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Introduction

A representation formula for normalized quasiconformal homeomor-
phisms / of the plane whose complex dilatation p has bounded support
provides an efficient tool for studying the dependence of f(z) on p. If
p depends analytically on a complex parameter, then the same is also
true of /(z) . llaking use of this result and resorting to fundamental theo-
rems of the classical theory of analytic functions, Lehto [7] presented a
general inequalitl- rrhich provides a method for studying the properties
of normalized univalent functions with quasiconformal extensions.

Another approach to these problems is based on yariational techniques
introduced by Belinskii pl and Scliiffer [11]. Such methocls have later
been used by Kru§kal [5]. Iiiihnau [6]. ancl Schiffer and Schober ll2l for
solving a varietv of extrernal problems.

We also mention the ryork of Blevins [2] who studied conformal homeo-
morphisms mapping the unit disc onto domains bounded by quasicon-
formal circles.

In this paper we study the class of conformal homeomorphisms / of
the unit disc which are normalized by the conditions /i0) : 0 , ,f'(0) : I ,

and have /c-quasiconformal extensions to the whole plane such that the
point at infinity remains fixed.

After some preliminary remarks in section I, we summarize Lehto's
results in sections 2 and 3. fn section 4 we apply the general inequalities
and obtain estimates for lf@l and lf"(z)lf'@)1. The latter es imate is
needed. in section 5 where we study the power series coefficients a, of f .

Modifying a method of Clunie and Pommerenke [3] we obtain an upper
bound for la"l in terms of n and lc .

1. The families § and Su(oo)

L.l. Definiti,ons. Let § be the class of functions f that are anal5rtic
and univalent in the unit disc D: {zl lzl< l} with the normalization

"f(0) 
:0, .f'(0) : 1. We denote by &(oo) the class of fr-quasiconformal

homeomorphisms / of the extended plane whose restrictions to D are
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in B and which leave oo fixed. The fu-quasiconformality means that / is

a homeomorphic -L2-solution of a Beltrami differential equation fz: #f,,
rvhere the complex dilatation p satisfies the condition ll,"ll* < k < L .

Conversely, from the existence and uniqueness theorems for the Bel-

trami equation it follows that a measurable function p whose support

lies in. lzl 2 t and which has the property ll,"ll* < k determines uniquely
the element of §r(oo) whose complex dilatation agrees a.e. with pr . In
particular, §o(m) consists of the identitv mapping onl;r.

1.2. Ayrytrorimation of functi,ons of § by functions o/ ,Sn(co). The

union of the classes §l(*) :{flD l/€ §*(co)} is clense in the class §, i.e.,

every / € § can be approximated by functions /, belonging to some

§i(*) . This is seen as follows: Let {r,} , rnl r, be a sequence of numbers

with limr,:1, andset f,(z):f(r*z)lr^ for zeD. Thene'ver5'/"
admits a quasiconformal extension g. to the rest of the plane, since the
image of the unit circle uncler /, is an analvtic ctlrYe. Suppose that 9n

takes the value oo at the point z, . Let h, be a quasiconformal self-

mapping of the outside of the unit clisc rvhich carries r into the poirlt
zn antd. keeps every boundary pointfixecl. Theu g,"I, is a quasiconfortnal

extension of /" which keeps oo fixed. Clearll' lirn /,(z) : f(") in D .

1.3. §e(col 'i,s a closed,normalfami,ly. Every &(.o), 0(ft<1 l, is

a normal family. To prove this, let zo * 0 be a point in the unit clisc'

By the well-knov,n distortion theorem we have fbr each /e &(*)

Hence, there is a constant r/ > 0 , clepencling on zo but, not on f , such

thatthepoints/(0) :0, f(-) :.o, ancl /(:o) havea sphericaldistance

) d from each other. It follorrs that §o(:c) is a uormal famil-v (19], Theo-

rem II.5.1).
Moreover, §o(.o) is closed uncler uniform conselgence in the spherical

metric. fndeed, if / is the uniform limit of a secluetlce /, € §*(oo), then

/ is either a k-quasiconformal mapping, a mapping of the plane onto trvo

points, or a constant (19], Theorem II.ö.3). Since for each rz , the function

/" takes the values 0 and. oo , and satisfies /;(0) : I , the limit function
can be neither a constant nor a mapping onto tu-o points.

