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1. Minimizing the right side

Consider univalent functions f: U — R?, U = {2€ (Ji[z] < 1), where

o guef-t).

yj(z)l <1 in U,
b, == constant € (0,1].

The class of these bounded univalent functions is denoted by S(b,). The
subclass Sgk(b,) € S(b,) consists of functions with all the coefficients b,
real.

In [4] an inequality, generalizing the Nehari inequality [1] for the S(b,)
functions was derived. This was done bV applymg Green’s formula to the

generating function g(w) = x, log w + } m w*(k # 0) constructed by aid

of powers of w. We will briefly eall thls generalized Nehari inequality
the Power inequality of P-inequality. According to the index N, we may
also speak about the Py-inequality. Let us adopt the notations z,, ¢, v
introduced in [4] and apply the Pa-inequalitv in the bilinear form

_[¢ w

3 3
(1) - Re (O ky_ g+ 2> ke ) <3 > kly_i? + > ka2

1 I
given by the condition (58) of [4] for z, = 0. Here x (k. = 41, - 2, L 3)
are free parameters and y, are linear combinations of these, constructed
by aid of the power coefficients ¢, (cf. (5) and (9) in [4]).

Apply (1) to the function vV, f(z?) . By aid of the expressions of y_,,

Y_2, Y_; Teplace x_;, x_,, x_; by u;, 4y, u; when choosing

_ p3E — 2
Y s =2 _30, 3’
U
(2) Yoo =abit=— o,
2
Yyar=—7 a_sbyPay + a_by = — u, .
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Conversely,
Qy
r_, = b (’“1 + 9 ’ufa) >
b,
(3) T_g = — E Us »
B
X_g3 = — ? Us

The numbers

] Y, = T_glogy - Tq Coqy + L1Cpp
l Yo == LogCyy T Toloy

Yy = LgCgy T X1z -+ L1613 1~ L3Cs3

assume thus the expressions

4)
1 3 a, L
3/125%—4“2’“3‘1" u, + 2,01°,
1 2
Y = ) (a5 — az)uy + by, ,

a, 13 3 1 3 9 1 1/2 3/2
Yy = ';*—-azag | 04 '11'3+§ aﬁ—‘z% Uy +’2—b1 ayy + by

'S

Apply (2) and (4) and write (1) as follows:
|| l : )
Re{z WY, »«ch KLk S SZ * +§l:klxkih;

() Re {(ay — 2au; - %’g“;)ué + (a5 — “3)“:: + agui + 2(a; — %a%)ulw
+ 4b1" w4 4bjum; + by + 2by ayuse,}
_ e 3|
= luli 4+ -+ - +lz 1\ +. lezl + 3|x3|

This is the Ps-inequality with six free parameters @;, @y, ¥g; %;, Uz, Us.
Normalize by rotation so that

= |ay| = Re gy

and estimate this coefficient by taking u; = 1.



Orrt Tammi, On optimizing parameters of the power inequality for 5

The parameters left will now be optimized subsequently so that the
right side of the inequality for a,, given by (5), is minimized. As an ex-
ample, take the expression depending on x;:

6 |2;° — 4b}” Re 2, = 2 [3(Re z;)° — 203" Re ;3]

3
1

b
= 2|(Re z; — 10}y — 3 = — 25} .

Equality is reached by taking
(6) x; = Reay = 1637

Similarly, the following optimal choices hold:

b
{xzzéﬁ
7
@ {lezb} (32 + @),
lu =0.

The inequality left has u, as a free parameter

(8) Re {a, — 2a,a; 4 %%ag} - %( b?) + !“2'
< Re {agd + 2(ay — Jadu} + 21 — by, — 2b, Re (@)

Observe that this is the Nehari inequality which we have utilized in
[3] and which can be derived also without the power coefficients, by aid
of Faber polynomials. As a matter of fact, (6) and (7) imply the correspond-
ing symmetric choice of parameters,

(9) xAk:_‘ik (k:1,2,3),

because (6) and (7) give by aid of (3)

120 = 15 =
@y = by (W + 30y = — T_y,
(10) )@= gbily = — Ty,
l vy =300, = — v 3= —T_,
Observe that the choice x_, = — &, is automatically connected with

the equality of the general P-inequality, as can be seen by considering
the equality condition (39) of [4].
The choice (2) leads us to the following practical observation: Py-

u
inequality with z_, = — &, and y_, = — i (k=1,...,N) gives the
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Nehari condition in the form obtained by aid of Faber’s polynomials. The
use of power coefficients shortens calculations considerably.

