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1. Introduection

In this paper we study variational integrals in R"

(1.1) I(v) = fF(.zr, v(v), Jv(x)) dm,(a)

G

in »the borderline casey F(x,y,z) ~ 2|". The behavior of (1.1) is well-
known for n = 2, see e.g. [3], [5]. Our main contribution is to show how
conformal technics in R? can be replaced by the use of quasiconformal
mappings in R*, n > 3. The main result, Theorem 4.1, is an extension
of [5, Theorem 4.3.5, p. 111] which states that if G is a Lipschitz domain
in R" and wu, €C(G)N WLG), then there exists w € C(G)N WLG),
w0 = u, | 0G , and w minimizes (1.1) among all similar v . We replace
the condition »G Lipschitzy by »G quasiconformally collared». Our method
is based on the fact that a quasiconformal mapping between two domains
G and G’ preserves the classes C() N WLG) and C(G')N WLG).

Section 2 contains notation and assumptions on F . It also includes
a lower-semicontinuity theorem relevant to our case and some basic pro-
perties of quasiconformally collared domains. Equicontinuity properties
of monotone functions are studied in Section 3 and Section 4 contains
the main theorem.

2. Notation and preliminaries

2.1. Notation. The real number system is denoted by R, R+ = {x € R |
x>0}, and Rt = R+U{c}. Welet R", n > 1, denote the euclidean
n -space with a fixed orthonormal bases e, ,...,¢,. For 2 € R" and
r >0, B"x,r) denotes the open ball centered at » with radius r,
and S""Yz,r) = 0B"(x,r). We shall use the abbreviations B"(r) =
B0 ,r), B*= B"(1), 8" '(r) = 8"~'(0,r). H} denotes the upper half-
space {x € R" | 2, > 0} .

If Ac R" we let C(4) denote the class of real valued continuous
functions on 4 . If A € R"is a Lebesgue measurable set and u : A — R™
a measurable function we let
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f w dm, or f w(x) dm,(x)

A A

denote the integral of u over A . The integral has values in R+ . L’(4),
1 < p < oo, denotes the Banach space of (equivalence classes of) measur-
able functions %: A4 —{—oo}URU{x} with the norm

i 1ip
]pa = ( / 'Ur"dm,,) < 0.
El

Suppose that G C R" is a domain and 1 <p < . W (¢) means
the Sobolev space of all functions « in LP(() with the first generalized
partial derivatives du, 1 <j <. in LF(G). We let Ju = (0. ...,
0,4) . The norm in W},(G) is denoted by

2)1"‘3*'

n
ltlipe = [ulpe + Tt e = Tulpe = 12 8 e
i=1

We shall make use of the following reflection principle in the Sobolev
space. It can be easily proved by using the ACL-properties of functions
in Wy@), see e.g. [5, pp. 66—67].

2.2. Lemma. Suppose « € W (B"NH;)NC(B"NH;). Let
wu*(v) = ulx), » €B"NH;
). x€ B B"NH, .

= u(r — 2u.e

Then w* € C(B")YU Wy(B") and

2 f 7w Pdm,; = f STwErdm,

BMNH,, B"

2.3. Variational integrals. Let G C R" be a bounded domain and
F: G < RxR"— R+ .We shall make use of three sets of assumptions on F :

Either
(i)l F is continuous and into R~ .
| 2+ F(x,y,2) is convex for all (v,y)€EGXR.
or
F is Borel-measurable.
(i) For every >0 there exists a gompagt set S in G such
that m (G ~ S) <e and F S.<R"' is continuous.
] F(x,+): R""'— R+ is convex for ae. 2 €06 .

(2.5) For ae. v €G F(r,y.z) > F(x,y,0) for all y €ER.
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There exists ¢ >0 and w € L) such that for ae. z €0
(2.6) Fle,y,2) = C z|" — w()
for all (y,z) € RxR" (vthe borderline case»).

2.7. Example. If F(x,y,z)= 2| then F satisfies (2.4)—(2.6).

We shall use the abbreviation
I(u) = fF(x ;w(x) , u(x)) dm,(z)
G

if u € WG . The following lower-semicontinuity theorem will be used
several times.

2.8. Lemma. Suppose that F satisfies (2.4). If (w;) is a bounded se-
quence in Wi(@) and u;,—u € W;,(G) in LF(G), then

(2.9) I(w) < lim I(u,) .