As a consequence, the functions / in &(.c) are uniformly bounded
on eyery compact subset E of bhe finite plane. For if not,, there is a se-

quence of functions /" e &(*) and points z" e E, such that lim zo : a,Q E,
lim /" :/e §*(oo) , and

ryir
1"0I t
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(l.l) lim f,(z^): oo .

Being a normal family, §u(m) is equicontinnous. Therefore, lim f"(z^) -
l@) , which contradicts (1.1).

In particular,

Cr: sup (max lf@l)
/€ §k(@) lzl < r

is finite. fn section 4 we shall give an upper estimate for Ce.

2. Analytic corresponilence

In this section we shall review results of the dependence of a quasi-
conformal mapping on its complex dilatation. For technical reasons, we
prefer to consider for a moment a class of quasiconformal mappings whose
complex dilatation has bounded support.

2.1. Class »k anil representation formula. Let »h denote the class
of quasiconformal homeomorphisms / of the extended plane which have
complex dilatation p with ilpll* < lc < l, &re conformal in

D'(-{zllzl>l},
and satisfy the normalization condition

(2.1) lim (/(z) - z) :0 .

By a result of Bojarski ([9], p. 218), a function f e 21, ca:n be expressed
in terms of l, ,

(2.2) f(,):"+2rö,(,).
Here the functions $, arerfefinecl Ot,rlrt"urrs of the tu-o-dimensional Hilbert
transformation § i $r: lr, ö,: pSil_r, i:2, 3,. . ., and

r4,@):-+ll*dEd,t.
@

The series Z för@) is uniformly convergent in the whole plane.

Z.Z. O"g"*aence of Ie E* on its oomgtler d,i,latation. Suppose that every
point ru of a finite domain G determines a unique measurable function
p( , w) in the plane which has the support in l"l < I and satisfies
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ll,rz( ,tp)ll-< l.
X'or each p( , w) there is a unique quasiconformal homeomorphism f( , w)

of the plane which has complex dilatation equal to P{ ,w) a'e', and t'he

normalization (2.1). Thus, for every fixed finite z , w->f(z,r'u) is a com-

plexvaluedfunctionin G' Let f(z,w):z+»b^(w)z-" for ze D*'
and let 1@l @ ,zu) denote the value of the ,nth derivatir.e of the function

f( , *) at the point z € Ds . IJsing (2.2) Lehto [7] proved the following

result.

Theorem 2.1. Let p(z , ) be analyt'ic in G for eaery z ' Then the

funct'i,on w+f(z,w) is analyti,c 'i,n G for euery ftnite z ' Moreouer,

the functions w',->f(")(z,w) , n - | ,2,. . ., ze D* , and, wt->b,(w) ,

n:!,2,...rare analYti'c i,n, G"

2.3. Depend,ence of f eS1"(a) on its com,pler d,ilatati'on' Theorem 2'l
can easily be carried over to functions of §o( oo) . To do this, consider

a family of complex dilatations p( , w) which are defined as before ex-

cept that they have support outside the unit disc D . Again it follorvs

from the existence ancl uniqueness theorems for the Beltrami equation

that for each p,( , rLt) there is a unique quasiconformal homeomorphism

f( , *) of the plane which has complex clilatation p( , w) a'e', a po\\-er

series expansion

f@,*): z *2ra^(w)2"

in lzi < I , and which fixes the point, at infinity.

