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Introduction

When studying analytic functions, Ahlfors and Beurling [1] introduced
the concept of extremal length A(I") for path families I" of the complex

plane. This was defined by
2
(inf gds)
yE€EI

M) = sup —————,
2 o%dm
R2

where supremum is taken over all non-negative Borel functions ¢ such
that the numerator and denominator are not simultaneously 0 or oo.
The significance of the extremal length is largely due to its invariance
under conformal mappings.

The number M(I") = A(L")"? is called the modulus of the path family 1.
Fuglede [2] defined for measure families £ a p -modulus M (E), which
is a generalization of the modulus M(I") . The number », 1 <p < x,
corresponds to the exponent 2 in the definition of 3/(/"). The modulus
M) plays an important role in the theory of = -dimensional quasi-
conformal mappings, and it has turned out to be more convenient than
the corresponding extremal length. The basic properties of 1/, are given
in section 1.

In section 2 we define an integral with respect to the modulus M, .
This is motivated by the fact that M, is an outer measure (Theorem 1.2).
However, it is useless to define this modulus integral in the usual way by
means of measurable subfamilies, because in many cases there are too
few of these (cf. [3] and [5]). The definition of the integral is based on the
countable additivity of M, in the case of separate subfamilies (Theorem
1.4).

In section 3 we consider the basic properties of the modulus integral.
In section 4 we define measurable families and thus obtain an integral
by the usual Lebesgue definition. This, when it exists, turns out to be
equal to the modulus integral. The last section deals with the modulus
integral in path families.
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Notation

We use the following notation: The set of positive integers is denoted
by N . The real axis is R!', R = R'U{ow}U{— 0} is the extended real
number system and R", n > 2, is the = -dimensional euclidean space.
If 2= (@®y,...,%) €R", its norm is || = (2] + ... Fa)i2, If 4
and B are subsets of R", the distance between them is d(4,B) =
inf{lx—y| |z €4, y €B}. By a domain in R" we mean a non-empty,
open and connected subset of R".

If the space under consideration is R*, m is the = -dimensional Le-
besgue measure and m;, 1 <k <n—1, the L -dimensional Lebesgue
measure. The corresponding outer measures are % and mj .

If m is a measure in an arbitrary space X and p > 1, we denote
by Lr, Lr(X) or Lr(m) the set of all m -measurable functions f: X — R
for which |f}f is integrable over X .

The characteristic function of a set A is denoted by x,.

1. The modulus of a measure family

Let X be an arbitrary set and m a measure in X . We denote by
M the family of all measures in X whose o -algebra of definition contains
that of m . These concepts will be kept fixed throughout the whole paper.
In the following, we shall consider measure families which all are sub-
families of I .

If ¥ c M, we denote by F(E) the set of all non-negative, m -meas-
urable functions f:X — B such that

ffd‘u >1
X

for all u €E . For each real number p» > 1, the p -modulus M,(E)
of the measure family E is defined by

(1.1) My (E) = inf [ fedm .

fEF(E)
X

If F(E) =@, then M,(E) = oo . This case occurs only when the meas-
ure u =0 belongs to E . Otherwise F(E) contains at least the func-
tion f= .

The above definition is due to Fuglede [2]. He considers only o -finite
measures. This restriction is, however, unnecessary, since the results of
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the theory of measure and integral which are involved hold for arbitrary
measures (see [4]).

In the following theorems we give the basic properties of the modulus.
Fuglede [2] has proved the results in Theorems 1.2—1.6 and Ziemer [7]
and [8] Theorem 1.7. Unless otherwise stated, we shall always assume
that p > 1.

1.2. Theorem. 7T'he modulus M, is an outer measure in M . That is,
(1) M,(2) =0,
(2) If ECE', then MyE) <My E'),

8

() MAUE) =S ME).

i=1

A meagure family £’ is said to minorize a family E if for each measure
u € Il there is a measure u’ € B’ such that p' < u (thatis, u'(4) < u(4)
for all m -measurable sets A). We shall then write £’ << K.

1.3. Theorem. If E' < E , then My(E) < M(E').

Families E,, F,,... are said to be separate if there are disjoint m -
measurable sets S;, S,,... such that u(X\S:) =0 for all u€E;.

1.4. Theorem. If the families E,, E,, ... are separate, then
J[p(.u1 E) = ZI‘UP(E") .

A family K < M is called p -exceptional if M (E) = 0. A property
concerning measures of a family K < M is said to hold for almost every
i €L of order p (abbreviated: p—a.e. u € E) if the family of all meas-
ures p € IZ' for which the property fails is p -exceptional.

1.5. Theorem. A faiily E is p -exceptional if and only if there exists
a function f € Lr(m) such that ff(?y = o forall n€L.
X

1.8. Theorem. If a sequence (f;), f; € LP(m) , converges to a function f
in L7 -melric, then there is a subsequence (f;) such that

>

limf i, —fldp=0 for p—ae p€M.
X

1.7. Theorem. If p > 1 and E,C E,C ..., then
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I
vt

MP(G E,) = lim J[P(E,) .

i >0

In Example 1.10 we shall show that the preceding theorem is invalid
if p=1.

1.8. The modulus of @ path family. The most important special case of
the modulus of a measure family is the modulus of a path family. By a path
we mean a continuous mapping y:I — R*, where I is a closed interval
of the real axis. (The restriction to closed intervals is only for convenience.
Allowing I to be open or half-open would not cause any essential changes.)

The locus |y| of a path y:I1— R" is the image set y(I) C R", and
the locus |I'| of « path family I' is the set U 7). A path »:I--R"

vED

is a segment if it is of the form y(t) = ta + b where a, b €R". It is
parallel to a-axis, 1 <k <=, if only the k:th coordinate of « is dif-
ferent from zero. A path y is rectifiable if it is of bounded variation. The
total variation of y is called its length and is denoted by [(y) . The normal
representation of a rectifiable path y (or the parametrization of y by
means of its arc length) is denoted by »°; see [6]. Let 4, B and C be
subsets of R". A path v :[a, b]— E™ is said to join A and B in C
if one of the end points y(a) , ¥(b) belongs to 4 and the other to B and
y() €C for a <t <b.
To each rectifiable path y , we assign a measure s, , defined by

p(A) = my(y77H(A4))
for all Borel sets 4 € R".If f: R"— R is a non-negative Borel function,

then
/fd,u./ = ff(l.s.
R™ v

Let I' be a family of rectifiable paths in R". In the definition (1.1),
we choose X = R"™ and as the measure m the Borel measure, that is,
the restriction of the Lebesgue measure to the o -algebra of Borel sets

and define the p -modulus M,(I') of I' by
My(I') = My({u, |y €I7).

