ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

589

ESTIMATES FOR UNIVALENT FUNCTIONS WITH
(QUASICONFORMAL EXTENSIONS

BY

ZERRIN GOKTURK

HELSINKI 1974
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1975.589



koskenoj
Typewritten text
doi:10.5186/aasfm.1975.589


Copyright © 1974 by
Academia Scientiarum Fennica
ISSN 0066-1953
ISBN 951-41-0203-7

Communicated 18 June 1974 by OLLI LEHTO

KESKUSKIRJAPAINO
HELSINKI 1974



Acknowledgements

I wish to express my deep gratitude to my teacher, Professor OLLI
Lenro, for his supervision of my thesis and his valuable advice and kind
encouragement during the period of my study in the United States and
in Finland.

For financial support I am indebted to the Scientific and Technical
Research Council of Turkey and Case Western Reserve University, Cleve-
land, Ohio, U.S.A. .

Helsinki, June 1974
ZERRIN GOKTURK



Introduction

A representation formula for normalized quasiconformal homeomor-
phisms f of the plane whose complex dilatation x has bounded support
provides an efficient tool for studying the dependence of f(z) on u. If
u depends analytically on a complex parameter, then the same is also
true of f(z) . Making use of this result and resorting to fundamental theo-
rems of the classical theory of analytic functions, Lehto [7] presented a
general inequality which provides a method for studying the properties
of normalized univalent functions with quasiconformal extensions.

Another approach to these problems is based on variational techniques
introduced by Belinski: [1] and Schiffer [11]. Such methods have later
been used by Krusgkal [5], Kiithnau [6]. and Schiffer and Schober [12] for
solving a variety of extremal problems.

We also mention the work of Blevins [2] who studied conformal homeo-
morphisms mapping the unit disc onto domains bounded by quasicon-
formal circles.

In this paper we study the class of conformal homeomorphisms f of
the unit disc which are normalized by the conditions f0) = 0, f'(0) =1,
and have k-quasiconformal extensions to the whole plane such that the
point at infinity remains fixed.

After some preliminary remarks in section 1, we summarize Lehto’s
results in sections 2 and 3. In section 4 we apply the general inequalities
and obtain estimates for |f(z)] and |[f"(2)/f’(z)]. The latter es imate is
needed in section 5 where we study the power series coefficients @, of f.
Modifying a method of Clunie and Pommerenke [3| we obtain an upper
bound for |a,] in terms of n and k.

1. The families S and S,()

L.1. Definitions. Let S be the class of functions f that are analytic
and univalent in the unit disc D = {z| |z] < 1} with the normalization
f(0) =0, f(0) =1. We denote by S,(c0) the class of k-quasiconformal
homeomorphisms f of the extended plane whose restrictions to D are
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in § and which leave oo fixed. The k-quasiconformality means that f is
a homeomorphic L?-solution of a Beltrami differential equation f; = uf, .
where the complex dilatation p satisfies the condition [jull, <k<< 1.

Conversely, from the existence and uniqueness theorems for the Bel-
trami equation it follows that a measurable function u whose support
liesin |z| > 1 and which has the property |[lull, <k determines uniquely
the element of S,(c0) whose complex dilatation agrees a.e. with . In
particular, S,(c0) consists of the identity mapping only.

1.2. Approximation of functions of S by functions of Sy{co0). The
union of the classes Sy(c0) = {f|D | f€ S,(cc)} is dense in the class S, i.e.,
every f€S can be approximated by functions f, belonging to some
Si(c0) . This is seen as follows: Let {r,}, r,<< 1, be a sequence of numbers
with lim 7, = 1, and set f.(2) =f(r,2)/r, for z€D. Then every f,
admits a quasiconformal extension ¢, to the rest of the plane, since the
image of the unit circle under f, is an analytic curve. Suppose that g,
takes the value oo at the point z,. Let %, be a quasiconformal self-
mapping of the outside of the unit disc which carries x into the point
z, and keeps every boundary point fixed. Then g,=%, is a quasiconformal
extension of f, which keeps oo fixed. Clearly lim f,(z) = f(z) in D.