Theorem 2,2. If p(2, ) is analyti,c'i,n a d,oma'i'n G for eaery z , then'

the functi,on w+f(z,w) is analyti,c in G for euery fi'ni'te z ' Further-

more, the functi,ons u;r->f(")(z,u) , n - 1,2,..., are analytic itt G

foreaery zeD.
Proof: Consider the function ?( , «') , clefinecl br'

I

y(z , ut) : f,k; - n,(rt') .

which is quasiconformal in ttre plane, conformal in Dx. ancl satisfies the

normalization condition (2.1). If 7 is the complex dilatation of 9, then

a(z,w): (zl|)zp(llz,w). Hence, u'e first conclude from Theorem 2'l

that the function ar: y(0 , ) is analvtic in G . From Theorem 2.)

it then follows that the functions w=>f(z,w): ('p\l",w) - ar(w))-r

atod wr>I@) @,w) are anal5rtic in G . The coefficients 4, , ?L : 3,4, " ' ."

are analytic in G , since a^: f(")70 , )lnt .
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3. General inequalities

3.1. Analyt'ic functionals. Let f be a function of § . We define an

analytic functional { on § to be a complex-valued function which de-

pends analytically on finitely many power series coefficients of f , and
on the values of ./ and its derivatives /(&), k : 1,2, . . .,%, at finitely
many given points. An analytic functional is continuous, i.e., lim ö(f") :ö$)
whenever / is the uniform limit of the functions ,f, on compact subsets

of the unit disc.
An analytic functional { defined on § is defined or1 eYery class §i( co)

(see r.2); to simplify notation we write &(oo) instead of Sl(*) in the
rest of the paper. Since { is continuous, and § and §o( oo) are closed

normal families, there are functions which maximize ,ö(l)l in &(oo)
and §. We set

,r(*) :rl.lix .tö(f) ,

and denote by M(t) the maximum of i{(/)1 in ,S. Then .LI is a non-
decreasing function on the closed interval [0,1].

3.2. Continuity of M . The function -4y' is continuous on [0,1]. To
prove this, choose an arbitrary ko, 0< k0< 1. Because M is non-
decreasing, the left and right limits lim_ M(k) and ,lim Jr'(ft) exist,

and

(3.1) rim M(k) < M(ki, lim M@) >. M(ki .

h+ko- Ir+ko+

Suppose first that k I ko . Let fo be ext'remal in §1,(oo) , with com-
plex dilatation p . Cousider the functions /e s'ith complex dilatation
kpllto,0<k( Ä'0, sonormalizeclthat Å€So(rc) . Since {l;} isanormal
family,thereisasequence Ä'i. i:1,2, , sothat limk,:ft0 and
the mappings ,/0, converge uniformlv (in the spherical metric) to a limit
mapping g . Then the mapping g has complex dilatation p a.e. ([9],
Theorem IV.5.2). Hence, because of normalization g:fo. From the
continuity of { it follows thab ö(fu) * $ffn . Consequently,

!**tr,l ) lim ',öffr,)'i: ld(/.)l : M(k,) .

In conjunction with the first inequality (3.1) this shows that

Ic-+Ico:-
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i.e., M is continuous to the left at ko.
Suppose next that lc ) ko. Leb fy now denote the extremal mapping

in &( oo) . Again, there is a sequence k,, ,i:1,2,..., sothat
lim k, : fro and the mappings /0. converge uniformlv to a limit g . Then,

by Theorem I.5.2 in [9], the maximal dilatar,ion of g is not greater than
the limit of the maximal rlilatations of f1"r. Consequently, g € &.( m) .

It follows that

inequalit;, (3.1) this yields lim IVI(k) - M(kn) ,
k-_+ko*

i.e., M is continuous to the right at fro .