This is equivalent to
My(I') = inf fedm
FeF(I)

R

where F(I') is the set of all non-negative Borel functions f: R" - R such
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that f fds >1 for y € I' and m is the Lebesgue measure. We may also

14
replace R" by any Borel set X such that [I'|C X .
Let Bc R*' and h > 0. The set

H={(x,y) €ER|2€B, 0 <y <h}

is called a cylinder, the sets {(x, 0) |# € B} and {(x, k) |2 € B} its
bases and the number & its keight. If B is a Borel set, we call H a Borel
cylinder. We denote by A(H) the family of all segments parallel to ., -
axis which join the bases of H and by A.(H) the family of all rectifi-
able paths which join the bases of H in H . They have the same modulus
(cf. [6] 7.2 and [5] Satz 2):

(1.9) M (A(H)) = My(AdH)) = m¥_(B)lA .

If R is a rectangle in the plane R?, we denote by A4,(R) the family
of the segments parallel to x -axis which join the vertical sides of B and
by A,(R) the family of the corresponding segments parallel to ¥ -axis.

We next show by an example that Theorem 1.7 does not hold if p = 1.

1.10. Example. Let R, = {(x 0<a<1jk, 0<y<1}, It=
A(Ry) and Iy = U Il for all X€N. Then INcI,C..., I,c Ik
and I, < I, .. Therefore My(I%) — M(I) — 1 and also lim 3,(I%) = 1.
Let I'= G I'v. We show that M, (I') = oo . o

k=1
Let f be a non-negative Borel function such that f fdm << oo . Then

by the absolute continuity of integral, lim f fdm = 0 If we choose k

k—x Ry
so that f fdm < 1, it follows from Fubini's theorem that f f x, y)de <1
Ry,

for some y €[0,1], which means that f & £(I"). Hence fgdm =

for all g € F(I') and M,(I')= .

2. The modulus integral

Let Ec M be a measure family. By a separate partition of E we
mean any finite collection D = {E,,..., Ex} of separate subfamilies
E; of E.If u is a non-negative function E —> R, we define the p -
modulus integral f udM, of w over E by

E
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K
(2.1) fud]llp = sup » inf w(E:)M(E)) ,
D i=1
E

where the supremum is taken over all separate partitions of E . Here
we use the agreement 0+ o = o0 -0 = 0. If % may also have negative
values, we write # = wt — w—, where «* = sup (x, 0) and %~ = sup
(—u, 0). The integral f udM, is defined by

E

(2.2) f ud M, = f wrd M, — f u=dM,
E

E E
if at least one of the integrals on the right is finite. Otherwise [ udM,
E

is not defined.
We denote by D(E, p) the set of all functions % for which [ ud M,
E

is defined. Then D(Z, p) contains all non-negative functions defined
on E,and E'C E implies D(E, p)c DE', p).

The modulus integral is not an integral in the Lebesgue sense. The
definition (2.1) resembles the definition of the lower Lebesgue integral,
but there is a noticeable difference. In the definition of the lower integral,
the whole set of integration is partitioned into measurable subsets, while
the definition (2.1) may be interpreted in such a way that an arbitrary
subfamily of E is partitioned into measurable parts, in a sense (cf. sec-
tion 4). Thus one often obtains much more admissible partitions and
a greater value to the integral.

2.3. Example. A Dirac measure J, associated with x € X is defined
by 0uB) = yp(x) for all Bc X. If A c X, we denote E(A4) = {4, |
x€d}. If 4 is m-measurable, then M, (E(4)) = m(4) ([2] p. 176).
We show that this connection holds even for integrals.

Let f be a non-negative, m -measurable function defined on A4 and
put w(d.) = f(x) for a€4d. If {4,,...,4:} is an m -measurable

k
partition of 4, that is, 4 = U 4: and the sets A; are m -measurable

i=1
and disjoint, then {£(4,),..., E(4:)} is a separate partition of E(A).
Hence

i=:

zk inf f(dm(4;) = }i inf w(B(A:) M, (E(4,)) < f ud M,
i=1 =1 BC1)

and
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f fam < / ud M, .

E(4)

On the other hand, let {E(A4,), ..., E(4:)} be any separate partition
of E(A4). Then there exist disjoint, m -measurable sets S,,..., Sk
such that 4, c 8ic 4. Since f is m -measurable, the sets B; = {x € 4 |
fe)y > inf f(4)}NS; are m-measurable, and A;c B;c8:. More-
over, inff(4;) = inff(B;). Hence infu(E(4:)) = inf »(E(B;)) and thus

zk inf w(E(A:) M,(B(4.) < zk inf w(E(B.) M (E(B:)) =

i=1 i=1
k

> inf f(B)m(B:) < /‘fdm.
4

i=

This gives the opposite inequality and therefore

»/‘u(lJIP =ffdm.
4

E(4)

2.4. Example. Let O = {(z, y) €R" |2 €B, 0 <y <k} he a Borel
cylinder, I'= A(H), f a non-negative Borel function defined on H and
w(y) = [fds for y € I'. We compute the integral f ud M,

Denote by P the projection R*— R™1 for Wlucn P, yy==x.
Let {B,,...,B:} be a partition of B into disjoint Borel sets and I}
the unique subfamﬂ} of I' for which P(|[i}) =B;,i=1,...,k. Then
{I'y, ..., I} is a separate partition of I' and M () = in, (B,
Whence

h
k

k
> (inf [ flx,y)dy)m,_,(B) = z inf w(I)RP =M () <]z,’“"1fudMP

i=1 x€B; i=1 it
0 r

Therefore f fdm = f ( fh flx, y)dy)dm,_(x) < hP~! f udM, .
" B @ o

r

In order to prove the opposite inequality, we choose a separate partition

{I'y,..., In} of I' and, for each ¢ =1,...,%, a measurable set A,
such that P(|\Ii))c 4 and m}_(P(|I}])) = m,_1(4;) . As in Example
h
2.3, we see that the set A4; may be chosen so that inf / S, ydy = inf
wed; eP(ry)

[ f(z, y)dy . Since the families I are separate, we obtain
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k k k k
S, _y(A) = BV M) = B ML(U 1) < (U A
i1=1 i=1 i=1 i-z1

i

K
Thus > m, 1(4;) = m, (
g

i

LC~

4). Set O;=A4,\U4;. Then m, ()

J=r
h h

=m, ,(4;) =" M,(I') and inf w([};) = inf ff(x , y)dy ginfff(a: ) dy

x€A4; x€C; Y
Since the sets ; are disjoint, we get

h
k ko
Soinf (L) ML) < AP Y k inf [ f(z, y)dy) m, _(C;) < h'P /\fd‘m .
3
o

i=1\x€C;
0

1

This yields the desired inequality and proves

f wdM, = h'* f fdm .

r H

3. General properties of the modulus integral

Here we shall show that many of the basic properties of the Lebesgue
integral are also true for the modulus integral. However, one of the most
important properties, linearity, is not valid. In this section «, %; and v
are always functions from some subfamily of 3 into R and E, E;
and L' subfamilies of M .