1.3. Sy(0) is a closed normal family. Every Sy(0), 0 <k<1, is
a normal family. To prove this, let z, # 0 be a point in the unit disc.
By the well-known distortion theorem we have for each f€ S§,(o0)

Fo = 1.

Hence, there is a constant d > 0, depending on z, but not on f. such
that the points f(0) = 0, f(x) = » , and f(z,) have a spherical distance
> d from each other. It follows that S,(sc) is a normal family ([9], Theo-
rem II.5.1).

Moreover, S,(o) is closed under uniform convergence in the spherical
metric. Indeed, if f is the uniform limit of a sequence f, € Si(o), then
f s either a k-quasiconformal mapping. a mapping of the plane onto two
points, or a constant ([9], Theorem II.5.3). Since for each n , the function
f. takes the values 0 and oo , and satisfies fi(0) = 1, the limit function
can be neither a constant nor a mapping onto two points.

As a consequence, the functions f in S,(sc) are uniformly bounded
on every compact subset E of the finite plane. For if not, there is a se-
quence of functions f, € S,(c0) and points z, € E', such thatlimz, =a € ¥,
lim f, = f € S,(0), and
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(1.1) lim f,(z,) = o .

Being a normal family, S,(c0) is equicontinuous. Therefore, lim f,(z,) =
Sf(a), which contradicts (1.1).
In particular,

C, = sup (max |f(2)])

FeSK) 1+ =1

is finite. In section 4 we shall give an upper estimate for C, .

2. Analytic correspondence

In this section we shall review results of the dependence of a quasi-
conformal mapping on its complex dilatation. For technical reasons, we
prefer to consider for a moment a class of quasiconformal mappings whose
complex dilatation has bounded support.

2.1. Class 2\, and representation formula. Let X, denote the class
of quasiconformal homeomorphisms f of the extended plane which have
complex dilatation x with |ju|, <k< 1, are conformal in

D¥ ={z| 2| > 1},
and satisfy the normalization condition

(2.1) lim (f(z) —2z) = 0.

>0

By a result of Bojarski ([9], p. 218), a function fe X, can be expressed
in terms of u,

(2.2) f(z) =2z + i Té(z) .

Here the functions ¢, are defined by means of the two-dimensional Hilbert
transformation S: ¢, =pu, ¢, =uSé,_,, i =2,3,..., and

The series > T¢,(z) is uniformly convergent in the whole plane.
i=1]

2.2. Dependence of f€ 2, on its complex dilatation. Suppose that every
point w of a finite domain ¢ determines a unique measurable function
u( ,w) in the plane which has the support in |z] < 1 and satisfies
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(s w)lls < 1.

For each u( ,w) there is a unique quasiconformal homeomorphism f( , w)
of the plane which has complex dilatation equal to u( ,w) a.e., and the
normalization (2.1). Thus, for every fixed finite z, w— f(z, w) is a com-
plex valued function in G. Let f(z,w) =2+ 2 b,(w)z"" for z € D*,
and let f® (z,w) denote the value of the nth derivative of the function
f( ,w) at the point z € D*. Using (2.2) Lehto [7] proved the following
result.

Theorem 2.1. Let u(z, ) be analytic in G for every z. Then the
function w > f(z,w) is analytic in G for every finite z.  Moreover,
the functions wrsf"(z,w), n=1,2,...,z€D*, and w—b,(w) ,
n=1,2,...,are analytic in G .

2.3. Dependence of f€Sy() on ils complex dilatation. Theorem 2.1
can easily be carried over to functions of S,(). To do this, consider
a family of complex dilatations u( ,w) which are defined as before ex-
cept that they have support outside the unit disc D . Again it follows
from the existence and uniqueness theorems for the Beltrami equation
that for each u( ,w) there is a unique quasiconformal homeomorphism
f( ,w) of the plane which has complex dilatation u( ,w) a.e., a power
series expansion

fle s w) =2+ 3 a )

in |z] < 1, and which fixes the point at infinity.

