EXTREMAL QUASICONFORMAL MAPPINGS OF A CONE

OSSI TAARI

In the paper [2] we proved the following extremal property for cylinder: Let G be a domain in R^{n-1} with m_{n-1} (G) $< \infty$ and f a quasiconformal mapping of the cylinder $Z = G \times R^1 \subset R^n$ onto itself which satisfies the boundary condition

(1)
$$f(x_1, \ldots, x_n) = (x_1, \ldots, x_{n-1}, Kx_n),$$

where $K \geq 1$ is a constant. Then $K_O(f) \geq K^{n-1}$ and $K_I(f) \geq K$, where $K_O(f)$ and $K_I(f)$ are the outer and inner dilatations of the mapping f. In the extremal case $K_O(f) = K^{n-1}$ the lines parallel to x_n -axis go to similar lines, and the image of the section

$$G(t) = \{ x + te_n \mid x \in G \}$$

of Z is for every $t \in \mathbb{R}^1$ the section G(Kt). However, the mapping need not then be affine. On the other hand, if $K_I(f) = K$, then f is the affine mapping (1).

Now we consider a similar problem for cones. Let G be a domain in S^{n-1} , $G \neq S^{n-1}$, and let C be the cone $\{x \in R^n \mid x \mid |x| \in G\}$. We consider a homeomorphism $f: \overline{C} \to \overline{C}$ whose restriction to C is quasiconformal and which satisfies on the boundary ∂C the condition

$$f(x) = |x|^{K-1} x,$$

where $K \ge 1$ is a constant.

By Rickman [1], Theorem 1, or Väisälä [4], Theorem 2, f can be extended to a quasiconformal mapping $\hat{f}: \mathbb{R}^n \to \mathbb{R}^n$ so that

$$\hat{f}(x) = \begin{cases} f(x), & \text{when } x \in C \\ \mid x \mid^{K-1} x, & \text{when } x \in R^n \setminus C. \end{cases}$$

The following distortion theorem is valid for f.

Theorem 1. Suppose that $f: C \to C$ is a quasiconformal mapping which satisfies the boundary condition (2). Then there exist positive constants λ and M > 1 such that

$$|x|^{K}/\lambda \leq |\hat{f}(x)| \leq \lambda |x|^{K}$$

holds for $|x| \ge M$ or $|x| \le 1/M$. Here λ depends only on K and K(f).

Proof. Denote $\lambda = 2H(0,\hat{f})$, where H(0,f) is the linear dilatation of \hat{f} in the origin. The assertion for small values of |x| follows then immediately.

For big values the result follows from the preceding one by inversion $\varphi(x) = x / |x|^2$. Now $\varphi^{-1} \circ f \circ \varphi$ is a quasiconformal mapping of \mathbb{R}^n with the same dilatations and values on ∂C as f itself.

In the following theorem we give the natural lower bounds for the dilatations.

Theorem 2. If f satisfies the boundary condition (2), then

$$K_{O}(f) \geq K^{n-1}, K_{I}(f) \geq K.$$

Proof. Choose $0 < r_1 < 1/M < M < r_2$ such that $\lambda r_1^K < r_2^K/\lambda$. Let Γ be the curve family which joins the sets $G(r_1) = r_1 G = \{x \mid x/r_1 \in G\}$ and $G(r_2) = r_2 G$ in C. Then by Sections 7.7 and 6.4 of [3]

$$M(\Gamma) = m_{n-1}(G) / (\log (r_2 / r_1))^{n-1}$$

and

$$M(f\Gamma) \, \leqq \, m_{n-1} \, (G) \, / \, (\log \, (\lambda^{-1} \, r_2^{\scriptscriptstyle K} \, / \, \lambda \, r_1^{\scriptscriptstyle K}) \,)^{n-1} \, .$$

Letting $r_2 \to \infty$ we obtain by $M(\Gamma) \leq K_o(f) M(f\Gamma)$

$$K_o(f) \geq K^{n-1}$$
.

Since $K_o(f) \leq K_I(f)^{n-1}$, we have

$$K_I(f) \geq K$$
.