The following theorems are easy consequences of the definition.

3.1. Theorem. (a) If ¢ € R and w € D(E , p) , then fcudﬂfp = c/wlﬂfp.
E E

(b) f ypdd, =M (ENL) for al E, E'CM, and, in particular,
fdﬂ' = M, (E).

E

3.2. Theorem, () If u, v €D(E, p) and uw <v, then /udJI{, < fz.‘clJIp.
2 E

) If ECE and w>0, then fudﬂlp < fudJIp )
E E

The following examples show that the modulus integral is not linear.
In fact, neither of the inequalities

f (w = )dI, < f wd M, - f vd I, , / wd M, + f vdd, < f (- 0)d M,
E E E E E
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holds generally. In these examples, 3.3 and 3.8, it is easy to define non-
negative Borel functions f and ¢ such that wu(y) = f fds and v(y) =

v
f gds . Thus the above inequalities do not hold even for these kinds of

Y
functions.

3.3. Example. Let Q={(x, 7)) 0<e<l, 0<y<l}, R=
{, )] 0<e <12, 0 <y <2}, Iy =4Q), I'y = Ay(R) and I'=
I''ur,. Then M,(Ih) =1, M,(Iy) =27P and M,(I')=1, since
I'nc I and yo € F(I'). Put w = y, and v =y, . Then w -+~ v = y,.
By 3.1(b), we have

fud.MP —{—fvdﬂfp =1-+L27>1= f(u + v)dM, .

r r r

In the following example we need an inequality, which we state as a
lemma.

3.4. Lemma. Let p > 1 and h(p) = 2(1 + 2"@=Y)'=P They
(@) 2 -=2(1 —t)? = h(p) for all t€[0, 1] and
(b) 21_1’ < h(p) <1
There is equality in (a) for t=1t, = (1 < 2N-PH-1

Proof. We write (}f(t) =+ 2(1 —t)p for 0 <¢t<1. Then ¢'(¢) =
pt?~t —2p(1 — §)?7 =0 if and only if t=1¢,. Since ¢'(0)= —2p <0
and ¢'(1) = p > 0, ¢ attains its minimum in the interval [0, 1] at £, .
Hence ¢(t) = ¢(f,) = h(p) for all t€[0, 1] and hA(p) < g¢(l)=1.
This proves (a) and the right side of (b). The left side of (b) follows from

}l(p) — 2(1 »_:_ :_)1 (I;AI))I—P >~ 2(21 ip—1) __A_ :21 (p—l))l—p — 21—p .
3.5. Example. Let B be any ~et of real numbers, H, == {(v, y) |
2€B, 0<y<2}, Hy={x r€B, 1<y<3}, IN=AH,),
I's=A4H,) and I'=1T1,U ]'1_ . “ e compute the modulus M ,(I),

when p>1.
Let f€ F(I"). The functions x:i— [fz y)dy and L}——>fj() y)dy

are measurable in R!', and therefore ’ch«, set

2 3
A= {azERllinf{ff(x, y)dy , ff(x, y)(ly} 21}
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is measurable. Moreover, B C 4 . Fubini’s theorem and Holder’s inequal-
ity yield

o) [fam= [ ( [ 1. y)de+f e yrdy + [ fio, y)"dy)dxz

S (e o { frore o) = ( fre ) e

For each x € 4, we have

(3.7 ( f fa, y)dy)”+( JEG z/>dy)"~;~( e ?/)dz/)PZh(p)-

If ff y)dy > 1, this follows from 3.4(b). If /f @, y)dy <1, we choose
t~ [fao y)dy in 3.4(a) and obtain (3.7), since ff(a, y)dy >1—1t and
f fx, y)dy >1—1t by the definition of . Bx combining (3.6) and
(3 7), we get

fde'm > hipym,(A4) = h(p)m§(B).

Thus ULy = Mpymi(B) .

Let ¢ be a Borel set such that B < ¢ and mf(B) = m,(C) . Define
a Borel function f by f(x,y) =t if x€C and 1 <y <2, flx, y) =
1—t, if €0 and 0<y <1 or 2<<y-<3,and f(x,y) =0 other-
wise. Then f€ F(I') and

M () < ffﬁhn = h(p)n(C) = h(p)mi(B) .

This proves that
M,(Iy = h(p)mi(B) .

3.8. Example. Let R,={(=. n)|0<a<l1l, 0<y<2}, R,=
{x,y)|0<a<l,l<y<3i, I'i=dy(Ry, I'y = A,(R,) and ['=
I'yUT,. Then M,(I) = M.([,) = 227 and, by the preceding exam-
ple, M (I') = h(p) when p > 1. Define » and » by
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1 tor y €17,

and v(y) = o () for y€I,.

Let {Iy,..., Iy} be a separate pz’u‘tvition of I'. We add to each
Il all the paths 3" € I' such that " N}y £ O for some 3" €I}

and denote the family we thus obtain ‘:\ Il . The families I, 7 =1,
.., k, are also separate. By 3.5, M. (I) = m{(B)h(p), where B, is

T

the common projection of 17 and I at moaxis. If I',nI, =0,
then M, (7)) = m¥F(B)2" and

inf e( )M (1Y) == 22 Aipymi(B)2' P = M(T7Y) .
If I,NI7 0, then
infa(T0)30,017) = A0(17) < (LY.

Hence

i

k i
2 b ul LM () < 3 ML) < M) = hp)

and

Actually, this holds as equality, since 2% >1 by 3.4(b). Similarly, one
can see that [wdi, = A(p). Since u --v=1-2"""h(p) > 2, we get
r

f(u + o) dM, = (1 4 227 (p)) I (1) > 2h(p) = fudﬂfp + fvdﬂ[,, .
b

r I

3.9. Theorem. If K = Un and w >0, then

1=

Jf wd, < z wdlM, .