Proof. If F satisfies (2.4) (i), then (2.9) is a special case of [9, Theorem
13] (see also [5, Theorem 4.1.2] and [8, Theorem 1.3]) and if F satisfies
(2.4) (ii), then (2.9) follows from [8, Theorem 1.2].

2.10. Remark. Both sides of (2.9) may be infinite.

2.11. Quasiconformally collared domains. Let G C R™ be a bounded
domain. G is called quasiconformally collared, if every x € 0G' has arbitrary
small neighborhoods U such that U NG can be mapped quasicon-
formally onto B"N H; . This means that there is a homeomorphism
f: UNG-—-B"NH} such that the coordinate functions of f belong
to WU NG) and

if'@"<KJ@.f) ae. in G

for some K > 1, for more details see [1] or [10].

2.12. Remarks. (a) A Lipschitz-domain is quasiconformally collared
since every bi-Lipschitz homemorphism is quasiconformal but not vice
versa, see Remark 4.2 (b).

(b) For n = 2, G is quasiconformally collared if and only if G con-
sists of a finite number of disjoint Jordan curves.

2.13. Remark. Instead of the above definition for a quasiconformally
collared domain we may also use the equivalent definition: Every z € 0¢/
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has arbitrary small neighborhoods {° such that there exists a homeo-
morphism f: UNG — B*N H; with the properties (1) fiU NG is
quasiconformal, (2) f(x) =0, and (3) f(@G¢NU)= B*NoH; . This
can be seen as follows: Let U be as in the first definition. Then f can
be extended to a homeomorphism of U N & [7, Lemma 2.3]. Denote
by V the x-component of o N {". Then fJ is open on o(B"N H;)
and clearly we may assume fV < 0H; and f(x) = 0. Thus U’ = f-YB"s
N H;) for sufficiently small » can be used in the second definition with
an obvious modification of f.

3. Monotone funections

Let AcCcR', ueC(A4), and Sc 4. The oscillation of # on S is
denoted by

o(f, S) = sup f(a) — inf f(a)

x€S x€S
Suppose that G € R* is a domain. A function u € C(G) is called
monotone (in the sense of Lebesgue) if
sup f(x) = sup f(a) and inf f(z) = inf f(z)
x€D x€0D x€ED x€0D
for every domain DcC@G.

38.1. Lemma. ([6, Lemma 4.1]. [1, Lemma 1]) Let u € C{G) and let
Bz, r)C G . Then

(3.2) o (u, S, 1)) < Ar f I7u " dS
,S"—l(x, r)

where A = A(n) and dS denotes the (n — 1) -measure on S™ '(ar, 7).

By approximation Fubini’s theorem implies
3 P

3.3. Corollary. Let w € WiG)NnC(G). If o 7o) © G, then (3.2)
holds for w for a.e. r € (0,7, .

3.4. Theorem. Suppose that ' is a bounded quasiconformally collured
domain and that N is a family of functions w on G such that
(1) u€eC@nNWYa).
(2) w is monotone.
() [Vaul,ec <M for all we L.
Then N is equicontinuous if and only if | 3G is equicontinuous.
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Proof. The only if part is trivial. For the other direction we split the
proof into two parts.

A. Equicontinuity in G . Let x € (' and pick o > 0 such that B"(z, 9)
C (. Choose « > 6 so that B"(x,x) C G . Since u € 9l is monotone,
Corollary 3.3 implies for a.e. » € (9, )
o(u, BMz, 0))" < o(u, Bz, r)" = o, S" v, ) < Ar f [Ju"ds .
.S"_l(x, r)

Multipling by r-' and integrating from 6 to ~ yields

o(u, Bz, 8))"log «/6 < A f urdS < AM".
G

This shows that )/ is equicontinuous at a .
B. Equicontinuity at points on 0G . Let x € o+ . By Remark 2.12 there

exists a neighborhood U of  and a homeomorphism f: U NG —B"NH;
with properties (1)—(8) in 2.11. For » € (0, 1) let D(r) denote the disk
B"(r) N oH} .

