculation yields

(3.3)
$$(g_3 \circ g_2^n)(z) = \frac{(1 - n\omega_2\omega_3 - \omega_3)z - \omega_3}{(n\omega_2 + n\omega_2\omega_3 - \omega_3)z + \omega_3 + 1}.$$

Hence

$$\chi(g_3 \circ g_2^n) = |2 - n \omega_2 \omega_3|,$$

and we also obtain similar expressions for

$$\chi(j(g_1)^n \circ j(g_i))$$
 and $\chi(j(g_3) \circ j(g_2)^n)$.

Let $\omega_i' = \omega(j(g_i))$. Then we have the following equations

$$|2 + n\omega_1\omega_i| = |2 + n\omega_1'\omega_i'|, i = 2, 3,$$

 $|2 - n\omega_2\omega_3| = |2 - n\omega_2'\omega_3'|$

for n=1, 2, Hence $\omega_i \omega_k = \omega_i' \omega_k'$ holds for $i \neq k$, and we have either $\omega_i = \omega_i'$ or $\omega_i = -\omega_i'$ for i=1, 2, 3. To verify that the latter

case is impossible, consider the transformation $g_3 \circ g_2 \circ g_1^n$. It follows from (3.3) that

$$\chi(g_3 \circ g_2 \circ g_1^n) = |2 - \omega_2 \omega_3 + n(\omega_1 \omega_2 + \omega_1 \omega_3 + \omega_1 \omega_2 \omega_3)|.$$

From $\chi(g_3 \circ g_2 \circ g_1^n) = \chi(j(g_3) \circ j(g_2) \circ j(g_1)^n)$ we infer that ω_i and ω_i' have the same sign. Hence we have $j(g_i) = g_i$ for i = 1, 2, 3 and it follows that j = id as asserted.

Suppose finally that $\operatorname{Fix}(E)$ contains at least four points. Similarly as in (A) we can show that there is a Möbius transformation h such that $h(P(g_i^{\pm 1})) = P(j(g_i)^{\pm 1})$ for all $g_i \in E$. From the case of three generating transformations it then follows that h induces j.

About results related to Theorem 4 we refer to [2] pp. 150—151.

If we only know that $\varkappa(g_i) = \varkappa(j(g_i))$ for all $g_i \in E$, then j need not be induced by any Möbius transformation. This is seen considering e.g. the case when the Riemann surfaces corresponding to G and G' are compact.

§ 4. The boundary mapping of an isomorphism with a finite dilatation

Let G and G' be covering groups acting on the upper half-plane H. A homeomorphism $\varphi: R \cup \{\infty\} \to R \cup \{\infty\}$ is called a boundary mapping of an isomorphism $j: G \to G'$ if $\varphi \circ g = j(g) \circ \varphi$ for all $g \in G$. Thus we have $\varphi(P(g)) = P(j(g))$ for $g \in G$. (Therefore, if G and G' are of the first kind, an isomorphism $j: G \to G'$ has at most one boundary mapping.) In this section we consider the interrelation between φ and $\delta(j)$.

Let K_1 and K_2 be circles or straight lines and $\psi: K_1 \to K_2$ a homeomorphism. Let $z_0 \in K_1$ be a finite point such that $\psi(z_0) \neq \infty$. We say that ψ is Hölder continuous with the exponent α , $0 < \alpha \le 1$, at z_0 if there is a constant $A \ge 1$ and a neighborhood $U \subset K_1$ of z_0 such that

$$|(1/A)|z-z_0|^{1/\alpha} \le |\psi(z)-\psi(z_0)| \le A|z-z_0|^{\alpha}$$

for all $z \in U$. The mapping ψ is Hölder continuous with the exponent α at the point ∞ or at a point z_0 where $\psi(z_0) = \infty$ if $\psi(1/z)$ has this property at the origin or $1/\psi(z)$ at z_0 , respectively. If ψ is Hölder continuous with the exponent $\alpha = 1$ at z_0 , then we say that ψ is a Lip-schitz mapping at z_0 .

The Hölder continuity of ψ is invariant under Möbius transformations, i.e., if h_1 and h_2 are Möbius transformations and ψ is Hölder continuous with the exponent α at z_0 , then the same is true of $h_2 \circ \psi \circ h_1^{-1}$ at the point $h_1(z_0)$.