In (8) we have one free parameter, wu,, available. In our previous
considerations in [3] and [6] we have overlooked some of the power wu,;
includes. Therefore, we have to optimize u,, too.

The part on the right side of (8), depending on wu;, is

(11)  H = — Re (ayu]) — 2 Re {(a; — %“5 + bydy)un} + 2(1 — by)lu, |*
= Au* + Bv* + 2buv — 20xu -+ 2pv

where
ay = a + 1b,
v = a; — Sa5 4+ bd, =« +if,
(12) Uy = U+ W,
A=201—8)—a,
B=21—-10)+a
Because

A= AB — b =[2(1 — b)) — |ag2 > 0

for non-radial-slit mappings, which can be excluded as a trivial case, H
is a definite form, minimized for

«B + pb
U=,
0H oH } 4
o= o =05 -
ou ov BA + bu
v=— .

Thus, the optimal choice of w; is

a(B — ib) + (b — id)

U = U+ W = ;

G + 2(1 — by)»
U, = A .

The corresponding minimum is
A2+ Bo2 - 2bap
4
2(1 — by)pf? + Re (ap?)
Y .

H=—ou-+ pv=—




Orrr Tammi, On optimizing parameters of the power inequality for a,

Thus, the optimized ¢,-inequality reads
Re {a, — 2a,a; + 1§ ai} — 3(1 — b)) + 5 laaf*

(13)
2(1 — b)vP + Re (dp?)
20— b)F — la?

where
g + 2(1 — by)»
[n= [2(1 — by — |ag?”
] v = a; — }a;+ b,

(14)

2. Utilizing the range of v

The number vy defined in (14) can be restricted. Apply the P;-inequality

by choosing all z, = 0 except = ,, x,
2, b = ol o+ (el

(15)
Y = x_lbflc‘k + 2,b;

Here
where the coefficients «, are defined by the development

fE) = bl éc«kzﬂ .

(15) implies
3
Z klx_qjoq + wbb* = (1 — bY) fw_y|* + Ix1[2bi
1

When applied to the function Vf(z?) this gives

%Ix-l(aé’. - % (Lg) — a0y, ?
32
- xlbli 4+ (1 — b))z 1> + |2, [?b; .

[T
Take here
y
r =1, z,=— — (2, #0);

Uy

i 7 |2

a, a

3 3 2 = |2 | 22 2

tla; — 7 a5 + bia| él—‘Z +b1a

2
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This inequality is sharp for the radial slit mapping. The range for » is
thus
2 la d, |2
l'V]é 1/1—‘;2 —{—-bla—%:} :7‘((1/2):7'.
i< 2!

(7) V3

Together with the estimate (13) this is able to improve some of our previous

results for a,.
Write (13) in the form
ay £ 31— ) + Fy Re (@) — 3 byl + &

(18) =
200 — b o + e (7
G = 2 Re (ap) — [2(1 l— b — 5“2]:

3

(19)
and express (19)in @, b; «, B defined by (12):
G = Aa® - Bp? + 20ap + 2Dx + 2Ef ;

(20)
2(1 —b) +a
A==
21 —b) —a
B=—— a0
(21) __r
C = 1
D=ua,
E=—b.
A =[2(1 —b)P — la,*.

In order to express G' in complete squares, rotate the coordinate system
(Figure 1).