Theorem 3. If $K_0(f) = K^{n-1}$, then f maps each ray $r(y) = \{ ty \mid t > 0 \}$, $y \in G$, onto a similar ray, and the image of

$$G(t) = tG$$

is for every t>0 the set $G(t^K)$. Further, the volume derivative $\sigma(x,h_t)$ of the homeomorphism $h_t=f\mid G(t)$ is equal to $t^{(n-1)}$ for almost every $x\in G(t)$.

Before the proof of Theorem 3 we introduce some preliminary lemmas. Lemma 1. If $K_0(f) = K^{n-1}$, then

$$0 \leq \int\limits_{C} \left(L_{f}(x)^{n} - \mid \partial_{x} \mid f(x) \mid \mid^{n} \right) \mid f(x) \mid^{-n} \leq 2 \log \lambda \left(1 + n \right) K^{n-1} m_{n-1} \left(G \right)$$

where $\partial_x |f(x)|$ is the directional derivative of |f| at x in the direction of x.

Proof. Let $j \in N$, j > M and $j^K > \lambda$; then Theorem 1 is valid for |x| = j, and $j^K / \lambda > \lambda / j^K$. On almost every ray $r(y) = \{ty \mid t > 0\}$, $y \in G$, f and thus also |f| are locally absolutely continuous. Moreover, f is differentiable at almost all points of r(y). Theorem 1 implies

$$\begin{split} \log \left(j^{K}/\lambda\right) &- \log \left(\lambda/j^{K}\right) \leq \log |f(jy)| - \log |f(y/j)| \\ &= \int\limits_{1/j}^{j} \left(\partial_{y} \left|f(ty)\right| / \left|f(ty)\right|\right) dt \;. \end{split}$$

By Hölder's inequality we obtain

$$(2K \log j - 2 \log \lambda)^{n} \leq (2 \log j)^{n-1} \int_{1/j}^{j} |\partial_{y}| f(ty) ||^{n} |f(ty)|^{-n} t^{n-1} dt$$

$$\leq (2 \log j)^{n-1} \int_{1/j}^{j} L_{+f^{\perp}}(ty)^{n} |f(ty)|^{-n} t^{n-1} dt$$

$$\leq (2 \log j)^{n-1} \int_{1/j}^{j} L_{f}(ty)^{n} |f(ty)|^{-n} t^{n-1} dt ;$$

the inequality $L_{|f|}(ty) \leq L_f(ty)$ follows from the triangle inequality. Since $L_f(x)^n \leq K_o(f) J(x, f)$ at almost every point of

$$C_{j} = \{ x \in C \mid 1/j \leq |x| \leq j \},$$

if follows by integrating over G

$$(2K \log j - 2 \log \lambda)^{n} m_{n-1}(G)$$

$$\leq (2 \log j)^{n-1} \int_{C_{j}} |\partial_{x}| f(x) ||^{n} |f(x)|^{-n} dm(x)$$

$$\leq (2 \log j)^{n-1} \int_{C_{j}} L_{j}(x)^{n} |f(x)|^{-n} dm(x)$$

$$\leq (2 \log j)^{n-1} K^{n-1} \int_{C_{j}} J(x, f) |f(x)|^{-n} dm(x)$$

$$= (2 \log j)^{n-1} K^{n-1} \int_{fC_{j}} |z|^{-n} dm(z)$$

$$\leq (2K \log j)^{n-1} \int_{G} dm_{n-1} \int_{x^{-1}j^{-K}}^{\lambda j^{K}} t^{-1} dt$$

$$= (2K \log j)^{n-1} m_{n-1}(G) (2K \log j + 2 \log \lambda).$$

This implies

$$0 \le \int_{C_j} (L_f(x)^n - |\partial_x| f(x) ||^n) |f(x)|^{-n} dm(x)$$

$$\le m_{n-1} (G) (2(n+1) \log \lambda K^{n-1} + \varepsilon_i),$$

where $\lim_{i \to \infty} \varepsilon_i = 0$. Letting $j \to \infty$ yields the lemma.

Lemma 2. If $K_0(f) = K^{n-1}$, then the function

$$((L_t - \partial_x |f|)/|f|)^n$$

is integrable in C.

Proof. Let A and B be those subsets of C where $\partial_x |f(x)| \ge 0$, resp. $\partial_x |f(x)| < 0$. By $0 \le \partial_x |f(x)| \le L_f(x)$ the inequality

$$(L_t(x) - \partial_x | f(x) |)^n \leq L_t(x)^n - (\partial_x | f(x) |)^n$$

holds in $\,A\,$ and the integral of $\,(\,(L_{\!f}-\partial_x\,|\,f\,|\,)\,/\,|\,f\,|\,)^n\,$ over $\,A\,$ is finite by Lemma 1.