Ey

Proof. Let {F{,...,f:} be a sepa&‘&te partition of E . Denote F; =
E:nF; for all {€N and j=1, k. Then {Fl,..., Fu}ois

a separate partition of K; for cach i €N and F; = UFU for each
j=1, , k. This implies

9



18 Ann. Acad. Sci. Fennicae A. 1. 555

k w k ©
Sinf w(F)MyF) <> > inf u(Fy)Mp(Fy) <3 fud,Mp .
i i=1j=1 i1
E;

The assertion follows now if we take supremum over all separate partitions
of E.

3.10. Theorem. If E = U E. . the families E; are separate and u €
i=1

D(E , p), then
f udM, = El f ud M, .
R

E

Proof. Suppose first that « > 0. By 3.9. it suffices to show that

\/udJ[,—, > Z f?z(ZJI,,.
4 =1 Ei

We may assume that / udM, < » for all ¢ € N, since otherwise the
E;
assertion follows immediately from 3.2(b). Let ¢ > 0. For every positive
integer . we can find a separate partition {F, ,..., Ey} of E; such
that
‘

fudﬂfp < > intu(By) M (Ey) - 27",
E; =
For every n €N, the set {E;, j=1....,k,i=1,...,7n} is a

separate partition of E. Hence

n ~ n k;
M i ! ) e <L [H(ZJ[P — ¢
3 [, <3 SwtuE ) oo

L &
£ = E

Letting 7 — oo and ¢-—>0 yields the desired inequality.
If w € D(E, p) is arbitrary, the theorem is valid for #«* and wu~
Considering the cases | f wdM,! < oo and | f wdM,' = o separately,
E E

one easily verifies the asserted equality.
3.11. Remark. Not even absolute convergence of the series in the above

theorem implies that « € D( , p). This can be seen, for example, if we
choose F; = A, (R) U Ay(R;), where Fi={(x,y) 0 <o <<l,t <<y <1

4 1), and wu(y) =1 for y € JA4,(R) and u(y) = —1 for y € UAZ(R;)‘
} y 7 € U. 7€y
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3.12. Theorem. Suppose that E' C E and w(u) =0 for p—ae.
w€ENE'. Then w€DE, p) if and only if w € D(E", p), and then
f wdM, = f ud M, .

E E’

Proof. It is obvious by definition that = € D(E~ E’, p) and

f udM, = 0.
ENE
Therefore, if u > 0, Theorems 3.9 and 3.2(b) imply that

f wdM, < / wd M, + f wd M, — f wddl, < f wd M,
E £ ENE E E
f wdM, — [ wddM,

E L’

or

The theorem follows immediately from this for arbitrary functions.

3.13. Theorem. Suppose that wu(u) = v(u) for p—ae. n€E. Then
w € D(E, p) if and only if v € D(E, p), and then [udd, = [vdﬂ[,,.
E E

Proof. Denote Ey == {u € E | u(p) 5 v(u); . Then M, (Ey) = 0. From
3.12 we conclude that « € D(E , p) if and only if » € D(E, p) and that

in this case
f ud M, = / ud M, = [ vd M, = f ed M, .
N E

E ENE, ENE,

3.14. Theorem. Suppose that w > 0. Then [udM, = 0 if and only if

w(y) = 0 for p-ae. u€k. .

Proof. If w(u) =0 for p-a.c. p€E, 3.13 implies that [-'u(lﬂ[,, =
[0dM, = 0. "

E
Conversely, suppose that f udM, = 0. If u does not vanish p-a.c.,
E

it follows from the subadditivity of the modulus that for some « > 0 the
family E, = {u € E | u(u) > ¢} has a positive p-modulus. Then by
3.2(a) and (b) fudM'P > aM,(E.) > 0, which is a contradiction.
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3.15. Fatou’s lemma. If p > 1 and () is a sequence of non-negative
Sfunctions defined on a measure family E , then

[ liminf wdM, <liminf | wdM,
. j>w©

j—~+w 2

Proof. Set w == liminf ;. Let {#,,..., E'} be a separate partition
joo

of F and c¢.<<infu(l;) for 4=1,...,k. Denote E; = f,LL EH;

i) == ¢ forall j > mn} for n €N and 1 =1, , k. Then E; = UEM .
n=1
By 1.7, we have Mp(E:) = lim 3, (E;) . The fanilies By, i =1,...,k,

are separate for all #» € N and infu{E.) >c¢; for all j > . Hence

ke
Z} ¢ M (E:) < fudefP
h E

for j = »n, and therefore

Z (Ei) < inf f wd M, .

=1 i>n

E

Since this is truc for every # €N, we obtain

k k=
5 ¢ (B) = lim > ¢M,(#;) < liminf fuj i,
=1 ne-o0 =1 jrw

E

We conclude the proof by letting ¢;— infu(#;) foreach 1 =1,..., 1L
and 1‘a.king stpremum over all separate partitions of E .

3.18. Monotone cenvergence theorem. /f p > 1 and (w) is an in-
creasing sequence of nen-regalive furctions defined on a wmeasure fanily E,
then

>

r
lim wd M, = lim [ wdil,

jo>o j-- 0

J

J
E
Proof. This follows directly from 3.2(a) and Fatou’s lemma.

3.17. Theorem., Let p>1. If E,cE,c..., E=UZLE oand
w € D(E , p), then =1

f udM, = lim f udM,
1= 5

E

i
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Proof. We may assume that u = 0. Application of the monotone
convergence theorem to the functions w. = %+ yp, gives by 3.12,
1

f udM, = lim / wdM, = lim | wdM, = lim f ud M, .
s x»on L»mE~ =0

i ol
3.18. Remark. None of the three last theorems is valid for p =1.
This can be seen if we use Example 1.10 and Theorem 3.1(b).

3.19. Example. Lct ¢ be a unit square in the plane R, I'= {y |
v, 1/2<( *) ~ 1 and [y={y€I'|l1—1/j<ly) <1} for
j €N . Since I(y) > 12 hn all v € I', M, ([) << 27 ,and since I < 1,{(@),
M (I = MA4,(Q) =1 for Lull jEN . If u = Arys then wuqy = w4,

20, limay =90 and M) = ; w d M, j widM, = M,([I}) =1

l\/

for all j € N . So we see that im /"vg,(ZJIP =0, although M) < o,
<

f“ctldﬂlp < w, the scquence
4
monotonely to zero.

is unifornily bounded and converges

The preceding example shows that, for instance, Lebesgue’s bounded

convercence theorem docs not hold. The following theorem is, however

& ’
easily established.

