ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

552

ON VARIATIONAL INTEGRALS IN "THE BORDERLINE CASE"

BY

O. MARTIO

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.552

Copyright © 1973 by Academica Scientiarum Fennica ISBN 951-41-0127-8

Communicated 14 May 1973 by Jussi Väisälä

KESKUSKIRJAPAINO HELSINKI 1973

1. Introduction

In this paper we study variational integrals in \mathbb{R}^n

(1.1)
$$I(v) = \int_{C} F(x, v(x), \nabla v(x)) dm_n(x)$$

in »the borderline case» $F(x\,,\,y\,,z)\approx |z|^n$. The behavior of (1.1) is well-known for n=2, see e.g. [3], [5]. Our main contribution is to show how conformal technics in R^2 can be replaced by the use of quasiconformal mappings in R^n , $n\geq 3$. The main result, Theorem 4.1, is an extension of [5, Theorem 4.3.5, p. 111] which states that if G is a Lipschitz domain in R^n and $u_0\in C(\bar{G})\cap W^1_n(G)$, then there exists $u\in C(\bar{G})\cap W^1_n(G)$, $u\mid \partial G=u_0\mid \partial G$, and u minimizes (1.1) among all similar v. We replace the condition »G Lipschitz» by »G quasiconformally collared». Our method is based on the fact that a quasiconformal mapping between two domains G and G' preserves the classes $C(G)\cap W^1_n(G)$ and $C(G')\cap W^1_n(G')$.

Section 2 contains notation and assumptions on F. It also includes a lower-semicontinuity theorem relevant to our case and some basic properties of quasiconformally collared domains. Equicontinuity properties of monotone functions are studied in Section 3 and Section 4 contains the main theorem.

2. Notation and preliminaries

2.1. Notation. The real number system is denoted by R, $R^+ = \{x \in R \mid x \geq 0\}$, and $\bar{R}^+ = R^+ \cup \{\infty\}$. We let R^n , $n \geq 1$, denote the euclidean n-space with a fixed orthonormal bases e_1, \ldots, e_n . For $x \in R^n$ and r > 0, $B^n(x, r)$ denotes the open ball centered at x with radius r, and $S^{n-1}(x, r) = \partial B^n(x, r)$. We shall use the abbreviations $B^n(r) = B^n(0, r)$, $B^n = B^n(1)$, $S^{n-1}(r) = S^{n-1}(0, r)$. H^+_n denotes the upper half-space $\{x \in R^n \mid x_n > 0\}$.

If $A \subset R^n$ we let C(A) denote the class of real valued continuous functions on A. If $A \subset R^n$ is a Lebesgue measurable set and $u: A \to \overline{R}^+$ a measurable function we let

$$\int_A u \, dm_n \text{ or } \int_A u(x) \, dm_n(x)$$

denote the integral of u over A. The integral has values in \overline{R}^+ . $L^p(A)$, $1 \leq p < \infty$, denotes the Banach space of (equivalence classes of) measurable functions $u: A \to \{-\infty\} \cup R \cup \{\infty\}$ with the norm

$$||u||_{p,A} = \left(\int\limits_A |u|^p dm_n\right)^{1/p} < \infty.$$

Suppose that $G \subset \mathbb{R}^n$ is a domain and $1 \leq p < \infty$. $W_p^1(G)$ means the Sobolev space of all functions u in $L^p(G)$ with the first generalized partial derivatives $\partial_j u$, $1 \leq j \leq n$, in $L^p(G)$. We let $\nabla u = (\partial_1 u, \ldots, \partial_n u)$. The norm in $W_p^1(G)$ is denoted by

$$||u||_{1,p,G} = ||u||_{p,G} + ||\nabla u||_{p,G} = ||u||_{p,G} + ||(\sum_{i=1}^n |\partial_i u|^2)^{1/2}||_{p,G}.$$

We shall make use of the following reflection principle in the Sobolev space. It can be easily proved by using the ACL-properties of functions in $W_p^1(G)$, see e.g. [5, pp. 66–67].