Theorem 2.2. If u(z, ) is analytic in a domain G for every z, then
the function w > f(z,w) is analytic in G for every finite z . Further-
more, the functions w—f"(z w). n=1,2...., are analytic in G
for every z€ D .

Proof: Consider the function y( , ), defined by

y(z, w) ijlTT) - a,(w) .

which is quasiconformal in the plane, conformal in D*, and satisfies the
normalization condition (2.1). If » is the complex dilatation of y, then
»(z , w) = (2/2)2u(1)z , w) . Hence, we first conclude from Theorem 2.1
that the function a, = (0, ) is analytic in G . From Theorem 2.1
it then follows that the functions w— f(z,w) = (p(1/z, w) — ay(w))™*
and w > f™ (2, w) are analyticin G . The coefficients a,. n =3, 4,.. .,
are analytic in ¢, since a, = f"0, )n!.



ZERRIN GOKTURK 9

3. General inequalities

3.1. Analytic functionals. Let f be a function of §. We define an
analytic functional é on S to be a complex-valued function which de-
pends analytically on finitely many power series coefficients of f, and
on the values of f and its derivatives f®, k=1,2,...,n, atfinitely
many given points. An analytic functional is continuous, i.e., lim ¢(f,) =¢(f)
whenever f is the uniform limit of the functions f, on compact subsets
of the unit disc.

An analytic functional ¢ defined on § is defined on every class Sj(o0)
(see 1.2); to simplify notation we write S,(o0) instead of Si(o0) in the
rest of the paper. Since ¢ is continuous, and S and S,(c0) are closed
normal families, there are functions which maximize '¢(f)] in Sy(o0)
and §. We set

M(k) = max &(f) .
f€Sp(=)
and denote by M(1) the maximum of '¢(f); in S. Then M is a non-
decreasing function on the closed interval [0,1].

3.2. Continuity of M . The function M is continuous on [0,1]. To
prove this, choose an arbitrary k,, 0< ky<< 1. Because M is non-
decreasing, the left and right limits lim M(k) and lim M(k) exist,

k->k,— k—sky,+

and

(3.1) lim M(k) < M(ky), lim M(k) > M(k,) .
k—k, ksky

Suppose first that k< k,. Let f, be extremal in S, (oc), with com-
plex dilatation . Consider the functions f, with complex dilatation
kulky , 0<< k<< k,, sonormalized that f, € S,(). Since {f,} is a normal
family, there is a sequence k;. i =1.2,..., sothat lim k; =k, and
the mappings f;, converge uniformly (in the spherical metric) to a limit
mapping ¢ . Then the mapping g has complex dilatation u a.e. ([9],
Theorem I1V.5.2). Hence, because of normalization ¢ = f,. From the
continuity of ¢ it follows that &(f,) — ¢(fs) . Consequently,

lim M (k) = lim (fe), = [$(fu)] = M(ky) .
In conjunction with the first inequality (3.1) this shows that
lim M(k) = M(k,) ,

kg —
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i.e., M is continuous to the left at %, .

Suppose next that £ > k,. Let f, now denote the extremal mapping
in Si(o0). Again, there is a sequence k;, ¢=1,2,..., so that
lim k; = k, and the mappings f,, converge uniformly to a limit g . Then,
by Theorem I.5.2 in [9], the maximal dilatation of ¢ is not greater than
the limit of the maximal dilatations of f, . Consequently, g €, (o0).
It follows that

lim M(k;) = lim |$(f, )| = |b(9)] < M (k) -

>0 >0

Together with the second inequality (3.1) this yields lim M(k) = M(k,) ,

ksky--

ie., M 1is continuous to the right at £k, .

Continuity to the right at 0 is proved similarly. Finally, let f be ex-
tremal in S, and f.(2) = f((1 — 1/n) 2)/(1 — 1/n). Then f, admits a
quasiconformal extension so that the extended mapping is in a class S, (),
where k, tends increasingly to 1. Since f,(z) — f(z), uniformly in every
compact subset of the unit disc, ¢(f,) — ¢(f) . Hence,

M(1) = [¢(f)| = lim [$(f,) <lim M(k,),

n—>oo n—>w

and left continuity at 1 follows.