To obtain the respective result for the set B we prove that

$$\int_{R} L_{f}(x)^{n} |f(x)|^{-n} dm(x)$$

is finite. If $~j \geq {\rm M}$, then for almost all rays $~r_j(y) = \{ty \mid 1/j \leq t \leq j\}$, $y \in G$,

$$\begin{split} &\log\left(\left.j^{K}\left/\left.\lambda\right)\right.-\left.\log\left(\left.\lambda\right/j^{K}\right)\right. \leq \int\limits_{r_{j}(y)}\left(\partial_{y}\left|f(x)\right.\right|\left.\left/\left|f(x)\right.\right|\right) dm_{1}(x) \\ \leq \int\limits_{r_{j}(y)\cap A}\left(\partial_{y}\left|f(x)\right.\right|\left.\left/\left|f(x)\right.\right|\right) dm_{1}(x) \leq \int\limits_{r_{j}(y)\cap A}\left(L_{f}(x)\left/\left|f(x)\right.\right|\right) dm_{1}(x) \;. \end{split}$$

By Hölder's inequality and integration over G we obtain

$$(2K \log j - 2 \log \lambda)^n \, m_{n-1} \, (G) \leq (2 \log j)^{n-1} \int_{C_j \cap A} L_j(x)^n \, |f(x)|^{-n} \, dm(x) \, .$$

On the other hand,

$$\int\limits_{C_{j}} L_{f}(x)^{n} \, | \, f(x) \, |^{\, -n} \, dm(x) \, \leqq \, K^{n-1} \, (2K \log j \, + \, 2 \log \lambda) \, m_{n-1} \, (G) \, .$$

From these inequalities it follows that

$$\int\limits_{C_j \cap B} L_j(x)^n \, | \, f(x) \, |^{\, -n} \, dm(x) \, \leqq \, \left[\, 2 \, \, (n \, + \, 1) K^{n-1} \log \, \lambda \, + \, \varepsilon_j \, \right] m_{n-1}(G) \, .$$

Letting $j \to \infty$ yields

$$\int_{D} L_{f}(x)^{n} |f(x)|^{-n} dm(x) \leq 2 (n + 1) K^{n-1} \log \lambda m_{n-1}(G).$$

The inequality $\mid \partial_x \mid f(x) \mid \mid \leq L_f(x)$ implies

$$\int\limits_{B} \left(\; (L_{f}(x) \; - \; \partial_{x} \; | \; f(x) \; | \;) \; / \; | \; f(x) \; | \; \right)^{n} dm(x) \; \leqq \; 2^{n+1} \; (n \; + \; 1) \; K^{n-1} \log \, \lambda \; m_{n-1} \; (G) \; .$$

Hence $((L_t - \partial_x |f|)/|f|)^n$ is integrable over C.

We consider again the extension \hat{f} of f and define a sequence $g_j: \mathbb{R}^n \to \mathbb{R}^n$ of quasiconformal mappings by

$$g_i(x) = \hat{f}(jx) / j^K, j = 1, 2, \dots$$

For every j is $K_o(g_j \mid C) = K_o(f) = K^{n-1}$ and $g_j \mid \partial C = f \mid \partial C$. By Väisälä [3], 20.5, 21.3, 37.2 and by the above Theorem 2 the sequence g_j has a subsequence g_j , $j \in J \subset N$, which converges uniformly on compact subsets of R^n and whose limit mapping is quasiconformal with $K_o(g \mid C) = K^{n-1}$. The formula (3) is still valid for g with the same bound λ .

Lemma 3. The mapping g maps each ray r_v onto a ray r_z .