2.2. Lemma. Suppose
$$u \in W^1_p(B^n \cap H_n^+) \cap C(\overline{B^n \cap H_n^+})$$
. Let
$$u^*(x) = u(x) , x \in \overline{B^n \cap H_n^+}$$
$$= u(x - 2x_n e_n) , x \in \overline{B}^n \setminus \overline{B^n \cap H_n^+} .$$

Then $u^* \in C(\bar{B}^n) \cup W_p^1(B^n)$ and

$$2\int\limits_{B^n\cap H_n^+}|\bigtriangledown u|^pdm_n=\int\limits_{B^n}|\bigtriangledown u^*|^pdm_n\,.$$

2.3. Variational integrals. Let $G \subset \mathbb{R}^n$ be a bounded domain and $F: G \times \mathbb{R} \times \mathbb{R}^n \to \overline{\mathbb{R}}^+$. We shall make use of three sets of assumptions on F:

(2.4) Either
$$(i) \begin{cases} F \text{ is continuous and into } R^{\perp}. \\ z \mapsto F(x, y, z) \text{ is convex for all } (x, y) \in G \times R. \end{cases}$$
 or
$$(ii) \begin{cases} F \text{ is Borel-measurable.} \\ \text{For every } \varepsilon > 0 \text{ there exists a compact set } S \text{ in } G \text{ such that } m_n(G \setminus S) < \varepsilon \text{ and } F \cdot S \times R^{n+1} \text{ is continuous.} \\ F(x, \cdot) : R^{n+1} \to R^{\pm} \text{ is convex for a.e. } x \in G. \end{cases}$$

(2.5) For a.e. $x \in G$ $F(x, y, z) \ge F(x, y, 0)$ for all $y \in R$.

There exists C > 0 and $w \in L^1(G)$ such that for a.e. $x \in G$

(2.6)
$$F(x, y, z) \ge C |z|^n - w(x)$$

for all $(y, z) \in R \times R^n$ (when borderline cases).

We shall use the abbreviation

2.7. Example. If $F(x, y, z) = |z|^n$ then F satisfies (2.4)–(2.6).

$$I(u) = \int\limits_G F(x , u(x) , \nabla u(x)) dm_n(x)$$

if $u \in W^1_n(G)$. The following lower-semicontinuity theorem will be used several times.

2.8. Lemma. Suppose that F satisfies (2.4). If (u_i) is a bounded sequence in $W^1_p(G)$ and $u_i \rightarrow u \in W^1_p(G)$ in $L^p(G)$, then

$$(2.9) I(u) \leq \lim_{i \to \infty} I(u_i).$$

Proof. If F satisfies (2.4) (i), then (2.9) is a special case of [9, Theorem 13] (see also [5, Theorem 4.1.2] and [8, Theorem 1.3]) and if F satisfies (2.4) (ii), then (2.9) follows from [8, Theorem 1.2].

- 2.10. Remark. Both sides of (2.9) may be infinite.
- 2.11. Quasiconformally collared domains. Let $G \subset \mathbb{R}^n$ be a bounded domain. G is called quasiconformally collared, if every $x \in \partial G$ has arbitrary small neighborhoods U such that $U \cap G$ can be mapped quasiconformally onto $B^n \cap H_n^+$. This means that there is a homeomorphism $f: U \cap G \to B^n \cap H_n^+$ such that the coordinate functions of f belong to $W_n^1(U \cap G)$ and

$$|f'(x)|^n \le K J(x, f)$$
 a.e. in G

for some $K \ge 1$, for more details see [1] or [10].

- **2.12. Remarks.** (a) A Lipschitz-domain is quasiconformally collared since every bi-Lipschitz homemorphism is quasiconformal but not vice versa, see Remark 4.2 (b).
- (b) For n = 2, G is quasiconformally collared if and only if ∂G consists of a finite number of disjoint Jordan curves.
- **2.13. Remark.** Instead of the above definition for a quasiconformally collared domain we may also use the equivalent definition: Every $x \in \partial G$

has arbitrary small neighborhoods U such that there exists a homeomorphism $f:\overline{U\cap G}\to \overline{B^n\cap H_n^+}$ with the properties (1) $f\mid U\cap G$ is quasiconformal, (2) f(x)=0, and (3) $f(\partial G\cap U)=B^n\cap \partial H_n^+$. This can be seen as follows: Let U be as in the first definition. Then f can be extended to a homeomorphism of $U\cap \bar{G}$ [7, Lemma 2.3]. Denote by V the x-component of $\partial G\cap U$. Then fV is open on $\partial (B^n\cap H_n^+)$ and clearly we may assume $fV\subset \partial H_n^+$ and f(x)=0. Thus $U'=f^{-1}(B^n(r)\cap H_n^+)$ for sufficiently small F can be used in the second definition with an obvious modification of f.