OxB by a proper angle ¢ to the system Ox'y

Y
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9

The corresponding connections

’

v =lx+mp, x =pux’' —my’,

"= x4 uf, =—jJx' +ly,
(22) | Yy =ix+up, B +ly
|l = cos ¢ , m = sin ¢ ,
[4 = —sing, p=cosq,
give
G = Ko 4 Ly? -+ 202y +— 2Ma" 4 2Ny’
K = A+ B2 — 2Cu,
L = Am? -+ B2 — 2Clm .
(23)
C' = — Aum — BNl + C(lu + im),
M= Du—E2,
N = — Dm + El.

Define ¢ from the condition €’ = 0:

(24) gt — 2

This gives for the remaining coefficients of ' the expressions

2(1 — b,) - la, 1
K — — iVLZ - - -
4 2(1 — b)) — lay
, 2(1 — b)) — |ay 1
(25) == | ST~y
M = {as] cos 3¢ ,
N = — la,|sin 3¢ .

In these coefficients G is rewritten as follows:

(26) G = Ka'? + Ly"? 4 2Mz’ + 2Ny’

M\ N (e e

The non-positive constant assumes the following expression in a, :
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M2 N2
(27) — (? -+ f) = — A(M*L 4+ N3K)
= 2(1 — b)) (M2 + N?) + |ag] (N? — M) = 2(1 — b)) |ay2 — Re (a3) .
Denote
(28) —%:xé: ~£\I:y6-
K L

These are the xz'y’-coordinates of a point P,. The corresponding «f-
coordinates are denoted by «,, f,. Because

]oc(,:x(',oosq)—yf)sin(p,
. . ’
]ﬁozxosmqv—;—yocosq),
we have

. 3 ’ .« ! — -LW N :AT
v = &g + 1y = €7 (xy + 1Y) = €7 K ;‘ylz

= — (ML + iNK)A = ¢%la,)| [2(1 — b))e ™" — |a,|e”?];
(29) vy = 2(1 — by)a, — a3 .

Express the number
F( - M)2 | L( ,J_N)z
R = K\a' - 7] y' A

(30) v =+ iff = +iy') .
From (29) and (30)

by aid of v, and

[ @ =Re (e~ ) , | z, = Re (e7%,) ,
| ¢ = Im (e ™) ; | 5y = Im (e ", .
Thus
R = K@@ —a)" + Ly — y)
= K Re?{e (v — v)} — L Im2{e % (r — »))}
=3 (K —L)Re{e (v —»)% + 3 (K + L) |y — »f
Re {@y(v — vo)2} + 2(1 — b)) v — 9,2
7 .

By aid of
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G =R + 2(1 — b)) |ay]* — Re (a3)
we now rewrite (18):

(31) a; = 2(1 — b)) — 75 Re (a) + 3(4 — 9,) " — R

Re {ay(v — )%} + 2(1 — b))y — »,J?

(32) R= 21— b)F — |agP

Next we estimate R by regarding » a free variable, independent on
a, , restricted only by the condition (17). Denoting

K:(0) = {(x, p) € Oxfi [ a* + 2 = 7%},

we have » € K,(0).
To simplify notations, shift the coordinate system Ox'y’ to a parallel
system Pyxy having the origin at P, = (g, 9,) . The connections

Ix:x'—x{,,
lv=y —u,
thus give
jR:sz—{—Lyz,

33 R
%) | K,(0) = K,(@) = {(x, ) € Paeylx + )’ + (y + po) =7} .

Clearly, the free maximum point for B is Py = (0,0) . The important

cases are those where P, lies outside K, (Q,). In these R is maximized
at the boundary 0K, .
Using Lagrange’s multiplier A write

Do, y) = Ka? + Ly? — W@ + 20 + (y + o) — 1°]

Figure 2.
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with the necessary extremum conditions

109

- _ 1oy —
3 2 Kx — Mz +2)) =0,

These give the solution to our extremum problem. For », € — K,

4 Max R = M [ /'t< Koy | Ly 2)1

(34) Max R = Max | — K—}»TL—Z_7J<O’

where 7 is the maximizing root of the real roots of the equation
Kz Ly

(35) : + oo =12,

(K — 22 (L — 2y
For yvo€K,, MaxR = 0.
Rewrite u, from (14) using », defined in (29):
ds(v — 9) + 2(1 — by) (v — )
7 .