Proof. Suppose a < b. We choose a set $E \subset G$, $m_{n-1}(E) = m_{n-1}(G)$, such that g_j is for every $j \in J$ locally absolutely continuous on every ray r_y , $y \in E$. Denote $L_j = L_{g_j}$. By Fatou's Lemma

$$\begin{split} & \int\limits_{G} \liminf_{j \to \infty, j \in J} \left(\int\limits_{a}^{b} \left(L_{j}(ty) \ - \ \partial_{y} \mid g_{j}(ty) \mid \right) \ dt \right)^{n} dm_{n-1}(y) \\ & \leq \liminf_{j \to \infty, j \in J} \int\limits_{G} \left(\int\limits_{a}^{b} \left(L_{j}(ty) \ - \ \partial_{y} \mid g_{j}(ty) \mid \right) \ dt \right)^{n} dm_{n-1}(y) \ . \end{split}$$

Since $L_{j}(ty)=j^{1-K}L_{j}(jty)$ and $\partial_{y}|g_{j}(ty)|=j^{1-K}\partial_{y}|f(jty)|$, the latter integral is at most

$$\int_{G} \left(\int_{a}^{b} (L_{j}(ty) - \partial_{y} | g_{j}(ty) |)^{n} t^{n-1} dt \right) dm_{n-1}(y) \left(\int_{a}^{b} t^{-1} dt \right)^{n-1} \\
= (\log b/a)^{n-1} \int_{C(a,b)} \left((L_{j}(jx) - \partial_{x} | f(jx) |) j^{1-K} \right)^{n} dm(x),$$

where $C(a, b) = \{x \in C \mid a \le |x| \le b \}$. Setting j x = z we obtain

$$\begin{split} &(\log \, (b/a))^{n-1} \int\limits_{C(ja \, , \, jb)} ((L_{\it f}(z) \, - \, \partial_{\it y} \, | \, f(z) \, | \,) \, j^{-K})^{\it n} \, dm(z) \\ &= \, (\log \, (b/a))^{n-1} \, b^{K\it n} \int\limits_{C(ja \, , \, jb)} ((L_{\it f}(z) \, - \, \partial_{\it y} \, | \, f(z) \, | \,) \, (jb)^{-K})^{\it n} \, dm(z) \\ &\leq \, \lambda^{\it n} \, b^{K\it n} \, (\log \, (b/a))^{n-1} \int\limits_{C(ja \, , \, jb)} ((L_{\it f}(z) \, - \, \partial_{\it y} \, | \, f(z) \, | \,) / \, | \, f(z) \, | \,)^{\it n} \, dm(z) \end{split}$$

for $jb \geq M$, because then $|f(z)| \leq \lambda (jb)^K$. By Lemma 2 this converges to zero when $j \to \infty$. Thus a set $E_1 \subset E$ can be chosen so that $m_{n-1}(E_1) = m_{n-1}(E)$ and

$$\lim_{j \to \infty} \inf_{j \in J} \int_{a}^{b} (L_{j}(ty) - \partial_{y} | g_{j}(ty) |) dt = 0$$

for every $y \in E_1$.

Fix $y \in E_1$. For a subsequence (j_k) of J

(4)
$$\lim_{k \to \infty} \int_a^b \left(L_{j_k}(ty) - \partial_y \mid g_{j_k}(ty) \mid \right) dt = 0.$$

Now $\int_a^b \partial_y |g_{j_k}(ty)| dt = |g_{j_k}(by)| - |g_{j_k}(ay)|$

converges to |g(by)| - |g(ay)|. Hence the length of the g_{j_k} -image of the interval $\{ty \mid a \leq t \leq b\}$ also converges by (4) to the same limit. Since $g_{j_k} \to g$, an elementary argument implies that the g-image of $\{ty \mid a \leq t \leq b\}$ is a radial interval. By the continuity of g this holds for every $g \in G$. Since g and g were arbitrary, the lemma follows.

Let $B\subset G$ be a Borel set. By Lemma 3 the g-image of the cone $C(B)=\{ty\mid y\in B\ ,\ t>0\}$ is again a cone. Let $\sigma_{\rm g}(y)$ be the volume derivative of the homeomorphism $h_{\rm g}=P_{\rm r}\circ (g\mid G):G\to G$, where $P_{\rm r}$ denotes the radial projection of G onto G. The number $\sigma_{\rm g}(y)$ is finite for almost every $y\in G$.

Lemma 4. The number $\sigma_{g}(y) = 1$ a.e. in G.

Proof. Let $y \in G$ such that $\sigma_g(y) < \infty$. For $\varepsilon > 0$ choose r > 0 so small that $U = B^n(y, r) \cap S^{n-1} \subset G$ and

$$m_{n-1}(h_{\varepsilon}(U)) < (\sigma_{\varepsilon}(y) + \varepsilon) m_{n-1}(U)$$
.