Theorem 5. Suppose that φ is a boundary mapping of an isomorphism $j:G\to G'$. Let B(j) be the set of the real numbers α , $0<\alpha\leq 1$, such that φ is Hölder continuous with the exponent α at the fixed points of all hyperbolic elements of G. Then $B(j)\neq\emptyset$ if and only if $\delta(j)<\infty$. If $B(j)\neq\emptyset$, then we have $1/\delta(j)=\max\alpha$, $\alpha\in B(j)$.

Proof. Let $g \in G$ be hyperbolic. From the existence of φ we conclude that j(g) is also hyperbolic. Since the α -Hölder continuity of φ at a point is invariant under Möbius transformations, we may assume that

$$N(q) = N(j(q)) = 0$$
, $P(q) = P(j(q)) = \infty$

and $\varphi(1) = 1$.

Suppose that $\alpha \in B(j)$. Then there is an $A \geq 1$ such that

$$|\varphi(g^{-n}(1)) - \varphi(0)| = \varphi(g^{-n}(1)) = j(g)^{-n}(1)$$

= $\varkappa(j(g))^{-n} \le A|g^{-n}(1) - 0|^{\alpha} = A\varkappa(g)^{-n\alpha}$

from some $n=n_0$ on. Thus $\varkappa(j(g))\geq A^{-1/n}\varkappa(g)^\alpha$, and letting $n\to\infty$ we obtain $\varkappa(j(g))\geq \varkappa(g)^\alpha$. Similarly it follows that $\varkappa(g)\geq \varkappa(j(g))^\alpha$. Hence $\delta(j)\leq 1/\alpha$.

Conversely, suppose that $a = \delta(j) < \infty$. Choose t such that 0 < t < 1 and let n be the natural number for which $1/\varkappa(g)^{n+1} \le t < 1/\varkappa(g)^n$. Since $\varphi(1) = 1$, we have $1/\varkappa(j(g))^{n+1} \le \varphi(t) < 1/\varkappa(j(g))^n$. Hence

$$\frac{\varphi(t)}{t^{1/a}} \le \frac{\varkappa(g)^{(n+1)/a}}{\varkappa(j(g))^n} \le \frac{\varkappa(g)^{(n+1)/a}}{\varkappa(q)^{n/a}} = \varkappa(g)^{1/a},$$

and similarly $\varphi(t)/t^a \ge 1/\varkappa(g)^a$. If -1 < t < 0, then we obtain $|\varphi(t)|/|t|^{1/a} \le |\varphi(-1)|\varkappa(g)^{1/a}$ and $|\varphi(t)|/|t|^a \ge |\varphi(-1)|/\varkappa(g)^a$. Hence

$$1/\delta(j) \in B(j)$$

and the first assertion is proved. Moreover, by the first part of the proof we have $\delta(j) \leq 1/\alpha$ for all $\alpha \in B(j)$. Thus $1/\delta(j) = \max \alpha$, $\alpha \in B(j)$.

As in Theorem 4, let $E = \{g_1, g_2, \ldots\}$ be a set of generators of \overline{G} and let F be the set of the transformations $(g_i^{\alpha} \circ g_k^{\beta})^a \circ (g_m^{\gamma} \circ g_n^{\varepsilon})^a$. Then we have the following generalization for Theorem 5.1 in [3]:

Theorem 6. If an isomorphism $j: G \to G'$ has a boundary mapping which is a Lipschitz mapping at the points of Fix (F), then j is induced by a Möbius transformation.

Theorem 6 follows from Theorem 4 and the proof of Theorem 5.

The following theorem shows that the Hölder continuity of a boundary mapping φ of $j: G \to G'$ at the fixed points of the parabolic elements of G does not depend on $\delta(j)$.

Theorem 7. If $g \in G$ is parabolic, then all boundary mappings of an isomorphism $j: G \to G'$ are Lipschitz mappings at P(g).