Continuity to the right at 0 is proved similarl5-. Finally, let / be ex-
tremal in §, and f"(z):/((I - tl") z)lQ - tln). Then /" admits a

quasiconformal extension so that the extended mapping is in a class Sn,( rc) ,

where k, tends increasingly to L Since f"(z) ---> f(z) , uniformlf in every
compact subset of the unit disc, ö(f") - ö(f) . Hence,

M(t): Id(fl| : lim l{(/")l ( lim tl(k"),
and left continuity at I follows. "-' 

n+6

3.3. Majorant princi,ple. The following inequality, which has wide
opplications in transferring many of the results known to hold for uni-
valent functions to the classes §*( oo) and. .Xo , k < I , is due to Lehto.l

lim M(k,)
i=> co

Together with the second

Theorem 3.1. Let +
aan'ishes fo, the i,dentity

( 3.2)

If equality holds in
holds for all values of
then all dilatations Lo lt
we refer to L7l.

be e,tl ancr,lyt ic functio?tul clef in ecl o?L

?nclpping. Then

(3.2) for one value of k, 0< k<
k , arlcl if ,Lr is ar1 extrernal conlplex
, atr ( I/ !.r, are extreltlal. For

^S , ultich

I , then it
clilatation,
the proofs

3.4. Reml pert ,f an anctlytic fwtctio?Lal. An
is obtained if one considers R. d instead of ö
Iems max R. d ff) , min R" dff) have solutions
consider the minimum, and write

analogue of Theorem 3.1

Again, the extremal prob-
in §o( .o) . We shall first

1 Oommunicated in the Complex Analysis Seminar at Case Western Reserve
University in 1971.
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nx(k) : min Re {(/) .

"f e s61oy

The following theorem is due to Lehto (unpublished). We denote

rru(t) : min Re {(/) and za(0) : Re {(id) .

-/e s

Theorem 3.2. Let ö be an analyti,c functional d,efi,ned, on S . Then

for euery /e S*(co)

2k 2k
(3.3) r +k(m(t)-nx(o)) 

< Redff) -nx(o) ! t_*@(0)-m(r)).

Proof:Let f beanarbitrarymappingin §n(o) , 0<fu< l, and

tt its complex dilatation. Consider the subclass of § whose functions

are restrictions to D of quasiconformal homeomorphisms f of the plane
with the complex^dilatation wp, where lwl< tlk. By Theorem 2.2,

the functional $(f) depends analytically on w in the clisc Jni < llk .

Therefore, u:Re S(1 is harmonic in 'u'.a tlk. Applf ing Poisson's

formula fot lwl ( g { l/k rve have

:l.z

I f o2-t'2
u(u') - m(t) : ; I ;; _fr (u(q"'') - m(I)) d0 ,

where lwl:r< p. Since u-m(l) is non-negative and

a-r a2-r2 o*r(3.4) n*;=a,_;r<o_t,
this yields the upper estimate

).r

L o-t f
u(w) - »r(l) ( ,, , _, J (u(Q"'") - m(t))d,0 .

The arithmetic mean of u(Qe'") - nn(l) over the interval 0 10 { 2n

equals u(0) - ttt(l) : nx(O) - nn(I) , and it follows that

o4-r
(3.5) u(w) - nx(L) <-_ ,(m(0) - nx(L)) .

Letting g tend to Llk and.r"urrJogirrg the terms, we obtain

2rk
(3.6) u(w) - ru(o) < i _rk(m(o) -rru(t)).

Zsnnir.i- Göxr:tinx
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Taking 'u) I we have ,m(L) 
- Re

follows from (3.6). Similarly, using
tain the lower estimate in (3.3).

right-hand side of (3.3)
inequality (3.4), wo ob-

ö(f), and the
the left-hand

Remarlc. Since the inequalilies (3.3) hold for every function /e &(oo)
it follows that

Denoting by M^(k) the maximum of Red i" &(oo), we also conclude
that

(3.7)

(3.8)

(3.e)

(3.1 1)

rk2k
Yrb(k) =r+=YtL(0) + t+nnL(L)

I+k 2k

I _i- kiui
L(zr') < r - k?J

3.5. Equalitg in the estimates. Let us assume that equality holds in
(3.8) [or in (3.7)] for one value of ] , 0 < Ä'< I . Then it holds for all
values of lc , and if p is an extremal complex dilatation, then all dilata-
tions wp, with O< w < Ullpll- are extremal. To prove this, suppose
that(3.8)holdsasanequalityfora lc, 0< k( l; let /6 betheextremal
function and po its complex dilatation. X'or functions with complex dila-
tation wryo, lwl< llk, the Poisson formula yields the inequality (3.5).
X'or brevity, let us write U(*) : (u(w) - m,(t))l(m(o) - m(t)). Thus,
letting g tend to llk in (3.5) we obtain