For arbitrary $t_1 \le 1/M$, $t_2 \ge M$, $\lambda t_1 < t_2/\lambda$ we consider the curve family

$$\Gamma = \triangle (t_1 U, t_2 U; C(U; t_1, t_2)),$$

where $C(U ; t_1, t_2) = \{tz \mid z \in U , t_1 < t < t_2\}$. Then

$$M(\varGamma) \, = \, m_{n-1}(U)/(\log(t_2/t_1))^{n-1}$$

and

$$M(g\Gamma) = (\sigma_{\varepsilon}(y) + \varepsilon) m_{n-1}(U) / (\log (t_2^K / \lambda^2 t_1^K))^{n-1}.$$

Letting $t_2 \to \infty$, $M(\Gamma) \leq K^{n-1} M(g\Gamma)$ now implies

$$\sigma_{\mathrm{g}}(y) \, + \, arepsilon \, \geq \, 1$$
 ,

and thus, since $\varepsilon > 0$ is arbitrary,

$$\sigma_{\varrho}(y) \geq 1$$
.

On the other hand, by the inequality

$$\int_{C} \sigma_{g}(y) \ dm_{n-1}(y) \leq m_{n-1}(G),$$

 $\sigma_{\sigma}(y) \leq 1$ a.e. in G. Thus $\sigma_{\sigma}(y) = 1$ a.e. in G.

Remark. It will be later proved that also f maps the rays r_y onto rays. From the above proof it follows that then also $\sigma_f(y) = 1$ a.e. in G.

Lemma 5. For almost every $x \in C$

$$L_{\sigma}(x) = K |g(x)| / |x|.$$

Proof. Let $B \subset G$ be a Borel set. Denote $C(B\;;a\;,b)=\{ty\;|\;y\in B\;,\;a< t< b\}$. Since h_g satisfies the condition (N) and g maps the rays onto rays, we have

Thus $J(x,g) = (|g(x)|/|x|)^{n-1} \partial_x |g(x)|$ and consequently $L_g(x)^n \le K^{n-1}J(x,g) = K^{n-1} (|g(x)|/|x|)^{n-1} \partial_x |g(x)| \le K^{n-1} (|g(x)|/|x|)^{n-1} L_g(x)$ a.e. in C. The lemma follows.

We repeat now the above process with respect to the mapping g. We get a sequence $\varphi_i: \mathbb{R}^n \to \mathbb{R}^n$, $j \in J$,

$$\varphi_j(x) = g(jx) j^{-K}.$$

This sequence has a subsequence φ_j , $j \in J_1 \subset J$, which converges uniformly on compact subsets of R^n , and its limit mapping φ is quasiconformal with $K_O(\varphi \mid C) = K^{n-1}$. Further φ has the boundary values (2) on ∂C and Theorem 1 as well as Lemmas 3-5 are valid for it. We will prove now that φ sends the domain tG onto t^KG .

Lemma 6. For every $x \in C$

$$|\varphi(x)| = |x|^K$$
.

Proof. For a.e. $y \in G$ the mapping g is locally absolutely continuous on the ray $r_y = \{ty \mid y \in G \,,\, t>0\}$ and $L_g(ty) \leqq K \mid g(ty) \mid /t$ for almost all t>0, see Lemma 5. Choose such y. Let M be as in Theorem 1. Then for u>a>M

$$K(\log u - \log a) - 2 \log \lambda \le \log |g(uy)| - \log |g(ay)|$$

$$= \int_{a}^{b} (\partial_{y} |g(ty)| / |g(ty)|) dt$$

and consequently

(5)
$$\lim_{q \to \infty} \int_{a}^{\infty} (K/t - \partial_{y} |g(ty)| / |g(ty)|) dt = 0,$$

because the integrand is by Lemma 5 nonnegative; the nonnegativity of the integrand is not yet known for f and this is the main reason for the above process.