Proof. We may assume that g and j(g) both are the transformation $z\mapsto z/(z+1)$ and that $\varphi(\infty)=\infty$. Choose t such that 0< t<1 and let n be the natural number for which $1/(n+1)< t\leq 1/n$. Since $g^n(\infty)=j(g)^n(\infty)=1/n$, we have $1/(n+1)<\varphi(t)\leq 1/n$. Therefore $n/(n+1)\leq \varphi(t)/t\leq (n+1)/n$, and it follows that $t/2\leq \varphi(t)\leq 2t$. Replacing g by g^{-1} we obtain $|t|/2\leq |\varphi(t)|\leq 2|t|$ for -1< t<0.

By Theorem 4.1 in [3] we have $\delta(j) \leq K$ if j is induced by a K-quasiconformal mapping $f \colon H \to H$. This theorem is a special case of the following more general result:

Theorem 8. Let $\varphi: R \cup \{\infty\} \to R \cup \{\infty\}$ be a boundary mapping of $j: G \to G'$. If there is a K-quasiconformal mapping $f: H \to H$ such that $f|(R \cup \{\infty\}) = \varphi$, then $\delta(j) \leq K$.

Proof. Let h and h' be Möbius transformations mapping H onto the unit disk such that $f_1 = h' \circ f \circ h^{-1}$ fixes the origin. By Theorem II. 3.2 in [1], the restriction of f_1 to the unit circle is Hölder continuous with the exponent 1/K. Then the same holds true of φ at every point of $R \cup \{\infty\}$ and we have $\delta(j) \leq K$ by Theorem 5. \square

Let $\psi: R \cup \{\infty\} \to R \cup \{\infty\}$ be an increasing homeomorphism fixing ∞ . If for an interval $I \subset R$ there is a constant λ , $1 \leq \lambda < \infty$, such that

(4.1)
$$1/\lambda \leq \frac{\psi(x+t) - \psi(x)}{\psi(x) - \psi(x-t)} \leq \lambda$$

holds whenever $x \pm t \in I$, we say that ψ is λ -quasisymmetric on I. The mapping ψ is called λ -quasisymmetric if (4.1) holds for all x and t. Note that ψ is 1-quasisymmetric if and only if ψ is the restriction of a Möbius transformation $z \mapsto az + b$ with a > 0 and b real.

If an isomorphism $j:G\to G'$ has a λ -quasisymmetric boundary mapping φ , then

$$\delta(j) \le \log 2/\log (1 + 1/\lambda)$$

by Theorem 4.2 in [3]. On the other hand, there is a K-quasiconformal extension $f: H \to H$ of φ with $K = \min{(8\lambda, \lambda^2)}$ (see [1, II.6.5]). Hence we have $\delta(j) \leq \min{(8\lambda, \lambda^2)}$ by Theorem 8. However, one can verify by calculation that $\log 2/\log{(1+1/\lambda)} \leq \min{(8\lambda, \lambda^2)}$ for all values $\lambda \geq 1$. Hence Theorem 8 implies (4.2) only if a λ -quasisymmetric φ always has a $(\log 2/\log{(1+1/\lambda)})$ -quasiconformal extension $f: H \to H$.

By the following theorem, (4.2) can be deduced also from the local λ -quasisymmetry of φ .

Theorem 9. Let $\varphi: R \cup \{\infty\} \to R \cup \{\infty\}$ be a boundary mapping of an isomorphism $j: G \to G'$. If for every hyperbolic $g \in G$ satisfying $P(g) \neq \infty$ there is an interval $I \ni P(g)$ on which φ is λ -quasisymmetric, then $\delta(j) \leq \log 2/\log (1 + 1/\lambda)$.

Proof. Let $g \in G$ be hyperbolic, $P(g) \neq \infty$ and h, h' Möbius transformations fixing H such that h(P(g)) = h' (P(j(g))) = 0, $h(N(g)) = h'(N(j(g))) = \infty$. For every $\varepsilon > 0$ there is an interval I containing the origin such that the mapping $\varphi_1 = h' \circ \varphi \circ h^{-1}$ is $(\lambda + \varepsilon)$ -quasisymmetric on I. Then there are 1-quasisymmetric mappings h_1 and h'_1 fixing the origin such that $\varphi'_1 = h'_1 \circ \varphi_1 \circ h_1^{-1}$ is $(\lambda + \varepsilon)$ -quasisymmetric on the closed unit interval. Replacing φ by φ'_1 and λ by $\lambda + \varepsilon$ in the proof of Theorem 4.2 in [3] we can show that $\varkappa(g)^{1/a} \leq \varkappa(j(g)) \leq \varkappa(g)^a$ holds for

$$a = \log 2/\log (1 + 1/(\lambda + \varepsilon))$$
.