3. Monotone functions

Let $A \subset \mathbb{R}^n$, $u \in C(A)$, and $S \subset A$. The oscillation of u on S is denoted by

$$\omega(f,S) = \sup_{\mathbf{x} \in S} f(\mathbf{x}) - \inf_{\mathbf{x} \in S} f(\mathbf{x}) \ .$$

Suppose that $G \subset \mathbb{R}^n$ is a domain. A function $u \in C(\bar{G})$ is called monotone (in the sense of Lebesgue) if

$$\sup_{x \in D} f(x) = \sup_{x \in \partial D} f(x) \quad \text{and} \quad \inf_{x \in D} f(x) = \inf_{x \in \partial D} f(x)$$

for every domain $D \subset G$.

3.1. Lemma. ([6, Lemma 4.1], [1, Lemma 1]) Let $u \in C^1(G)$ and let $\bar{B}^x(x, r) \subset G$. Then

(3.2)
$$\omega (u, S^{n-1}(x, r))^n \le Ar \int_{S^{n-1}(x, r)} |\nabla u|^n dS$$

where A = A(n) and dS denotes the (n-1)-measure on $S^{n-1}(x, r)$.

By approximation Fubini's theorem implies

- **3.3. Corollary.** Let $u \in W^1_n(G) \cap C(G)$. If $B^n(x_0, r_0) \subset G$, then (3.2) holds for u for a.e. $r \in (0, r_0)$.
- **3.4. Theorem.** Suppose that G is a bounded quasiconformally collared domain and that \mathfrak{M} is a family of functions u on \overline{G} such that
- (1) $u \in C(\bar{G}) \cap W_n^1(G)$.
- (2) u is monotone.
- (3) $\|\nabla u\|_{n,G} \leq M$ for all $u \in C_{n}(\mathbb{R}^n)$.

Then I'll is equicontinuous if and only if I'll ∂G is equicontinuous.

Proof. The only if part is trivial. For the other direction we split the proof into two parts.

A. Equicontinuity in G. Let $x \in G$ and pick $\delta > 0$ such that $\overline{B}^n(x, \delta) \subset G$. Choose $\alpha > \delta$ so that $B^n(x, \alpha) \subset G$. Since $u \in \mathcal{P}ll$ is monotone, Corollary 3.3 implies for a.e. $r \in (\delta, \alpha)$

$$\omega(u, B^{n}(x, \delta))^{n} \leq \omega(u, B^{n}(x, r))^{n} = \omega(u, S^{n-1}(x, r))^{n} \leq A r \int_{S^{n-1}(x, r)} |\nabla u|^{n} dS.$$

Multipling by r^{-1} and integrating from δ to α yields

$$\omega(u\;,B^{n}\!(x\;,\,\delta))^{n}\loglpha/\delta\leq A\int\limits_{G}|igtriangledown u|^{n}\,dS\leq AM^{n}\,.$$

This shows that \mathfrak{I} is equicontinuous at x.

B. Equicontinuity at points on ∂G . Let $x \in \partial G$. By Remark 2.12 there exists a neighborhood U of x and a homeomorphism $f: \overline{U \cap G} \to \overline{B^n \cap H_n^+}$ with properties (1)—(3) in 2.11. For $r \in (0,1)$ let D(r) denote the disk $B^n(r) \cap \partial H_n^+$.

It is enough to show that $\mathcal{M}f^{-1} = \{v \mid v = u \circ f^{-1}, u \in \mathcal{M}\}$ is equicontinuous at 0. Suppose that $\mathcal{M}f^{-1}$ is not equicontinuous at 0. Then for all $\delta \in (0,1)$ there exists $v \in \mathcal{M}f^{-1}$ such that

$$(3.5) \qquad \qquad \omega(v \ , B^{\textit{n}}(\delta) \cap H_{\textit{n}}^{+}) \geq \varepsilon > 0 \ .$$