For arbitrary z > 0

$$\begin{split} K\log z \, - \, \log \left(\, \mid \varphi_{j}(zy) \mid / \mid \varphi_{j}(y) \mid \, \right) \, &= \int\limits_{1}^{z} \, \left(K/t \, - \, \partial_{y} \mid \varphi_{j}(ty) \mid / \mid \varphi_{j}(ty) \mid \, \right) dt \\ \\ &= \int\limits_{1}^{z} \, \left(K/t \, - \, j \, \partial_{y} \mid g(jty) \mid / \mid g(jty) \mid \, \right) dt \, . \end{split}$$

Substitution jt = u and (5) yield

$$\int_{1}^{z} (K/t - j \partial_{y} | g(jty) | / | g(jty) |) dt$$

$$= \int_{j}^{jz} (K/u - \partial_{y} | g(uy) | / | g(uy) |) du$$

$$= \ K \log z \, - \, \log \left(\, \left| \, g(jzy) \, \right| \, \middle/ \, \left| \, g(jy) \, \right| \, \right) \to 0 \quad \text{when} \quad j \to \infty \; , \quad j \in J_1 \; .$$

Since $\varphi_i \to \varphi$ and φ is continuous, the last two formulas give

$$|\varphi(zy)| = z^K |\varphi(y)|$$

for all $y \in G$, z > 0, and consequently

$$\partial_y \mid \varphi(zy) \mid \ = \ Kz^{K-1} \mid \varphi(y) \mid \ .$$

Since Lemma 5 can also be applied to φ ,

$$L_{\varphi}(zy) \, \leqq K \mid \varphi(zy) \mid \, \mid z \, = \, Kz^{K-1} \mid \varphi(y) \mid$$

and thus

$$L_{\varphi}(zy) = \partial_y \mid \varphi(zy) \mid$$

for a.e. $zy \in C$. At these points $\operatorname{grad} \mid \varphi(zy) \mid = \partial_y \mid \varphi(zy) \mid y$ and hence $\partial_s \mid \varphi(zy) \mid = \operatorname{grad} \mid \varphi(zy) \mid \cdot s = 0$ in every to y orthogonal direction s. This implies that $\mid \varphi(x) \mid = \mid x \mid^K$ in C, for if $\mid \varphi(x_1) \mid \neq \mid \varphi(x_2) \mid$ at the points $x_1, x_2 \in C$, $\mid x_1 \mid = \mid x_2 \mid$, then by a theorem of Fuglede (Väi-

sälä [3], p. 95) the points $x_1' \in C$ and $x_2' \in C$ can be chosen such that a) $|x_1'| = |x_2'|$, b) $|\varphi(x_1')| \neq |\varphi(x_2')|$, c) φ is absolutely continuous on a regular curve c which lies on the set $\{x \mid x/\mid x_1'\mid \in G\}$ and which joins the points x_1' and x_2' , d) the tangential derivative $\partial_s |\varphi(x)|$ vanishes a.e. in C. The integration leads then to contradiction. Hence $|\varphi(x_1)| = |\varphi(x_2)|$ and the boundary condition (2) gives the result.

Remark. The last part of the above proof implies: If $\partial_s |f(x)| = 0$ a.e. in C, where s is any direction orthogonal to x, then $|f(x)| = |x|^K$ in C. This fact will be used later.

Lemma 7. There is a sequence $J_2 \subseteq N$ such that for every $y \in G$

$$\lim_{\substack{j \to \infty \\ j \in J_2}} |g_j(y)| = 1.$$

Proof. Let $k\in N$. Since $\mid \varphi_j(y)\mid \rightarrow \mid \varphi(y)\mid =1$, $j\in J_1$, uniformly in S^{n-1} , we can choose $i_k\in J_1$ such that

$$1 - 1/k < |\varphi_{i_b}(y)| < 1 + 1/k$$

for every $y\in G$. Further $g_j\to g$, $j\in J_1$, uniformly in i_kS^{n-1} . Thus there is $j_k\in J_1$ so that

$$1 \, - \, 1/k \, < \, | \, g_{i_k}(i_k y) \, | \, / \, | \, g(i_k y) \, | \, < \, 1 \, + \, 1/k$$

for every $y \in G$. Denote $J_2 = (i_k j_k)$, k=1 , 2 , \dots . Now the proposition follows immediately from

$$\begin{split} |f(i_k j_k y) | & (i_k j_k)^{-K} = |g_{j_k}(i_k y) | i_k^{-K} = \\ |g_{j_k}(i_k y) | & |g(i_k y)|^{-1} |g(i_k y) | i_k^{-K} = \\ |g_{j_k}(i_k y) | & |g(i_k y)|^{-1} |\varphi_{i_k}(y)| \,. \end{split}$$

The mapping $h = I \circ \hat{f} \circ I$: $R^n \to R^n$, where I is the inversion $I(x) = x/|x|^2$, satisfies the conditions $K_o(h|C) = K_o(f)$ and $h|\partial C = f|\partial C$. The above results can thus also be applied to h and to respective sequences. If we denote

$$g_{1/j}(y) = j^K f(y/j) ,$$

then we see immediately the validity of the following lemma.