3.3. Majorant principle. The following inequality, which has wide
applications in transferring many of the results known to hold for uni-
valent functions to the classes S, (o) and X, , k< 1, is due to Lehto.!

Theorem 3.1. Let ¢ be an analytic functional defined on S, which
vanishes for the identity mapping. Then

(3.2) M(k) < k(1) .

If equality holds in (3.2) for one value of &, 0< k<1, then it
holds for all values of %, and if u is an extremal complex dilatation,
then all dilatations wu, w' < 1/ w',, are extremal. For the proofs
we refer to [7].

3.4. Real part of an analytic functional. An analogue of Theorem 3.1
is obtained if one considers Re¢ instead of ¢ . Again, the extremal prob-
lems max Re ¢(f), min Re ¢(f) have solutions in S,(o0). We shall first
consider the minimum, and write

! Communicated in the Complex Analysis Seminar at Case Western Reserve
University in 1971.
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m(k) = min Re ¢(f) .

S € Sg(x)

The following theorem is due to Lehto (unpublished). We denote

m(l) = min Re ¢(f) and m(0) = Re ¢(id) .

fes

Theorem 3.2. Let ¢ be an analytic functional defined on S . Then
for every f€ S, (c0)

2k 2k
(3:3) 7 (m(1) — m(0)) = Reg(f) —m(0) <y (m(0) —m(1).

Proof: Let f be an arbitrary mapping in Sy(), 0 <k< 1, and
u its complex dilatation. Consider the subclass of S whose functions

are restrictions to D of quasiconformal homeomorphisms f of the plane
with the complex dilatation wu , where |w/ < 1/k. By Theorem 2.2,

A

the functional ¢(f) depends analytically on w in the disc 'w < 1/k.

A

Therefore, u = Re ¢(f) is harmonic in ‘w < 1'k. Applying Poisson’s
formula for |w| < o << 1/k we have

27

1 02 — 12 ‘
w(w) — m(l) = Py e — i (u(ge®) — m(1)) do ,
0 < i

where |w| =7 < o. Since w — m(l) is non-negative and

4

o— 02__,,2 Q“*"'
I S -
o+ 7 T loe

(3.4)

i9

— w|? o— 1’

this yields the upper estimate
I o—+7r

w(w) — m(l) < —
(w) = m(l) < 52

The arithmetic mean of u(o0e™) — m(l) over the interval 0 <0 < 2=
equals %(0) — m(1) = m(0) — m(1), and it follows that

,
~ (m(0) — m(1)) -

0+
(3.5) u(w) — m(l) < 0 —
Letting ¢ tend to 1/k and rearranging the terms, we obtain

2rk
(3.6) w(w) — m(0) < Tt

(m(0) — m(1)) .



12 Ann. Acad. Sci. Fennica A. I. 589

Taking w =1 we have u(1) = Re ¢(f), and the right-hand side of (3.3)
follows from (3.6). Similarly, using the left-hand inequality (3.4), we ob-
tain the lower estimate in (3.3).

Remark. Since the inequali’ies (3.3) hold for every function f € S,(c0),
it follows that

2k
(3.7) (k) = 1 ml0) + 7 m).

Denoting by Mg(k) the maximum of Re¢ in S,(c0), we also conclude
that

2
1 —k

ot
_{_
=
=

(3.8) M k) < m(0) — m(1) .