Because U(r) -(1IR(k) tn(r))'(nz(0) /7r(l)) ,

(3.8) that
\\-e conclude from

cly(0) .

to an additive con-
U(0) :l,wohave

1 -.i- k
(3. r 0) 1k

Since U is a non-negative harmonic function in t.lc'<- lllc, \ye c&n
*pply the Poisson-Stieltjes fonnula to t- . the iutegral being extended
along the boundary lwl: tlk, For u' : reiq g-e get

I k2r2

tl(t) -

LI (r,:) I + kzrz - 2kr cos (0 V)

Here 1p is a non-decreasirg function determined rlp
stant. We normalize V so that V? n) - 0 . Since

:*I
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*n

I drp(O):2n(lL}), pp. l9l-20r). Comparison of (3.10)and (3.11) gives

u(r) : * I', +i# ** d'tp(o) : 
=rSince the function

L-lcz0'>raAz_ zncos|

is continuous on the interval l-w , n) and strictly less than (t + k)l$ - k)
for 0 + 0 , it follows that the function g must be of the form

I0 for -n<0<0,v@):izn for o,-o.-n.
Ilence, again from (3.f I), it follows that

I - kzr2 lt + ttwl
u(w) : 

1 - 76zrz - 21r, "* r: 
R" 

L, - l.r] .

Thus for every zu ) 0 ,

(3.r2) u(w):=yr*

If k'e [0,1] is arbitrarily given, then for w: k'llc the function / is in
&.("o) . From (3.I2) we conclude that (3.8) holds as an equality with
ft replaced by k' . T}re function / is extremal in §n. (oo) and wpo is the
extremal complex dilatation.

4. Maximum modulus estimates

4.I. Estimates for l/l . Making use of Theorem 3.2 we shall first give
estimates for lf(z)l in the case when /€&(co) and z lies in the closure
of the unit disc. fn what follows, K : (t + k)l$ - k) 

"

Theorem 4.1. Let f e So( a) . Then for lzl : r < t

(4.1) r(L | \z(ttK-t) < V@)l < r(t + r)2(x-r) .

Proof: For z fixed, ö(f):log(f(z)lz) is an analytic functional, and
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Re d(/) : log I f@)lzl , Re {(r;d) : 0 . From the theory of univalent

functions it is well-known that

I
tn(r) : 

?.tt 
*" ö(f) : tos 

11 1 ,y, .

Thus, (4.1) follows directly from Theorem 3.2.

Remark. Application of Theorem 3.1 to the functional ö(f):log(f(z)lz)
yields the upper bound

t
'f(z) < (r _1.;:r.

For small values of r this is sharper than the upper estimate in (a.l).

Letting r tend to l, rve obtain from (4.I) simple upper and lower

bounds for l/(z)l on the unit circle'

Corollary 4.1. If f e Sr( a) , then for z : I

(4.2)

(4.3) f(r)-

For k : 0, the lower and upper bound both take the value l' As

k --- L , the lolrer bound tends to the sharp limit 1/a. tr'or further discus-

sion of (4.2),let us introduce the modified Koebe functions

a

G + kei;^i if izl < t )

z2

(l/ Z -: kei" \ :)l

Direct computation shot's that /€ So(:c) . For this functiou

I

lniu /(:l 
: (t _J12.

It follows that the loryer bound 4r,'r-I in (a.2) cannot be replaced by
4-h .

Let us again consider C, : suP (max /(z) ) , for v'hich Corollary 4'1
,f€SI'(-) ' 3r

yields the upper bound Cu I 4*-t. The function (a.3) tells us also

that C*> (l - tt)-'. It is an interesting open problem to determine

the exact value of C6.
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4.2. Estimates for lf'lf'l . We shall use the following consequence of
Theorem 3.I later in estimating the coefficients of the functions / € §u( oo) .