3.20. Theorem. [ M () -7 = aud the sequence (w), w; € Dl , p),

converges wniformly to a [ Junction w € D(E , p), then

lim [ wd M, = f wd M,

Jo o
B E

Proof. Sinece the sequences () and () converge uniformly to «*
and %, we may asswme that the functions ; are non-negative. Further-
more, we mayv assume that 3 (E) > ¢. Let &> 0. By the uniform
convergence, there is a positive integer j, such that for all x € £ and
J = Jo

w(u) — ej M (E) < w(p) < w(n) + &/ My(E) .

For any separate partition {F, , ..., £} of B, we get

x k
nf u(L GVMUEY — &< > infu(E)My(E) < 3 infu(E)M,(E)+e

= izl i=1

!bA:*

for j >j,, and therefore
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fudﬂfl, — & S»/"de.l[]) gfudﬂ,[p +
E

lim f wd M, = f ud M,
j—>©
E

E

o]
[ 13
o1}

|
|

or

4. Measurability

In the following we shall consider subfamilies of a fixed measure family
K c M. We shall define a o -algebra ‘X such that the restriction of the
modulus M, to ‘X is a measure. Since 3, is an outer measure, one
o -algebra of this kind consists of those subfamilies % of K for which
the equation

(4.1) M (F) = M,(F 0 E) - M,(F . E)

holds for all families /' € K . We call these families measurable of order p.
However, we choose as ‘X a smaller o -aloebra. which has a closer relation

to the separate partitions in the definition of the modulus integral.

4.2. Definition. Let "X be the sct of all wneasure families E < K that
are separate with their complements K - E . The families of ‘X are called
measurable families.

The following theorem justifies this definition.

4.3. Theorem. The restriction of I, to X is u measure.

Proof. We first show that N isa ¢ -a‘lcjobra. 01;\1( uslv, O € X and

X contains the complement of each of its families. Lot I:l €, i =
@< s

1,2,.... We have to show that |J E: € X i.e. U E; and K - U E:
i=1 =1 [

are separate. Since for each 7 F; and K - FE; are separate, there are
disjoint m -measurable sets S: and 7 such that #(X S)=0 for

s

p€E and wXNT)=0 for w€K K. Denote S=JS; and

o T==1
T=NT7Ti. Then SNT =@ and it is easy fo see that (4\ Ky =0
i=1 =
for p€UYE; and p(X \T)=0 for p€iL U E;. Hence U E; and
0 i=1 ie=1 i=1

K>~ UE; are separate.
i=1
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By the general theory of measure, M, | ‘X is a measure if the families
of X satisfy the condition (4.1). To see this choose E €°X and Fc K .
Since FNECE and FNEc KN\ E and since £ and K\ E arc
separate, the families FNE and F\FE are separate, too, and (4.1)
follows.

4.4. Example. Let H be a Borel cylinder in k" . If K = A(H), then

all subfamilies of K whose loci are Borel sets are measurable. But if

J(H) and H is a domain, then the only measurable subfamilies

of K are @ and K . To prove the second assertion, suppose that E is

a measurable, non-empty subfamily of K.If K™\ /£ is not empty, choose

v €E and y" € K\ E . Then there is a path »” € A such that y and 3"

have a common subpath y; with I(y;) > 0 and -’ and 2" have a com-

mon subpath y, with I(y,) > 0. But then £ and K E cannot be
separate. Hence K - E must be empty.

4.5, Remarks. The measurable subfamilies of K are always measurable
of order p for all p > 1, but not converselv, since. for example, the
p -exceptional families and their complements arve measuvable of ovder p
for all p > 1, but not always in the sense of Definition 4.2.

If K is the family of all rectifiable paths in R* and p > 1, then
no family I'c K such that 0 < M,(I") < oo is measurable of order p .

Renggeli [5] has proved this in the special case p = » = 2 and Hesse [3]
in the general case.

4.6. By 4.3, all results of the general thecry of measure are applicable
to M, X. We recall the basic definitions: A function »:K-— R is
measurable if the inverse image » () of everv open set ¢ C R' and
the sets w(o0) and u }(— o) are measurable, or equivalently, if the
sets B = {pn € K | u(u) > «} are measurable fnr all real numbers «.
If « is non- neﬁatlve and measurable, the integral of « over K, I, (K, u),
according to the general theory of measure, is.

I(K ,u) = sup > infu(E) I (F)

D L1

where D = {E,, ..., E} ranges over all measurable palm‘clons of K,

ie. the families E; are disjoint and measurable and K = U E . If u
i=1

may also have negative values and either I,(K . u") or I;,(K, %”) is

finite, then

L) = I,(K ,ut) — LK, u).
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4.7. Remark. I'rom Definition 4.2 it follows immediately that if B C
K'c K and FE is measurable in K, then £ is measurable in K’.
Observe that A’ is not necessarily measurable in K . Similarly, if «
is a measurable function in K . then it is also measurable in K’.

4.8. Theorem, If [, (K ,u) is defined, then I (K ,u) = f ud M,
K

Proof. We may assume that w > 0. By the definition of °
measurable partition of X is aepa-rate. Hence

, every

L, w) < /(‘ud;‘?i’p .

K
To prove the opposite mequa ity, let 1E PR O ) be a separate parti-
tion of K. Put ¢ =infulll)) for i=1, , k. Rearranging the

families £, we inay assuine that ¢ €; < ... <cr. The families

I/\

Fo={pn€K , c <’u(‘u, Zey,j=1,..., k=1,

Fr={p €K ic < u(p) }

are measurable and disjoint. Hence, for cach fixed i=1,..., k, the
families £, —= L. 008, j = 1,..., L, are separate as subfamilies of

separate families 7. Similariy, the families E i =1,..., k, are

separate for ecach j=1,..., L. Since E;= U B; and U E;cr;,

we have i=1 =1
i k
MUE) =3, S M (E) and S MyE,) < M)

for all 7,j=1,.... L. it j< /, then £;= 0, and if , then
¢ < ¢, whence
k k
Z C;JJD(E ) _<_ /\_ c. ) P(l‘:,‘j)
1 =
for ¢=1,...,%. Combining these inequalities, we see that

k

> o.M (B c,J[ (F)) < L(K ,u),
; )

1==1 -
which gives the desired inequality.
4.9. Remark. By the preceding theorem, we may apply the results of

the general theory of integral to the modulus integral. Thus we have, for
example,
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f (w + v)dM, = f ud M, - f vd M,
K

K K

if I,(K,u) and I, (K ,v) are defined.