Lemma 8. There is a subsequence J_3 of J_2 such that for every $y \in G$

$$\lim_{\substack{j\to\infty\\j\in J_3}} \mid g_j(y)\mid =1 \;,\; \lim_{\substack{j\to\infty\\j\in J_3}} \mid g_{1/j}(y)\mid =1 \;.$$

Now we are ready to prove Theorem 3. Proof of Theorem 3. We show first that

$$\int_{C} (L_{f}(x)^{n} - |\partial_{x}|f(x)||^{n}) |f(x)|^{-n} dm(x) = 0.$$

Denote for $j \in J_3$

$$\begin{split} a_{j}(y) &= \min_{x \in G} \; \{ \; | \; g_{1/j}(x) \; | \; | \; P_{r}f(x/j) = y \} \; , \\ b_{j}(y) &= \max_{x \in G} \; \{ \; | \; g_{j}(x) \; | \; | \; P_{r}f(jx) = y \} \; , \end{split}$$

where P_r is the radial projection of \mathbb{R}^n onto \mathbb{S}^{n-1} . Since

$$|f(jy)| = |g_j(y)|j^K, |f(y/j)| = |g_{1/j}(y)|/j^K,$$

we obtain as in the proof of Lemma 1

$$\int_{G} (2K \log j + \log |g_{j}(y)| - \log |g_{1/j}(y)|)^{n} dm(y)$$

$$\leq (2 \log j)^{n-1} \int_{C_{j}} |\partial_{x}| f(x) ||^{n} |f(x)|^{-n} dm(x)$$

$$\leq (2 \log j)^{n-1} \int_{C_{j}} L_{j}(x)^{n} |f(x)|^{-n} dm(x)$$

$$\leq (2K \log j)^{n-1} \int_{G} dm_{n-1}(y) \int_{a_{j}(y)/j}^{b_{j}(y)/j} t^{-1} dt$$

$$= (2K \log j)^{n-1} \int_{G} (2K \log j + \log b_{j}(y) - \log a_{j}(y)) dm_{n-1}(y) .$$

Hence

$$0 \leq \int_{C_j} (L_f(x)^n - |\partial_x| f(x) ||f(x)||^n) |f(x)|^{-n} dm(x)$$

$$\leq K^{n-1} \int_{C} (\log b_j(y) - \log a_j(y)) dm_{n-1}(y)$$

$$-\sum\limits_{k=1}^{n} \binom{n}{k} K^{k} \left(2 \log j\right)^{k-n+1} \int\limits_{G} \left(\log \mid g_{j}(y) \mid -\log \mid g_{1/j}(y) \mid \right)^{n-k} dm_{n-1}(y)$$
 .

Since $g_j \to 1$, $g_{1/j} \to 1$, $j \in J_3$, uniformly on S^{n-1} , we have for every $y \in G$

$$\lim_{\substack{j\to\infty\\j\in J_s}}a_j(y)=\lim_{\substack{j\to\infty\\j\in J_s}}b_j(y)=1\;.$$

Moreover $|g_j(y)| \leq \lambda$, $|g_{1/j}(y)| \geq 1/\lambda$, $b_j(y) \leq \lambda$, $a_j(y) \geq 1/\lambda$ for $j \geq M$, hence by the Lebesgue convergence Theorem

$$\int\limits_{C} \left(L_{f}(x)^{n} - \mid \partial_{x} \mid f(x) \mid \mid ^{n} \right) \mid f(x) \mid ^{-n} dm(x) = 0.$$

Thus $L_f(x) = |\partial_x| f(x) | |$ and consequently $\partial_s |f(x)| = 0$ a.e. in C for every direction s orthogonal to x. Remark after Lemma 6 implies that

f maps every domain G(t) onto $G(t^K)$. Thus $L_f(x) = \partial_x |f(x)| = K |x|^{K-1}$ for a.e. $x \in C$, and the length of the image of an arbitrary segment $\{ty \mid a \leq t \leq b\}$ is for a.e. $y \in G$ equal to $b^K - a^K$, i.e. the distance between $G(a^K)$ and $G(b^K)$. Now $P_r(f(ay)) = P_r(f(by))$ and by the continuity of f even for all $y \in G$. This means that f carries every ray r_y onto a ray. Finally, by Remark after Lemma 4 $\sigma_f(x) = 1$ a.e. in G. The theorem is proved.