(36) Uy = a, +

In [3] the coefficient @, was maximized by aid of Nehari inequality by
use of the value

(37) Uy = Uy .

Thus, our previous choice of u, has been optimal only for », € K, .

The equation (35) is of fourth degree. Clearly, no further simplifications
in the general case can be achieved. Therefore, let us consider the simpler
case, the subclass Sg(b;) .

3. The subelass Sg(b,)

To test our formulas with respect to some previous results, consider
the special case Sg(b,) € S(b,), where all the coefficients are real. In this

case (24) reduces to the form
ei2¢

=41

where the upper sign belongs to @, > 0 and the lower sign to a, < 0.
In the following we will concentrate mainly on the later case, where

n ’ ’
=9 % =" Bo=0,2=0, yp=—1.
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(35) reduces to the form

L2y, 2
BRI I
(L — ) ’
| L
L=l A= o) s
Kx} Ly ) ( [v,/? )
— 4 — —‘2:_"——_—_2
)'(K—A L—a No—a—7

Hence, for a, <0,

-, — Ly — )2 - - -
(38) Max R = L(jv,) — r)?, L 51— b) —a,

On the other hand, for Sg(b,) (31), (32), (17) and (29) give directly, if
V()| > r(a) :
(39) ay < 2(1—0b)) — {50 = L (4 —9)a; + R = Ma,),

=4

v — ¥y) [vo(as)| — 7(a,y)T
(40) R:R((lZ):_E(_in—l)——CTQZ— Q(I_bl)_ag ’
(4]_) P o= 7"(({,2) = \/% [2(1 — bl) - az] [2(1 —I_ bl) + a2] ’
(42) vy = vo(tz) = [2(1 — b)) — as]a, .

This confirms the result (34) in this special case,
FESRD),  wlan) > r(ay),

and gives an estimate for «; which is stronger than those utilized formerly,
in [5] and [2].
In Figure 3 there is the graph of the main part

(43) Qay) = — f5 a3 + % (4 — 9b) @}

12
of the right side of (39) in two different cases:
15,4 — 95, >0; 0<b <%,
22,4 —9h, <0; §<b <1.
For a, € [— 2(1 — b,), 0] the correction term R alters the form of
the graph according to Figure 4.

In Table 1 and 2 there are numerical values connected with the graphs
for such limit values of b; which still give results desired. I am indebted
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to Mr A. Herva for evaluating the functions involved on a digital computer
for various values of b, .

Q 0

\ a, \/ \ @,

1°: 84 —984) >0 2°:8(4—-9b) <0
Figure 3.
Table 1
b, = 0.15969
a, = — o(1 — by)
21— 8% + Q(F (4 — 9b,)) = 1.579986
0 [vo(as)] r(ay) M(ay) i
I ! !
z !
2.0 5.648967 1 0.845976 0.189087 |
1.9 | 5.232356 0.888583 0.546986
1.8 4.829867 0.926701 0.843165
1.7 4.441500  © 0.960866 1.082896
1.6 4.067256 0.991487 1.270755
1.5 3.707135 1.018882 1.410819
1.4 3.361135 1.043305 1.506795
1.3 3.029259 1.064963 1.562111
1.2 2.711504 | 1.084019 1.579980
1.1 2.407872 1.100609 1.563447 i
1.0 2.118363 | 1.114844 1.515423
0.9 1.842976 | 1.126813 1.438714 |
0.8 1581711 | 1.136586 1.336043
0.7 1.334568 1.144221 1.210066 |
0.6 1.101549 1.149760 1.064450 |
0.5 0.882651 | 1.153234 0.933423
0.4 0.677876 1.154660 0.830875
0.3 0.487223 | 1154047 0.754731 |
0.2 0.310693 | 1.151391 0.702914 |
0.1 0.148285 1.146678 0.673346 |
0.0 0.000000 ! 1.139883 0.663952 |
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M
Q-+ R
¢ 2 ay v 2 a,
Figure 4.
Table 2
b, = 0.53857
as = — o(1 — b))
: ) | @+ B)
2.0 1.703341 1.151260 0.067389
1.9 1.577720 1.148888 0.034662 !
1.8 1.456357 1.145892 0.012934
1.7 1.339252 1.142267 0.001794 !
1.6 1.226406 1.138007 0.000833 !
1.5 1.117818 1.133105 0.009492
14 1.013488 1.127552 0.019502 ’
1.3 0.913417 1.121339 0.026501
1.2 0.817604 1.114455 0.030833
1.1 0.726049 1.106887 0.032842 ’
1.0 0.638753 1.098621 0.032874 g
0.9 0.555715 1.089641 0.031270 i
0.8 0.476936 1.079929 0.028375 i
0.7 0.402414 1.069466 0.024533 :
0.6 0.332152 1.058229 0.020087 ‘
i 0.5 0.266147 1.046194 0.015382
! 0.4 0.204401 1.033332 0.010762 ]
0.3 0.146913 1.019611 0.006569 i
i 0.2 0.093684 1.004998 0.003149
| 0.1 0.044713 0.989452 0.000845
L 00 | 0.000000 0.972928 0.000000 |