4.10. Definition. If Ec M ,w: E — R and if there cxists an m -meas-
urable function f such that w(u) = f fdu for all u € E , we say that w tg

an integral. Especially, we denote (u) = [ du = u(Xj.

4.11. Theorem. If 1 is measwrable and 0 < lu) < «wo in K, then
every mon-negative, measurable function N — R is an integral.

Proof. Let w: K-> R be non-negative and measurable. Since » and
I are measurable, so is %/l , and we can find an increasing sequence (u;)
of simple measurable functions such that w/l = lim ;. The functions
w; may be represented in the form: j>co

7
;= z Wk L, s
k=1
Where the families K are measurable, non-empty and disjoint, K =

UE and each family Ej. is a subfamily of some family £, ., for

g > 2. The families Ejy, k=1,..., p;, are separate for all jE€N.
The disjoint »separatingy sets Sy may be chosen so that SuC8;_y,
if EpcCE;_ ,,. We define m -measurable functions f; by
ap. for x € Sy
() — ?j
5it@) o for z € X\ USi

k=1

Then the sequence (f;) is increasing and converges to some 7 -measurable
function f. If u € K, then, for every j € N . i Dbelongs to some Ky

and hence
/j}d;i = ffjdy = () u(Sje) = w;(1)(pe)
b Sik

Thus

fcl,u = lim deM = lim u{u)l(x) = u(p) ,

]—>oc j>=

which proves the theorem.



<

26 Ann. Acad. Sci. Fennice AL 55
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For a rectifiable path 3, l(u,) = I(y) . So the measurability of [ in
a path family means, roughly speaking, that the paths of different lengths
do not intersect too much. Nevertheless, it is possible that ! is not meas-
urable, even if the loci of all paths were disjoint (cf. 4.19).

4.12. Example. The constant function » =1 is always measurable.
It is not an integral it K = {u, 2u} for any measure u (finite, infinite
or Zero).

4.13. Definition. A family I' of rectifiable paths in R" is said to be
continuous if for every y € I' and ¢ > 0 thereis 6 > 0 such that y°(t) —
YOt <e for all t€[0, U(y)IN[0, I(y")] and U(y) — ()] < e when-
ever ' €I and d(ly,, |y']) < 4. (y° and p’° are the normal represen-
tations of p and 97).

For path families, we obtain a partial converse of Theorem 4.11:

4.14. Theorem. Supposc that 1" is a continuous family of rectifiable paths
. R and that |I'| is a Borel set. If w is an integral in I' and p > 1,
then I' has a subfamily I such that M, (I'\I") =0 and u is measur-
able in I .

Proof. If y, y" €I and [y|Nly’| % O, then by the continuity of
I', y*=9"" and so wu = p,. . Therefore, since |I'| is a Borel set, the
subfamilies of [’ whose loci are Borel sets are measurable.

Let f be a Borel function on R" such that wu(y) = ffds for y€1I'.

We first assume that f is non-negative, continuous and vanishes outside
some compact set. Then f is bounded and uniformly continuous. Choose
B >0 gsuch that f <75 . Let x be a real number and I' ={yel
u(y) > «}. We show that 7" is open relative to [’

Let o € |1, . Then there exists ;» € I' so that » €y . If {(y) =0,
then 0 = w(y) >« , whence I’ = I" and I = I' . Suppose that
l(y) > 0 and denote &= (u(y) — «)/l(y) . Since [ is uniformly continu-
ous, we can find & > 0 such that

(4.15) fly) —f2)] <e¢/2 for ly —=z < 9.
The continuity of I implies that there is o > 0 such that

(4.16) Yot — ) < 6 for tE€[0,IIN[0, ()]
and
(4.17) ) =) < el(y) 2B

whenever 3 € I' and d(jyl, Iy') < o.

/
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e
I3

In order to prove that 17 is open in [I'|, we choose y € [I"! such
that | — y| < p and show that y €|l | .Since y € |I'], there is y' € I'
such that y € ’y’] . The inequalities (4.16) and (4.17) hold for » and 9",
because d(|y!., \y') <l —y! < o. By (4.17), we obtain

1)
[ e < Begy2E = gz, it 1) <10),
1)
and, by (4.16) and (4.15),

Joy ) >foy(t) —e2 for t€[0,1Uy)]N[0,I("].
Considering separately the cases I(y") <l( )y and I(y) <Il(y’), we see

now by direct calculation that w(y’) = f f "°(t)dt > x . Hence o' €1,

and therefore y € [/7,|. As an open set of the subspace |['], the locus
I' | is a Borel set of |I'| and, since |I'| is a Borel set of R",sois |I|.
This shows that 7 is a measurable family and, accordingly, « is a measur-
able function in /7.

We next assume that f€ LP(R"). Since the continuous functions
with compact support are dense in LP(R"), there exists a sequence (f;)
of such funections converging to f in LP-metric. By 1.6, the sequence
(f;) has a subsequence (f;) and the family /" a subfamily I such that

M (I~ I") = 0 and lim fj] ds = ffds for y € I'". By the first part of

-z
this proof, the functions u; = f fjids are measurable in 7" and hence
in I (cf. 4.7). Since u(y) = limw;(y) for y € I, w is likewise measur-
able in [7. i
If f is an arbitrary, non-negative Borel function, there is an increasing
sequence (fj) of Lr-functions converging pointwise to f. Then

u(y) = lim ffjds .
j-n
7

Finally, in the general case we have

u(y) :/des — /f‘a’s

”
7

This proves the theorem.

4.18. Example. If H is a Borel cylinder in R", the conditions of
Theorem 4.14 hold for A(H) . Theyv hold also for the following families
I’y and I, .
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Let 0<a<<b and YC{z€R"| |z =1} be a Borel set. For all
y € Y we define a radial segment y,: [, b} —- R™, which joins the spheres
of radii @ and b, by v,(t) = ty and choose

Iy={piy€y.

Let 4 C (0, o) be a Borel set. If » € 4, we denote by y, the circle
in R? defined by y.(¢f) = r(cost,sint) for 0 << i < 27 and take

ry={p |red).
4.19. Example. Let A4 be a non-measurable subset of the interval
[0,1] and
le{m Y) |0 <221,y €[0,11 N A4},

H, = {( ]0\1«}2,y€_i},
H, = { Y11/2 a2 1.y €AL.
If I = AH)), , 2,3, and I'= [y U I, U I, then the families

Iy and I\ Z’1 are not sepamte, and thus /7 is not measurablein I'.
Since [y = {y € I' | l(y) > 1/2}, I is not measurable in I", though it is
an integral and |I'| is a Borel set. Moreover. the loci of the paths of I'
are disjoint with the exception of the end points.