Pick $r_0 > 0$ so small that

$$(3.6) \qquad \qquad \omega(v , D(r_0)) < \varepsilon/2$$

for all $v \in \mathcal{M}f^{-1}$. This is possible since $\mathcal{M}f \mid \partial G$ is equicontinuous and hence $\mathcal{M}f^{-1} \mid B^n \cap \partial H_n^+$ is equicontinuous. Since every $u \in \mathcal{M}f$ is monotone and f is a homeomorphism, $v = u \circ f^{-1}$ is also monotone, and (3.5) and (3.6) imply

$$\omega(v, S^{n-1}(r) \cap H_n^+) \ge \varepsilon/2$$

for all $r \in [\delta, 1]$. On the other hand $v \in C(\overline{B^n \cap H_n^+}) \cap W_n^1(B^n \cap H_n^+)$ [11]. Hence v has an extension v^* to \overline{B}^n described in Lemma 2.2. Now Corollary 3.3 yields for a.e. $r \in [\delta, 1]$

$$(\varepsilon/2)^n \le \omega(v, S^{n-1}(r) \cap H_n^+)^n = \omega(v^*, S^{n-1}(r))^n \le A \ r \int_{S^{n-1}(r)} |\nabla v^*|^n dS.$$

Multipling by r^{-1} and integrating from δ to 1 gives

$$(3.7) \qquad (\varepsilon/2)^n \log 1/\delta \leq A \int_{B^n} |\nabla v^*|^n dm_n \leq 2 A \int_{B^n \cap H_n^+} |\nabla v|^n dm_n.$$

Since $f \mid U \cap G$ is quasiconformal, $f^{-1} \mid B^n \cap H_n^+$ is also quasiconformal for some $K \geq 1$ [1, Theorem 4]. This gives

$$\int_{B^{n}\cap H_{n}^{+}} |\nabla v|^{n} dm_{n} \leq \int_{B^{n}\cap H_{n}^{+}} |\nabla u(f^{-1}(y))|^{n} |(f^{-1})'(y)|^{n} dm_{n}(y)$$

$$\leq K \int_{B^{n}\cap H_{n}^{+}} |\nabla u(f^{-1}(y))|^{n} J(y, f^{-1}) dm_{n}(y)$$

$$= K \int_{B^{n}\cap H_{n}^{+}} |\nabla u|^{n} dm_{n} \leq K \int_{C} |\nabla u|^{n} dm_{n} \leq K M^{n}.$$

This estimate together with (3.7) implies

$$(\varepsilon/2)^n \leq 2 A K M^n (\log 1/\delta)^{-1}$$

which is a contradiction for δ small enough.

3.8. Remark. Theorem 3.4 is an extension of [5, Theorem 4.3.4].

The idea in the next theorem is due to Lebesgue [3].

3.9. Theorem. Suppose that F satisfies (2.4) and (2.5). Let $u_0 \in C(\bar{G}) \cap W_n^1(G)$. Then there exists $u \in C(\bar{G}) \cap W_n^1(G)$ such that u is monotone, $u \mid \partial G = u_0 \mid \partial G$, and $I(u) \leq I(u_0)$.

Proof. Using Lebesgue's method [3] (see also [1], [5], and [6]) it is possible to construct a sequence of functions u_i , i=0, 1,..., such that (i) $u_i \in C(\bar{G})$, (2) $u_i \mid \partial G = u_0 \mid \partial G$, (3) $u_{i-1} = u_i$ except on an open set $V_i \subset G$ and u_i is a constant on the components of V_i , and (4) u_i converges uniformly on \bar{G} to a monotone function u. From (3) it follows that $\omega(u_i, \triangle) \leq \omega(u_0, \triangle)$ on each line segment $\triangle \subset G$. This implies that each u_i is ACL since u_0 is. Moreover, if U is a component of V_i , then u_i is a constant on \bar{U} , and hence by [4, p. 254] $\nabla u_i = 0$ a.e. in \bar{V}_i . This implies

$$(3.10) \qquad \int\limits_G |\bigtriangledown u_i|^n \, dm_n \leq \int\limits_G |\bigtriangledown u_0|^n \, dm_n < \infty \;,$$

and since F satisfies (2.5), it also follows that

$$(3.11) I(u_i) \leq I(u_0) .$$

Since u_i is ACL and (3.10) holds, $u_i \in W_n^1(G)$. Furthermore, by (4) and (3.10) (u_i) is a bounded sequence in $W_n^1(G)$ converging in $L^n(G)$ to u. Consequently $u \in W_n^1(G)$. Finally Lemma 2.8 and (3.11) yield

$$I(u) \leq \lim_{\overline{i \to \infty}} I(u_i) \leq I(u_0)$$
.