16 Ann. Acad. Sci. Fennice A. I. 560

Table 2 and the corresponding graph indicate that ¢ + R <0 for
ay €[— 2(1 — b;), 2(1 — b;)] with the equality exactly for a, = 0. Thus

(44) ay, = 33— (1 —b}) for b, €[0.53857, 1].
In the case 1° we compare the estimates to the value
3 (1 — b)) + max Q(ay)
ay €10, 2(1 — by)]

(1 — 1) + QF (¢ — 9by))
2(1—b}) + 3, (4 — 9b)° > 1.579985

w\lo wiw

for b, = 0.15969 . Connecting this to our former results in [2] we get:

4 — 20b, - 3067 — 14b7, for b, € (0,7

(45) ay = { s
(I —53) + 15 (4 — 9b,)° for b, 6[11,010969]

ooy

Thus, the interval of b, has been somewhat extended from 0.12, reached
in [2] by aid of the inequality |a, — a,] = 2, which was able to exclude
negative «, so fal as a; = 2. Also in the case 2° the interval of b, is
extended from 19 to 0.53857.

The COllSldelatlona of [7] for the extremum function continue to hold
in the case 2°, also on the extended interval. In the case 1° for b, € (0, {]
the left radial slit mapping is the only possible extremum case. The remain-
ing interval (i, 0.15969] is to be treated separately.

Let g be the generating function of Pj-inequality (cf. [4]) and f ex-
tremal in the above sence. The development of ¢(f(z)), according to part
1, necessarily obtains the form

3 3
(46) 9(f(2)) = Zg o f*(2) = ZS Y
Further, the results of part 1 have shown that x_, = — &, and, especially,
Ty =2%_,=1a,=0,
l 3/2
3 1

I
P
]lod1 (ulJ—a?)

Because equality in (45) is attained for a, = % (4 — 9b) > 0,v = v,,
we have from (36)

(47) Uy = Ay
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and therefore
o =35,
From the condition » = v, we obtain further
a; — 3 a3 + ba, = 2(1 — b))a, — a*;
a; = —+a; + (2 — 3b)a, .

Collect the numbers governing the necessary extremum condition (46),
resulting from the above formulaes:

“2:%(4‘_%1),
a3=f§(4——9b1)(5—6b]),

ay =3 (1= b)) + 17 (4 — 9,)°;
x, =857 (4 — 90,

x2:03

x3=%‘b§/2,

,“’1:“2,

Uy =0,

Uy = 1

From these formulaes we decide further in view of part 1 and [4]:

Yos=—3%,

Y_.=0,

Y= —a,=— %4 —9%,),
Yo=0;

=
I

(@ — §03) + 305 + § (4 — 9b)

(4’ - gbl) 5

I

<
(&)
I
ESTOCR T e S TS

13 .3 4 1 33
4 — Oy + 51 @ + 5 (03 — 5 as)

2
1 (4 —9)ay, + 30, =% .