15

Proof: Consider the analytic functional ö(f) : f"(z)lf'@) , ze D ,

which vanishes for the identity mapping. In ,S

lf"@)l r * Z

lf'@l" r-,'
([4], p. 50). Hence (4.4) follows from the inequality (3.2).

This estimate is sharp for z: 0 , equality holding for the functions
(4.3).

For our applications u,e need (4.4) rvhen r is close to l. We shall show
that this estimate is essentialll- sharp in the sense that for every k > 0
there is a function 

"f 
€ §*( co) ancl a boundarv point ei, so that

(4.4)

(4.5)

I

f-'\1) -, rr t^ T + 2

f '(r) I 
> att I -- r'z'

' 
f " (rei-'\

lytt r')1"ff1j =0.
To construct a mapping for which (a.5) holds we map the unit disc by
zr-> (l t z)l$ - z) onto the right half-plane Re f > 0. We note that
the desired function / must have singularity on lzl: I since f"(z)lf'@)
must tend to co as r --> I . Therefore, we map Re 6 > 0 onto the angular
domain larg(o + rl\ + zk))l { n(r + k)12 by the function

a(c) : (*+, - t)12(t + k) ,

which has the fr-quasiconformal extension ar(() : [4(- 4h - \12(L + k) .

It a(f(oo)) : o6 , then this function is transformed into the class &("o)
by the Möbius transformation hQo) : cooaf Qon - o) . In the unit disc
the function f : hoaoi, lvhich is in §u( cc) . has the expression

f(r): (1 + k) t(l + tu) (1 * z)I-rlc - k(L 4t+il
Hence

so that
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5.2" Mean ualue estinta,te fo, f ' ,'
lish the followirg lemma.

Lemma 5.1. If f e

\\'e fincl it convellient first to estab-

r'( I

ci
T-7

5. Coefficient estimates

5.1. Prelim'inarg remarlcs. Let f be a function in §n(co) . Then the
area of the image of the unit disc uncler the mapping ,f i. at most nC!".

It follows that

This yields the estimate

(5.1)

For bounded univalent functions it rvas shorvn b5' Clunie and Pom-

merenke [3] that the estimate ,a,1, : O(n'") is not the best possible.

Application of the inequality (3.2)to the functional ö(f) : do, rvhich

vanishes for the identity mapping, gives the estimate

max la"l < k max la"lsr(*) s

This inequality is sharp only if n : 2 ([8], Corollary 4.2)' Since

max la^l ) n , this estimate becomes very inaccurate for large values

of n , in view of (5.I).
fn the present section u'e shall estimate the coefficients of the functions

in &( oo) . It turns out that the existence of a /c-quasiconformal extension
not only gives a /c-contraction to the coefficient estimate but has a marked
effect on the order of rnaguitucle: ct,, 1k Aott-r 1-r(rt) , lrrhere Ak is

finite for every k< | and .(Ä') clecreases from l;2 to a value ) 0 as

å grows from 0 to l.

>
I

(5.2)

(5.3)

Proof: An easy

I
2"

So( *). then fo,
2:t

r

computation gives

%'ifrni' < Ci
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' , i' lf 'lrn'")l' do: 
å 

r*lanlzrzn*z(5"4) fi

V[e set nla^l'- bn , 

oor- 

I . Then

@@

lnl*"|' 
:2u"< Ci.

Consider the analytic function V@):ZUO" in the unit disc lzl< 1.

Then lV@)l < C'r for Pl < l. From a'"n*u"r'. Lemma it follows that

tE,@)t <ci - tq?ifPi 
= -g-| 

- la) L -- ..4.

Ifence, for z: r

lv,@)l: i r,b^r^', =$
Replacing r by rz we obtain

@@C?
) nbnr'"-' : 2', n'la^l'r2o-z < ,+,

and (5.3) follows'f.o* 1s.+1. 