1 —

=

3.5. Equality in the estimates. Let us assume that equality holds in
(3.8) [or in (3.7)] for one value of &, 0< k< 1. Then it holds for all
values of k£, and if u is an extremal complex dilatation, then all dilata-
tions wu with 0<< w<< 1//ull, are extremal. To prove this, suppose
that (3.8) holds as an equality fora k£, 0<< k<< 1; let f, be the extremal
function and g, its complex dilatation. For functions with complex dila-
tation wy,, |w| << 1/k, the Poisson formula yields the inequality (3.5).
For brevity, let us write U(w) = (w(w) — m(1))/(m(0) — m(1)) . Thus,
letting o tend to 1/k in (3.5) we obtain

1 + kjw)

(3.9) Uw) < T Fuw

Because U(1l) = (Mg(k) — m(1))'(m(0) — m(1)), we conclude from
(3.8) that

(3.10) U(l) =

Since U is a non-negative harmonic function in ‘w' << 1/k, we can
apply the Poisson-Stieltjes formula to U, the integral being extended
along the boundary |w| = 1/k. For w = re" we get

+

U 1 f 1 — k%2 .
(3.11) (w) = 27 1+ k%% — 2kr cos (6 — ¢) a(6) -

—

Here u is a non-decreasing function determined up to an additive con-
stant. We normalize y so that y(— ) = 0. Since U(0) = 1, we have
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+
f dy(0) = 27 ([10], pp. 191—201). Comparison of (3.10) and (3.11) gives

T

. 1/‘ 1 — k2 . 1+ k
M) =5, 1 -2 — 2k cosg WO =7_7-

-7

Since the function

1 — k2

Uns 1+ k% — 2k cos 6

is continuous on the interval [—z , z] and strictly less than (1 + k)/(1 — k)
for 6 # 0, it follows that the function v must be of the form

[0 for —x <6< 0,
].‘Zn for 0< b0 <m.

y(0) =

Hence, again from (3.11), it follows that

1 — k%2 [l + kw}
Tl — k%2 — 2krcos ¢ el

U(w)

Thus for every w >0,

1+ kw

(3.12) Uw) = T

If k" € [0,1] is arbitrarily given, then for w = k’/k the function f is in
Si (). From (3.12) we conclude that (3.8) holds as an equality with
k replaced by k'. The function f is extremal in S, (o0) and wu, is the
extremal complex dilatation.

4. Maximum modulus estimates

4.1. Estimates for |f|. Making use of Theorem 3.2 we shall first give
estimates for |f(z)| in the case when f€ S,(oc) and z lies in the closure
of the unit disc. In what follows, K = (1 + k)/(1 — k).

Theorem 4.1. Let f€ S, (). Then for |z =r< 1
(4.1) (1 4 ,,-)2(1/K—-1) <If2)] < r(1 4 r)XE-D

Proof: For z fixed, ¢(f) = log (f(z)/z) is an analytic functional, and
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Re ¢(f) = log | f(z)/2] , Re(id) = 0. From the theory of univalent
functions it is well-known that

Thus, (4.1) follows directly from Theorem 3.2.
Remark. Application of Theorem 3.1 to the functional ¢( f) = log(f(2)/z)
yields the upper bound
»

fEI= e

For small values of r this is sharper than the upper estimate in (4.1).
Letting » tend to 1, we obtain from (4.1) simple upper and lower
bounds for |f(z)| on the unit circle.

Corollary 4.1. If f€ S, (). then for =z =1
1\!-VK
(4.2) (Z) < If) <45t

For k — 0, the lower and upper bound both take the value 1. As
k— 1, the lower bound tends to the sharp limit 1/4. For further discus-
sion of (4.2), let us introduce the modified Koebe functions

T if 2 <1,

Direct computation shows that f€ S,(=). For this function

1

min f(z) = 0

z =1
It follows that the lower bound 4'*~' in (4.2) cannot be replaced by
47k,
Let us again consider (), = sup (max f(z)), for which Corollary 4.1
FESKx) =<1
yields the upper bound €, < 4%°'. The function (4.3) tells us also
that C, > (1 — k)~2. It is an interesting open problem to determine
the exact value of C, .
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4.2. Estimates for |f"|f'|. We shall use the following consequence of
Theorem 3.1 later in estimating the coefficients of the functions f€.S,() .

Theorem 4.2. Let f€S, (o). Then for [z =r< 1

" z 2
Loyt
f'(z)! 1 — 72
Proof: Consider the analytic functional &(f) = f"(2)/f'(z), 2€ D,
which vanishes for the identity mapping. In S

(4.4)

e r42
fel = g
([4], p. 50). Hence (4.4) follows from the inequality (3.2).