It is enough to show that “/f1 = {v|v = wu-f"1, uw € )} is equi-
continuous at 0. Suppose that VIf-1 is not equicontinuous at 0. Then
for all 6 € (0, 1) there exists v € “J/If-1 such that

(3.5) o, B"O)NH) >ec>0.
Pick 7y > 0 so small that
(3.6) w(v, D(ry)) < ¢/2

for all v € Nf-1. This is possible since V(| (! is equicontinuous and
hence ‘Vif-1| B"N 9H; is equicontinuous. Since every « € )/l is mono-
tone and f is a homeomorphism, » = wu» f~! is also monotone, and (3.5)
and (3.6) imply

o, S )N HF) >¢2

for all r €[6,1]. On the other hand v € C(B*N H;)N WiB" N H})
[11]. Hence » has an extension »* to B" described in Lemma 2.2. Now
Corollary 3.3 yields for a.e. r €[d, 1]

(€2 <o, S 'r)N HH) = w@*, S" ()" < Ar f v MdS .
5""1(r)

Multipling by #! and integrating from 6 to 1 gives
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(3.7) (e/2)" log 1/ < 4 f (ot dm, <2 A f [Vv]"dm, .
B B'NH,

Since f! U NG is quasiconformal, f-1|B"N H;} is also quasiconformal
for some K >1 [I, Theorem 4]. This gives

f ol dm, < f ) (Y ()] dm(y)
BOH, BNH
<K f STu(fA) " Ty 5 ) d(y)
BnH
= N f [ultdm, < K/ [Vul"dm, < K M™.
G

une
This estimate together with (3.7) implies
(/2" <2 A K M" (log 1/6)71

which is a contradiction for o small enough.
3.8. Remark. Theorem 3.4 is an extension of [5, Theorem 4.3.4].
The idea in the next theorem is due to Lebesgue [3].

3.9. Theorem. Suppose that F satisfies (2.4) and (2.5). Let u, € C(G) N
WNG) . Then there exists w € C(G) N WLG) such that w is monotone,
w ! 0G = uy | 0G, and I(u) < I(u,).

Proof. Using Lebesgue’s method [3] (see also [1], [5], and [6]) it is
possible to construct a sequence of functions w;, ¢+=0,1,..., such
that (i) u, € 0G), (2) u;| G =u, | dG, (3) w;,_, = u; except on an
open set V,C G and wu,; is a constant on the components of V,, and
(4) w; converges uniformly on G to a monotone function « . From (3)
it follows that w(u;,.\) <w(y,,/\) on each line segment A CG.
This implies that each u, is ACL since w, is. Moreover, if U is a com-
ponent of V,, then w; is a constant on U, and hence by [4, p. 254]
Ju; =0 a.e. in T,. This implies

(3.10) [ wrin, < [ 15mprdn, < e,
G
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and since F satisfies (2.5), it also follows that
(3.11) I(w,) < I(uy) .

Since w; is ACL and (3.10) holds, u; € Wi(G) . Furthermore, by (4) and
(3.10) (u;) is a bounded sequence in WL(G) converging in L*(G) to .

12

Consequently u € WL(G) . Finally Lemma 2.8 and (3.11) vield

I(u) < I_iEI(“i) < I(uy) .

i— o

4. Main theorem

4.1. Theorem. Suppose that G is a bounded quasiconformally collared
domain and F satisfies (2.4)—(2.6). Let wuy, € C(G) N WXG). Then there
exists uw € O(G) N WLG) such that w| oG = w, 0G and w minimizes
the integral I(v) among all similar v .

Proof. Let

7 =weC@HN WLG) |v | 3G = u, G}
and denote

I, = inf I(v).

veF

If Iy =+ oo, we may take u = u,. Suppose [, << oo. Then there
exists a sequence (u;), u; € ¥, such that

(4.2) I(w) —1I, .
We may assume
(4.3) I, <I(u;) < I, + 1.

By Theorem 3.9 we can replace (u;) by (u¥) such that «* €7, u¥ is
monotone, and uf satisfies both (4.2) and (4.3). Then (2.6) and (4.3) imply

@9 |Vulie < G+ 1w, i=1.2,..

Hence by Theorem 3.4 {u}} is equicontinuous and since the functions
are monotone, {u¥} is also bounded. By Ascoli’s theorem there exists
a subsequence (uf;) converging uniformly on & to w € C(G). Since,
by (4.4), the sequence (u,?;) is bounded in W}(G) and 'u-,.’; —u in L'(G),
u € WLG). Thus % € 7. Finally Lemma 2.8 implies
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I, = lim I(uj‘;) >I(u) > 1,.

J—>o

This completes the proof.

4.2. Remarks. (a) Theorem 4.1 (and Theorems 3.4 and 3.9) can be
extended to vector valued functions u:G — R™.

(b) For instance a smooth domain in R",n >3, with an outward
directed spire is quasiconformally collared (for details see [2]). However,
such a domain is not a Lipschitz-domain.

University of Helsinki
Helsinki, Finland
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