To conclude this section, we prove an inequality for integral functions.

If f is a non-negative, m -measurable function X — R and Ec M is
a measure family, we denote

Ly(E) = inf | fdu .

LEE
¥

4.20. Lemma. If L(E) = o and if p > 1. then either My(E) =0
or |[frdm = oo .
{
Proof. If ffl’dm < oo and I E)= o, then, by 1.5, M, (E)=0.
X

This is equivalent to the assertion.

4.21, Theorem. Let I C M be a measure fanily, f a non-negative m -
measurable function X — R and wulu) = [ fdu for n€E . Then

fupdﬂfp < [f‘”d/n .
X

E
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Proof. Let {H,,...,E} be a separate partition of E . Then there
are disjoint m -measurable sets S;,...,S: such that u(X \Si) =0
for p € E;. Suppose that 0 << Ly(E:) << oo for each 7 =1, k.
The function g:, defined by gi(x) = f(x)/Ly(E;) for = € S; and g,( ) =0
otherwise, belongs to F(Z;). Hence

M,(E:) < f gldm = LK f Sfrdm .

Si

This gives

k k

z E)M,(E) <> f frdm < f frdm .

i=1 L::ISi ¥

It is clear that this inequality remains valid if L) = 0 for some ¢
and, by 4.20, also if Ly(£:) = oo . We conclude the proof by taking su-
premum over all separate partitions of % .

4.22. Remarks. There is equality in the above theorem if f is an ex-
tremal function of ¥ ie. f€ F(E) and f frdm = M,(E) . Then f urd M, =
X B

M,(E) . Another case of equality is given in 5.1. In the situations of 5.4(a)
and (b) the inequality is strict.

5. Integration in path families

In this section we examine the modulus integral over families of rectifi-
able paths. We use the following notation: If 4 < R" is a Borel set, we
denote by I'(4) the family of all rectifiable paths whose loci are subsets
of 4 and, if ¢ > 0, by [ (4) the family of all segments which belong
to I'(4), are parallel to . -axis and whose lengths are less than &. Of
course, we might as well consider the segments parallel to any fixed line.

The main result of this section is the following theorem, which, in a
way, resembles Fubini’s theorem.

5.1. Theorem. Suppose z‘kat G C R" is open and that I is « path family

such that I'(G)c I'c I'(G) for some ¢>0. If f:G'— R is a non-
negative Borel function and wu(y) f fds for y €I, then

f wrd M, = f frdm .
-

r
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Proof. By 4.21, we have

f uPd M, < / frdm .
G

r

To prove the opposite inequality, we shall approximate f with simple
functions. Suppose first that f is the characteristic function of a Borel
set ACG.Let 6> 0 and denote by I the family of all closed cubes
@ C G parallel to the coordinate axis such that the side length of @ is
less than ¢ and

oo CELL SR,

Then “V is a Vitali covering of the set A4’ consisting of the points of
density of A . By Vitali's covering theorem, there exist disjoint cubes
QL€YY , k=1,2,..., such that

m(A"\U @) = 0.
k=1
Since A is measurable, almost all of its points are points of density, whence
m(ANU @) = 0.
k=1

For each k€., we write Qr= I, X J, I, R*' and J,C R, and
dy = m,(Jx). If « € R"', we denote
Ag={y €R" (v,y) €EQN A}.

Then, by Fubini’s theorem,

(5.3) m(A N Q) = f)71,1(411xk)(lz)2,,ﬁl(.»f) .
I
We partition [, into disjuint Borel sets Ky, ¢ =1,..., ny, and set

Hki:{(x,y) GQkEJL‘EElﬂ'},
T = A(Hy) .

The families /% ,7 =1,...,m, are separate and [I'w C [ (Qx) , whence
{lws. .., Iy} is a separate partition of I7(Qx) . By (1.9),

M,(Iy) = m, (B )T
Since u(y) = fZAds = my(4,), if € R is the first coordinate of the
7

points of |y , we obtain
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n .
ful’d]l[ z (inf w(Lw)PM (1) = di? > inf my(A,)Pm,_1(E),) .

i=1 i=1 x€ Ek:
Q)

By taking supremum over all partitions of I into Borel sets, we get

f wPd M, > d;7? / my(Ag)Pdm, _i(x)

I.(Qr) Iy,

and from here, by Holder’s inequality, (5.3) and (5.2),

14
[ weda, = (dkmv,,vﬂk))‘*f’( f ml(Axk)dm,,_l(x)) -

I.(Q) I
(”iﬁ%@)’“lmm NQy > (1— o)m(AN Q.

Since the families I (Q,),k=1,2,..., areseparateand {J [ (¢,) C I,
Theorems 3.2(b) and 3.10 yield k=t

fzﬂd][ >Z /uP(ZU > (1 — ) Z n(4d N Q)

r I, (Qp)
= (1 — dm(dnN (kgl Q1) = (1 — o)m(4) .

By letting ¢ — 0, we obtain the desired inequality:

fchdifp > m(4) :ff”dm.
G

r

If f =0, the assertion is trivial. Suppose next that f is a simple Borel
function, not identically zero:

k
i 2 af > 0.
i=1

Q

f=

1

1

I

Let 6 > 0. Then there exist closed sets F; C A4; such that
k
m(A4; \F) z =1,..., k.

Since the sets F; are closed and disjoint, we can find disjoint open sets
Gi such that F;c G;c ¢ . The families ['((;) are separate and

€

U '(G:yc I'. We define functions ¢ and v by
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[ f@) for @€ (4:N @)
glw) = -
[0 for .’L‘EG\‘U(A:'nGi)

i=

and v(y) = / gds for y € I'. Then g < f and, accordingly, » < u . Hence
14
3 k
f wPdM, > > / wd M, > vPd M, .
r = I(G;) = r.(6;)

Since g (i = aiyy,| Gi, we deduce from the first part of this proof that

[ vPd M, > afm(4; N G,) .
Gy
Combining the above inequalities and recalling that F,c 4: N ¢; and
I

m{Fy) = m(4;) — 6(2 af)™1, we obtain

i1
f wPd M, > f frdm — 6
T G
f upd M, > f Sfrdm .
2

r

and, letting 6 -0,

If f is an arbitrary non-negative Borel function, approximation with
simple functions concludes the proof.

5.4. Remarks. (a) In Theorem 5.1 the open set (' cannot be replaced
by an arbitrary Borel set. For example, if B consists of those points
in a unit square @ C R? whose coordinates are irrational, then every
component of B is a one-point-set and, consequently, all paths in I'(B)
are constant functions. Then [ =0 and f lrdil, = 0, but f 1Pdm = 1.