<
w
[
> 2

+

Hence, (46) gives for f

@, f7 + xlflﬂ +a  f7 4 x_yf 7 = Y2 4 yi2'? + Yoz P4 y_ 2
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pe =D+ @4 —=38R)f+1] (—1)[F+ 4 —37)r+1]
1 372 = 372 >
(45) d )
61, — 24 0
.R—————71)1———,T=7(4b1—1).

Here R=1r -+ 1fr, r€[—1,0),7 = 2cos ¢, where
flet) = r
is the branch point of the forked slit in f(U) .
In order to determine f(U) we will split the mapping into two parts.
First, consider the two-parametric family

— 2 i _ 5
(49) g =1 (ff&fz f+1n =0 (223/—2[_ k1)

where & and a are real, a € (0,1]. If here f(¢*%) = Me'®, we get for
the parametric presentation

O = D(p),
(50) { (9)
M = M(y),
the conditions
(51)
(\/ﬁ ﬁl——) d)[M'ill 4(M ! 1)‘29]
A—X/JT[ cos 5 o T 0— +M+ sin’ 2}:0,
3;’2(\/_21_I1 __1__) : g{ M _1_ 10 4(M i 1) 22}
a T«\/_]T[SIHZ_ —M—l— + —I—M—— cos® 5
=2sin%(2cos<p—l—k).

The first condition implies two alternatives.

1) (\/ﬂ—\/lj)cosgizo;

M=1 or D==x.

The part of the boundary 8f(U) got from this is a radial-slit-figure. At
the end point of the radial slit

g =7,

la3/2(\/ﬂ7+—\/17_[)(10—M—%):2(k—2).

(52)
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Figure 5.
2)
) L, P 1 MR I0M 41
(53) S R T

In Figure 5 there is the graph of (53).

The conditions (51) determine the parametric presentation (50) of the
slits. The form of these conditions shows that at the end points f(e") of
the slits there holds

d | )

&;lQSmE(Qcosqp—l—k)Jzo;
Y L A

cos 9 (1 Ty — 6 sin’ 2) = 0.

For the radial slit ¢ = & and for the curved slits

kL2

12

(54) sin LA l

5 — (— 2 =k<10).

-

The boundary of the image domain belonging to (49) is finally of the type
presented in Figure 6.

Figure 6.
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We can now show that every mapping (48) is obtained by combining
a defined mapping of the family (49) to a left radial-slit mapping. For
fixed b, choose

h=4—387, —2<7=2, —2=Lk<10.

Take a as a new parameter and apply the radial-slit mapping
(55) —(f+?.-2>=f+—~_2, <1.

~ 1
Now, eliminate f - — from (55) and

(56) el (J;_ 1) (}2 + 10}‘}‘ 1) _ (z — 1) [22 + (4 — 37)z + 1]

The result is

a
- (f— l)lfz+ (12b—1 — 2)f+ 1} o D[4 (4 302 1]
1 f?,;z - 2302 .

This is to be identified with (48):

12 —2=4—3R;

AR [E

b,
a 2—R

<1 for R= — 2.

We thus proved: The mapping belonging to (48) can be constructed as
follows. _
1) The starting function f is determined by taking in the family

b F=D(PEH1f+1) =1 E k)
(57) a” f“ = 32

o

k=4— 37, o= -
(58)
P —1), R

2) The function f sought is obtained by aid of the left radial-slit
mapping
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f 3 \

f
(59)
o @
i

7

Figure 7.

by

1
p —

~ 1
59 < + 2) —fd = —2.
(59) F+3 f 7
The result is a three-fork mapping (Figure 7).
b, diminishing, the curved parts of the fork shrink towards a point.
We will determine the end situation by requiring that the end points of

the curved slits lie at f~: — 1. (54) and (58) give for e
e e
et —e "—:%sinfg,
) » k— 4
ip —i R
e e 5
60 . T . /,/;” 72
(60) ¢ =5 ki 1/ -

Write (57) in the form

(Frg=lie g <fes-ger 3o
a f+:f:—2 f+7T10 == z+;—2 z—{-—z—rk

and substitute in it z = ¢ from (60) and f = — 1. This gives

(61) (t— 2P+ 8% =0.
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Express ¢ and 7 in b, according to (58) and substitute in (61). This

gives for b,
(24 — 47b1)3 <23 — 36bl)3
82 — .
28 7 ’

Hence: At the point b, = ;i the three-fork mapping is reduced to
the radial-slit mapping.
The three-fork mapping is limited to the other direction by the condition

b =

The limit case b, = % gives actually the mapping (57) for a = b,
73

k= %% . Our method allows utilizing the three-fork mapping as an
extremal case up to b; = 0.15969.