I

5.3. Mearu aalwe est'i,mate for lf'l . The proof of the follolving lemma
is carried out by the method of Clunie and Pommerenke [3], rvith the dif-
ference that Theorem 4.2 is taken into consideration.

Lemma 5.2. Il f e Su(a) , th,en for r< |

,i-
(5.5) GJ ll'V"")ld| < G -{- C*) (i - 7')-ttz+a1*1 ,

where a(k) : ,1r'- ,r1rt t + 64k - 8k) .

Proof: Let, ö >0, By Schwarz's inequality

(5.6) r(r) : ([ V,V,"lf*, d0)' 3 f tf,t "'\fdr I ff,@et)12öd,0 .

00

To estimate the last integral in (5.6) we write
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öo

Then

r(r):i I tr v,'\rut' do-,å,, c^t'r'n

Direct caleulation gi

dr z 7t d l2

t,,(r) <4 Z,*,lt*l,r'*-'-; J | *lf'(rr'"))ul do

By Theorem 1.2,,

Henee

(5.7)

Bv Lemma 5.L,

Combining this with the precedirg inequality we get

fntegrating by parts rve obtain

Dropping the last trvo negatir-e terms aucl clir.icling b1- I(r) we deduce

F' (r) 61ö2k2

cl-

rpz
J if'vr'u) ,'do = å

From the inequalities (5.6) and (5.7) it thus follows that



Znnnix Gör<runr< 19

"i

Fora, p>0, r;

Then by ,u 
:,
å -'r

{ 
lf'(rr'o)tdo : 

{, 
lf 'vn") I da . 

{ 
v'vr") | do

r

ilt - t6 I lf '(,"r"')l < (l - r)- 1]j 
t

Ez - {0 I lf'(rr")i > (1 D-§} .

The choiee § r-: §0.- (l + 64ö2k2)12(L r ä) gives

X'inally,inordertominimize Bs wetake d- - t+t/t+UWlslt,
and (5.5) follows.

s.E. An esti,mate for a". Using the above lemma and once more Theo-
rem 4.2, we now obtain an estimate for an .

Theorem 5.7. Let /€ §u(oc) . Then

(5.9) a, 1kA1;n-1'2-a(") ,

where Alo:4e(I * C) and, a(k) is ilefi,ned' as in Lem'ma 5.2.

Proof: Applying the Cauchy integral formula to f" rre get

2n1r
n(n - l)la"l (,"*=J ll,,?et )1d,0, r< T .

0

From Theorem 4.2 and Lemma 5.2 it follows, therefore, that

r+c,
n(n - 1) la"l < +* --;7:g - r)-\tz+d(h) .



20 Ann. Acad. Sci. Fennicte A. r. 589

Taking r:l-lln, we obtain

I n \'-t
la,l 14k\;-) Q I cu)n-tt2-u(k) ,

and (5.9) follows.
As k -> 0 , the exponent Il2 | a(k) tends to I. This order of magni-

tude cannot be improved in the sense that an estimate of the form (5.9)

with an exponent tending to a limit > I as lc --> 0 is not, possible. A counter-

example is provided. by the function / defined by

This function belongs to §6(oo) , and la.l : zkl$ - ?D) ([8])'

5.5. Esti,mates of Clunie und, Pom,merenke. Leb f € § and assume that

lf(z)l < II . For lzl < | write l*@) :/((I - tlm)z)l(r - rl*),
m:2,3,....We showed in 1.2 hhat f* admits a quasiconformal

extension so that the extended mapping belongs to a class s*( .o) for

some k< l. By Sch'watz's Lemma, /((l - llm)z) i < lV(l - Il*) in

lrl<1. Hence lf^@)y<lI .If n-etake Cx:lI and k:t in(5'9),
then the inequalit5' holds for the nth coefficient of f* for eYety rn ' There-

fore, it also holds for the coefficient an of ,f , and u'e obtain

la^', l ae$ | M1n-$!z-tl;ri1 .

Essentially, this is the estimate of Clunie and Pommerenke l3l for bounded

functions.

f(r) - {
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