4. Main theorem

4.1. Theorem. Suppose that G is a bounded quasiconformally collared domain and F satisfies (2.4)-(2.6). Let $u_0 \in C(\bar{G}) \cap W^1_n(G)$. Then there exists $u \in C(\bar{G}) \cap W^1_n(G)$ such that $u \mid \partial G = u_0 \mid \partial G$ and u minimizes the integral I(v) among all similar v.

Proof. Let

$$\mathcal{F} = \{ v \in C(\bar{G}) \cap W_n^1(G) \mid v \mid \partial G = u_0 \mid \partial G \}$$

and denote

$$I_0 = \inf_{v \in \mathcal{I}} I(v) .$$

If $I_0=+\infty$, we may take $u=u_0$. Suppose $I_0<\infty$. Then there exists a sequence (u_i) , $u_i\in\mathcal{I}$, such that

$$I(u_{i}) \rightarrow I_{0} \ .$$

We may assume

$$(4.3) I_0 \le I(u_i) < I_0 + 1.$$

By Theorem 3.9 we can replace (u_i) by (u_i^*) such that $u_i^* \in \mathcal{F}$, u_i^* is monotone, and u_i^* satisfies both (4.2) and (4.3). Then (2.6) and (4.3) imply

$$\| \nabla u_i^* \|_{\mathsf{n}, \, \mathsf{G}}^{\mathsf{n}} \leq (I_0 + 1 + \| w \|_{1, \, \mathsf{G}}) / C \,, \quad i = 1 \,, \, 2 \,, \, \ldots \,.$$

Hence by Theorem 3.4 $\{u_i^*\}$ is equicontinuous and since the functions u_i^* are monotone, $\{u_i^*\}$ is also bounded. By Ascoli's theorem there exists a subsequence (u_{ij}^*) converging uniformly on \bar{G} to $u \in C(\bar{G})$. Since, by (4.4), the sequence (u_{ij}^*) is bounded in $W_n^1(G)$ and $u_{ij}^* \to u$ in $L^n(G)$, $u \in W_n^1(G)$. Thus $u \in \mathcal{F}$. Finally Lemma 2.8 implies

$$I_0 = \lim_{j \to \infty} I(u^*_{i_j}) \ge I(u) \ge I_0 \ .$$

This completes the proof.

- **4.2. Remarks.** (a) Theorem 4.1 (and Theorems 3.4 and 3.9) can be extended to vector valued functions $u:G\to R^m$.
- (b) For instance a smooth domain in \mathbb{R}^n , $n \geq 3$, with an outward directed spire is quasiconformally collared (for details see [2]). However, such a domain is not a Lipschitz-domain.

University of Helsinki Helsinki, Finland

References

- [1] Gehring, F. W.: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 353-393.
- [2] Gehring, F. W. and J. Väisälä: The coefficients of quasiconformality of domains in space. Acta Math. 114 (1965), 1-70.
- [3] LEBESGUE, H.: Sur le problème de Dirichlet. Rend. Circ. Mat. Palermo 24 (1907), 371-402.
- [4] Morrey, C. B.: Existence and differentiability theorems for variational problems for multiple integrals. - Partial Differential Equations and Continuum Mechanics, Univ. of Wisconsin Press, Madison, 1961.
- [5] ->- Multiple integrals in the calculus of variations. Springer-Verlag, 1966.
- [6] Mostow, G. D.: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. - Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53-104.
- [7] Näkki R.: Continuous boundary extension of quasiconformal mappings. Ann. Acad. Sci. Fenn. AI 511 (1972), 1—10.
- [8] Rešetnjak, J. G.: General theorems on semicontinuity and on convergence with a functional. Sib. Math. J. 8.5 (1967), 801-806 (English translation).
- [9] Serrin, J.: On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961), 139-167.
- [10] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture notes in mathematics 229, Springer-Verlag, 1971.
- [11] ZIEMER, W.: Change of variables for absolutely continuous functions. Duke Math. J. 36 (1969), 171-178.