4. Comparison to Schiffer’s equation

Observe that the equation (48) is got by integrating Schiffer’s dif-
ferential equation for the three-slit case, called 1:3 in [2]. The general
form of Schiffer’s differential equation for functions f € S(b,) , maximizing
@y = |a,} = Rea, , utilized in [2] for Sg(b,)-functions, is

(62) < %) [ 1= 1.
b 3bb,  2b, - b3

Li=p T p 77y
+ (2by + bi@)f + 3b,byf? + bif,

-7‘(14‘—).

204 3ag

1
AER.

~ + da, - A+ Baz + 2d,2% + 22,

It is useful to consider more closely the similarities which hold between
Schiffer’s equation and the necessary condition got from Ps-inequality
by requiring that equality necessarily holds for the a,-conditions.
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The Pj-inequality is derived by applying Green’s identity to the generat-
ing function (2’ indicates that the index omits the number 0)

N
(63) Sflw) == aylog w + Z’ a0k
-~ N
giving the development
9(f(z)) = x,log z + Z i

(cf. [4]). Equality in the a,-condition is possible only if y, = y5; = ... = 0.
Thus, if the Pj-inequality is able to give an exact upper bound for «,,
the extremum function f satisfies necessarily the condition

3 3

2 log V f2) + S a, V fi) = S gt

-3 -3
or

x 3 5 )
EO log f(z) + Zs' G f@) =y

—3

Differentiate with respect to z:

o 1 3 k k2 — ’ $ k kj2—1
[%f- +_23§xkf'd }f:_zg‘z“?/kz/“ ;
&[ : k/2J _ [3 k‘2| .
(64) 2 12) Zy +_23kxkf L 'ékykzlh 3

2

2

(65) (Z J;((—:))) {xo + ékxkf kﬂ} = {i kykzk’aJ

1

The form of the equation (65) is comparable to the condition (62) if
By =@ =2 =0.

Further, compare the expressions [ ]; and

[ ]i = 9xi3f_3 + 63’/'_390_1]0_2 + (1'2-1 - 69"_35’/'_.1).)0~l
— 2wz, - 18x_qw,) + (xf — b6 _xy) f -+ lex.‘sfz + 9x§f3 .

Similarity requires first that 9%, = 927 = 6% ;
(66) X_3 = — Xy = — Iy = — % b",“

and secondly that 6a o | = 3bb,, 6aa, = 3b0, ie.
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(67) W= — &y == — 5 b, .

Observe that this direct comparison givestor @_,, ,; @_;, 3 exactly
the values true for optimized Pj-inequality (cf. 10)) and imply the sym-
metric choice (9). The freedom (36) of u, does not come out from the
comparison. Finally, in the maximum case %, = a, and the first formula
(10) is reduced to (67) in this case.

The above example shows that in order to make an inequality of Grunsky
type successful we have 1) to choose the generating function g so that it
agrees with the integrated left side of Schiffer’s differential equation; 2) to
optimize the parameters x, by minimizing the right side of the inequality.

This leads further to the following conclusions:

1) a,, and b, close to 0. The P-inequality has every opportunity of
being successful, provided that the numbers corresponding to the above
v are governed by aid of lower P-conditions. In this connection the un-
symmetric choice of x,:s might be useful (cf. derivation of (16)). — The
same hold in general for «, and b, close to 1.

2) For all a, (n = 4) there is an interval of b, between 0 and 1 where
we have no proper inequality with ¢ fitting with Schiffer’s differential
equation. — The same holds for a,,,, and b, closeto 0 (n =2,3,...).
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