This estimate is sharp for z = 0, equality holding for the functions
(4.3).

For our applications we need (4.4) when r is close to 1. We shall show
that this estimate is essentially sharp in the sense that for every & >0
there is a function f€ S,(sc) and a boundary point ¢ so that

. o frre”)
(4.5) }:Iil (1 — )if’(reie)’ >0
To construct a mapping for which (4.5) holds we map the unit disc by
z> (1 4 2)/(1 — 2z) onto the right half-plane Re { > 0. We note that
the desired function f must have singularity on |z| = 1 since f”(z)/f’(2)
must tend to oo asr— 1. Therefore, we map Re { > 0 onto the angular
domain |arg(w + 1/(2 + 2k))| < =a(1 + k)/2 by the function

o(l) = (" — 121 + k),

which has the k-quasiconformal extension w(¢) = [&(— O)* — 1]/2(1 + k) .
If o(f(0)) = w,, then this function is transformed into the class S,(o0)
by the Mobius transformation h(w) = ww/(w, — »). In the unit disc
the function f = hew-l, which is in S,(2c). has the expression

(Lr2)"——7""
O = 0 = h (0 + 297 — k(1 — 9
Hence
@) ! !
Ch i) o

so that
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lim (1 — »?) f (:I:T)[

= 2k .
r—->1 ‘fl(:tr)i

5. Coefficient estimates

5.1. Preliminary remarks. Let f be a function in Sy(o0). Then the
area of the image of the unit disc under the mapping f is at most 7C; .
It follows that

es]

> nia,’ < Cy.

1

This yields the estimate
(5.1) a, = Om™ 7).

For bounded univalent functions it was shown by Clunie and Pom-
merenke [3] that the estimate a, = O(n~'?) is not the best possible.

Application of the inequality (3.2) to the functional ¢(f) = @, , which
vanishes for the identity mapping, gives the estimate
(5.2) max |a,] <k max |a,| .

Sp() S
This inequality is sharp only if = =2 ([8], Corollary 4.2). Since
max |a,] > n, this estimate becomes very inaccurate for large values
S

of n, in view of (5.1).

In the present section we shall estimate the coefficients of the functions
in S,(o0). Tt turns out that the existence of a k-quasiconformal extension
not only gives a k-contraction to the coefficient estimate but has a marked
effect on the order of magnitude: a, <k An~'°*®  where 4, is
finite for every k< 1 and 1(k) decreases from 1.2 to a value >0 as
k grows from 0 to 1.

5.2. Mean value estimate for f'2. We find it convenient first to estab-
lish the following lemma.

Lemma 5.1. If f€S,(x). then for r<1

2z
3 ! If'(re™) > db Ci
(53) oo | e tas <

1 —

Proof: An easy computation gives
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- ®
(5.4 S 1 £7 /iH 2 — 2 2 2n--2 .
(5.4) 231[ If'(re®)* dO E‘nlanlr
We set #nla,?=0b,, a, = 1. Then
>nla,’=>0b,< Ci.
1 1

Consider the analytic function @(z) = > b,2" in the unit disc |2/ < 1.
1
Then |p(z)] < Cp for |z/< 1. From Schwarz’s Lemma it follows that

Ck — le2)P/Cy Ci

l¢'(2)] <

Hence, for z = r

[P % b n—1 C;.:
PEl= 3 by ST
Replacing r by 7* we obtain
@ © ;’;
z nb"r2n-2 — z nZIanIZTQn—2 S T,
1 T 1 —r

and (5.3) follows from (5.4).

5.3. Mean value estimate for |f'|. The proof of the following lemma
is carried out by the method of Clunie and Pommerenke [3], with the dif-
ference that Theorem 4.2 is taken into consideration.