I'(B B

(b) The condition I'(G)c I' for son(]e), e >0 in 5.1 cannot be re-
placed by the condition G c |I'}. This can be seen if we let I" be the
family of all non-constant paths y € I'(R") suchthat ' containsthe origin
and use the fact that M,(I) = 0 ([6] 7.9).

(c) Consider the integral f wldM, for ¢ << p in the situation of 5.1.

I
Suppose that f(z) > 0 in a sél;set of G with positive measure. Set f; =
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inf (f,1) and u,(y fflds for y € I'(G@) . Then u; <! and u; <wu.

Using 5.1, we obtain for every ¢ >0

0 <ffpdm ~/u’{dﬂ[ <fl" wld M, < &'~ 9fu"dlil

r,(6) r,(6) )

f wld M, =

I
5.5. Theorem. Suppose that G C R* is open and that I' is a path family
such that I'(G)yc I'c I'(G) for some ¢ > 0. If f cmd g are non-negative

This shows that

Borel  functions G —= R, and u{y) f fds and v(y f gds for y €T,
then

f (uP + vP)d M, = f uPd M, -+ f vPd M, .

r r r

Proof. Suppose first that f and g are simple Borel functions. Then
they can be presented in the form

k k
f=2 wre g=2 bire,s

where the sets C; are disjoint Borel sets.
Let 6 > 0. As in the proof of 5.1, we can find disjoint open sets G,
9 =1,..., k, such that

k
/f%lm —0 < Z atm(C; N G,)
J P

(5.6) .
fgl’dm — 0 <> m(C:N G).
v i=1
Define
k
fl@) for z €Y (CiNG)
folw) = -
0 for N U (@:n @)
i=1
and

g(x) for ij C:N G

Jo() = - k
0 for z €@ \U(OﬂG)
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ug(y f fods and v,y f gods for y € I'. By 5.1, we obtain from the
1nequahtles (5.6)

k

f wdM, — 5 < f wpdM,

(5.7) r e

k

f wdd, — 5 <3 [ vhad,.
r ()

Since uy(y) = aif xcds and vy(y) = biflcids for y € I'(G;), we have
e e

(wo(y)? + woly)P)P = (a? + b)Y / yods = f (ff + g ds

7

and, by 5.

/ (uf + vp)dJ[ —f (f + gh)dm —/fp([))L— fgﬂdm =
G G G

I(Gy)

i i i

fuﬁdﬂfP +f’u{,’dﬁ[},.

(G Gy

This gives, by (5.7) and the inequalities %, < % and v, < v,

fu"dl[p +fdeJlI — 26 <f PYd DM, .
\/.‘ZU"(ZJ[P /z”dﬂ[p f (uP —+ ePYd M,

I Ir

Hence

In the general case this follows by 5.1 and the usual method of approxi-
mation.

In order to prove the opposite inequality, we apply the reversed Min-
kowski’s inequality (see [4] p. 192) to the functions fF and ¢? and the
exponent 1/p, obtaining

(5.8) ([fds)P—f—(fgds>P§<f (fr - ”’(ZS) for yer.

7 Y

Let {Iy,..., %} be a separate partition of I'. Then there exist
disjoint Borel sets S;c G, i =1,..., k, such that u (G S:) =0



PrrrTt MATTILA, Integration in a space of measures 35

for y €I;. Set a; = 1nf ((ffds fgds P). Assume that 0 < a; <

for all i=1, , k. I y €Iy, (5 8) gives alP < f (ff -+ gP)'rds .
This implies that a‘“” (fP + g")'P € F(I;) . Hence 7

(5.9) wM, (I < f (ff + gr)d

Obviously, this holds also if @; = 0. If a; = oo, then, by (5.8) f (fr +
g")!Pds = oo for all y €I and, by 4.20, either M,(I) = 0 or f(fl’ +

gP)dm = oo . Thus (5.9) is true even in this case. From (5.9) and 5.1 we
infer that

k
Z}aiMP(F,.) < /uPdMP —i—/vpdﬂlp.
r T

Since a; = inf (u? 4 vP)(I%), we obtain the desired inequality and the
theorem is proved.

5.10. Remark. 5.5 can be proved as above if we consider functions
fis -+, [ instead of two functions f and g¢g. However, the result may
not be directly generalized by induction, for «? + ¢? is not necessarily
an integral.

5.11. Next we shall consider the transformation of the modulus integral
under quasiconformal mappings in R". For this purpose we define the
modulus and the modulus integral for all path families, not only for rectifi-
able paths (cf. [6] section 6). We consider only the case p = n. Let I’
be a path family in R". We denote by I the family of all rectifiable
paths » € I' and define

and

fudll[,, :fudﬂf,,,

r r,

if f udM, is defined. Then the theory of the modulus integral is valid
FT
also in this generalized case.
Let D and D" be domainsin R", K >1 and f a K -quasiconformal
mapping D — D’ . This means that f is a homeomorphism and
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(1)

EAMLI) < M,(I") < KM(I)

for every path family I" in D . By " we mean the image family {foy |
y € I'y . We generalize this double inequality for the modulus integral.

Let I' be a path family in D . We denote by [, the family of all
paths p € I' such that p is not rectifiable or f is not absolutely con-
tinuous on y or f on foy. Then M, (1) = M,(Iy)=0 (see [6]
28.2). We define a function f:I'— I by f(y)=foy. Suppose that
S c D is a Borel set and y € I'\ I'y. Then f is absolutely continuous
on y and f' on 9’ = foy. By the usual transformation formula for
integrals, we see that f ysds = 0 if and only if f Zpsds = 0, which

means that u,(S) =0 ;f and only if p,. (f(S)) = 0/. This implies that
{I'y,..., I} is a separate partition of I\ I} if and only if {Iy,...,
I} is a separate partition of 1"\ I . Let u:I”— R be a non-negative
function. By the quasiconformality of f, we obtain

K-tinfu o f(I)M (1) < infw(I7)M.(I7) < K infw o f(I) M (I})

for any separate partition {I';,..., I%) of I;,.Summing over ¢, taking
suprema over all separate partitions of '~ I, and I\ Iy and using
3.12, we obtain the following theorem:

5.12. Theorem. Suppose that K >1 and f is a K -quasiconformal
mapping from a domain D C R* onto a domain D' C R*. If I' is a path
family in D and w:I"— R is a non-negative function, then

K- f wo A, < f wdd, < K f wo A, .
J

r r
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