We show now that in the case $K_o(f) = K^{n-1}$ the mapping f need not be defined by (2) in C.

Example. Let $w(z)=e^ize^{-2i\,|z|}$ be a quasiconformal mapping of the plane disc $D=\{z\mid |z|<1/2\}$ onto itself. Then w(z)=z on the boundary of D and $J(z\,,w)=1$ for every $z\in D$, see [2, p. 17]. Let

$$G = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1 , \ x_1^2 + x_2^2 < 1/4 , \ x_3 > 0 \}$$

and let P be the orthogonal projection of G onto D. Then the composed mapping $\varphi = P^{-1} \circ w \circ P : G \to G$ also satisfies the conditions $\varphi(x) = x$ for $x \in \partial G$ and the area derivative $\sigma(x\,,\,\varphi) = 1$ for $x \in G$, because |w(z)| = |z| for every $z \in D$. Denote the supremum of the maximal stretching $L_{\varphi}(y)$ by M, where the supremum is taken over all $y \in G$.

We define now the mapping $f: C \to C$ by

$$f(x) = \varphi(x/|x|)|x|^K,$$

where K > M is a constant. Then $f(x) = |x|^{K-1}x$ on the boundary of C and the volume derivative at x is

$$K |x|^{K-1} (|x|^{K-1})^2 \sigma(x/|x|, \varphi) = K |x|^{3(K-1)}$$
.

Since K>M, the maximal stretching of f at x is $K\mid x\mid^{K-1}$. Thus

$$K_0(f) = K^2,$$

but the mapping φ is not the identity mapping.

Theorem 4. If $K_I(f) = K$, then f is composed of the mapping (2) and a rotation.

Proof. Theorem 2 and the inequality $K_O(f) \leq K_I(f)^{n-1}$ imply $K_O(f) = K^{n-1}$ and hence Theorem 3 is valid. Let $x \in C$ be a regular point of f such that $\sigma_f(P_r(x)) = 1$. Let $\lambda_1 = |\partial_x f(x)| = K |x|^{K-1}, \quad \lambda_2, \ldots, \lambda_n$ be the semiaxis of the dilatation ellipsoid $E(f'(x)), \quad \lambda_2 \geq \ldots \geq \lambda_n$. By Theorem 3

(6)
$$\lambda_2 \ldots \lambda_n = |x|^{(n-1)(K-1)}$$

and hence $\lambda_n \leq |x|^{K-1}$. The definition of $K_I(f)$ gives

$$\lambda_1 \ldots \lambda_n = K \mid x \mid^{K-1} \mid x \mid^{(n-1)(K-1)} \leq K \lambda_n^n$$
,

i.e. $\lambda_n \ge |x|^{K-1}$. Thus $\lambda_n = |x|^{K-1}$. The equality (6) implies then, since $\lambda_2 \ge \ldots \ge \lambda_n$,

$$\lambda_2 = \lambda_3 = \ldots = \lambda_n = |x|^{K-1}$$
.

Hence $f \mid G$ is a rotation, and the theorem follows.

Remark. The rotation in Theorem 4 can appear only if ∂C is contained in an (n-2)-dimensional linear subspace of \mathbb{R}^n .

References

- [1] RICKMAN, S.: Removability theorems for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I 449, 1969, I 8.
- [2] Taari, O.: Einige Extremalprobleme für *n*-dimensionale quasikonforme Abbildungen. Ann. Acad. Sci. Fenn. Ser. A I 553, 1973, 1–18.
- [3] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin – Heidelberg – New York, 1971.
- [4] VÄISÄLÄ, J.: Piecewise quasiconformal maps are quasiconformal. Ann. Acad. Sci. Fenn. Ser. A I 1, 1975, 3 6.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 6 November 1974