Lemma 5.2. If f€S,(oc), then for r< 1

27

1
fre) df < (1 + Cy) (1 —r)7 o0,

(5.5) ;{
0

where (k) = 1/2 — 8k(V 1 + 64k — 8k) .
Proof: Let 6 > 0. By Schwarz’s inequality

(5.6) J<r>=( f ey do) < f I (re) 0 f [ (re®) a8 .

To estimate the last integral in (5.6) we write



18 Ann. Acad. Sci. Fennica

A. 1.

589

o0
=2 ¢, c=1.

m-=0

Then
F(r) / | [f (")) d6 = .Cm. 2p2n

Direct calculation gives

27

2 d P

m=
0

262 // 2
. f f ol / .ie)‘l«\do_

do

By Theorem 4.2,

"(re®” r -2 1k
. f'(re”) _

Combining this with the preceding inequality we get

F(r)
(=g

F'(r) < 640%k2

Integrating by parts we obtain

r

- F(r) F(t)
F'(r) < 640%2 | - — F(0) _[ dt |.
0

11—t

Dropping the last two negative terms and dividing by F(r) we deduce

(r) 64022
‘m —r

Hence

(5.7) F(r) < (1 — p)~o9%

By Lemma 5.1,

1 —r

27
[ ey ran < S
0

From the inequalities (5.6) and (5.7) it thus follows that
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(5.8) f /€)Y dO < 2 Cy(1 — 7)1
0

Fora f >0, let
By =10 |f're")] < (1 — )7},
By ={0]1f(re")] > (1 — )77},
Then by (5.8)

ey do = [ \f(re) | d0 + [ |f/(re") | db
J o= e f

27

< 2z (1 — T)_ﬂ —+ (1 — r)ﬁéf [f’(reiﬁ) !l+z)d6

0
<2x (L —r)7 4 23 O (1 — )t 2P
The choice [ = f, = (1 + 640%2?)/2(1 + o) gives
27

f flre?) do <23 (1 + Cp) (L — )P,
0

Finally, in order to minimize £, we take 6 = — 1 + \/ 1 4 64k 8k,
and (5.5) follows.

5.4. An estimate for a, . Using the above lemma and once more Theo-
rem 4.2, we now obtain an estimate for «, .

Theorem 5.1. Let f€ S, (o). Then
(5.9) a, < kAn='i0

where A, = 4e(1 + C,) and «(k) is defined as in Lemma 5.2.
Proof: Applying the Cauchy integral formula to f” we get

27

1 .
n(n — 1)]a,] < 2717‘"‘2/ If"(re®) | dO, r<< 1.
0

From Theorem 4.2 and Lemma 5.2 it follows, therefore, that

1+ C,

,rn-2

’I’L(n - 1) la,,[ < 4k (1 — T)=3/2—[—cx(k) )
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Taking r = 1 — 1/n, we obtain

n—1
4] < 4k (;%) RERATSLECE
and (5.9) follows.

As k—>0, the exponent 1/2 + «x(k) tends to 1. This order of magni-
tude cannot be improved in the sense that an estimate of the form (5.9)
with an exponent tending to a limit > 1 as k — 0 is not possible. A counter-
example is provided by the function f defined by

(& Jezn 1)) for 2] < 1,
T 2 HeY 4 gD 20 for 2 > 1.

f2)
This function belongs to S,(), and |a,| = 2k/(1 — =) ([8]).

5.5. Estimates of Clunie and Pommerenke. Let f€ .S and assume that
Ifz)) < M. For [z)l< 1 write f[f.()=/f((1— 1/m)}2)/(1 — 1/m) ,
m=2,3,.... We showed in 1.2 that f, admits a quasiconformal
extension so that the extended mapping belongs to a class S,(o0) for
some k< 1. By Schwarz’s Lemma, [f((1 — 1/m)z) < M(l1— 1/m) in
lz2] < 1. Hence !f,(z) <M . If we take C, =M and k=1 in (5.9),
then the inequality holds for the nth coefficient of f,, for every m . There-
fore, it also holds for the coefficient @, of f, and we obtain

@, < de(l + Mn~310

Essentially, this is the estimate of Clunie and Pommerenke [3] for bounded
functions.
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