Suppose that all boundary mappings of an isomorphism $j:G\to G'$ are increasing and fix the point ∞ . To our knowledge, it is an open question whether $\delta(j)<\infty$ then implies that j has a boundary mapping which is λ -quasisymmetric for some fixed $\lambda\geq 1$ in a neighborhood of the attracting fixed point of every hyperbolic element of G. However, the following theorem tells that all boundary mappings of j have a quasisymmetry property at the fixed points of the parabolic elements of G.

Theorem 10. Suppose that the transformation $g_0: z \mapsto z+1$ lies in $G \cap G'$. Let $\varphi: R \cup \{\infty\} \to R \cup \{\infty\}$ be a boundary mapping of an isomorphism $j: G \to G'$ for which $j(g_0) = g_0$. If $g \neq g_0$ is a parabolic element of G, $x_0 = P(g)$ and $a = \delta(j) < \infty$, then we have for all t > 0

$$\omega(g)^{-a} \le \frac{\varphi(x_0 + t) - \varphi(x_0)}{\varphi(x_0) - \varphi(x_0 - t)} \le \omega(g)^a.$$

Proof: It means no restriction to consider only the case when φ is increasing. Using 1-quasisymmetric mappings of the type $z\mapsto z+b$ we normalize such that $\mathrm{P}(g)=\mathrm{P}(j(g))=0$. Then $\omega(g)$, $\omega(j(g))$ and $\omega(g_0)$ are not changed. We may assume that $\omega(g)$ and $\omega(j(g))$ are positive. Then by Theorem 3, $\omega(g)^{1/a}\leq \omega(j(g))\leq \omega(g)^a$.

Let t>1 and n be the natural number for which $n\leq t< n+1$. From $\pm n=g_0^{\pm n}(0)=j(g_0)^{\pm n}(0)$ we infer that $n\leq \pm \varphi\ (\pm\ t)< n+1$. It follows that $n/(n+1)\leq \varphi(t)/(-\varphi(-t))\leq (n+1)/n$, and we have $1/2\leq \varphi(t)/(-\varphi(-t))\leq 2$.

Let $1/\omega(g) < t \le 1$. Since $g(\infty) = 1/\omega(g)$, we obtain

$$1/\omega(j(g)) < \varphi(t) \le 1$$
 ,

and similarly $-1/\omega(j(g)) > \varphi(-t) \ge -1$. Hence

$$\omega(g)^{-a} \le \varphi(t)/(-\varphi(-t)) \le \omega(g)^a.$$

Finally, let $0 < t \le 1/\omega(g)$ and n be the natural number for which $1/((n+1)\omega(g)) < t \le 1/(n\omega(g))$. From $g^{\pm n}(\infty) = 1/(\pm n\omega(g))$ it follows that $1/((n+1)\omega(j(g))) \le \pm \varphi(\pm t) \le 1/(n\omega(j(g)))$. Hence

$$rac{n\omega(j(g))}{(n+1)\omega(j(g))} \leq rac{arphi(t)}{-arphi(-t)} \leq rac{(n+1)\omega(j(g))}{n\omega(j(g))}$$
 ,

and we conclude that $1/2 \le \varphi(t)/(-\varphi(-t)) \le 2$.

Since $\omega(g) \geq 4$ (cf. Remark in § 2), it follows that

$$\omega(g)^{-a} \le \varphi(t)/(-\varphi(-t)) \le \omega(g)^a$$

for all t > 0.

Observe that Theorem 10 does not follow from Theorem 7.

References

- [1] Lehto, O. and K. I. Virtanen: Quasiconformal Mappings in the Plane. Springer-Verlag 1973.
- [2] Selberg, A.: On discontinuous groups in higher-dimensional symmetric spaces. Contributions to Function Theory, 147–164. Tata Institute 1960.
- [3] Sorvall, T.: The boundary mapping induced by an isomorphism of covering groups. Ann. Acad. Sci. Fenn. A I 526, 1-31 (1972).

Department of Mathematics University of Helsinki