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EXTREMAL QUASICONFORMAL MAPPINGS
OF A CONE

0SSI TAARI

In the paper [2] we proved the following extremal property for cylinder:
Let G be a domain in R"' with m, ; () < co and f a quasiconformal
mapping of the cylinder Z = G'x R'CR" onto itself which satisfies
the boundary condition

(1) Sy, oo n) = (v, ..o, , Kay),

where K >1 is a constant. Then K,(f)=K""' and K,(f)=K, where
Ko(f) and K,(f) are the outer and inner dilatations of the mapping f.
In the extremal case K,(f) = K" ' the lines parallel to x,-axis go to
similar lines, and the image of the section

() = {@ + le, |xel}

of Z is for every teR' the section G(Kt). However, the mapping need
not then be affine. On the other hand, if K,(f) = K, then f is the affine
mapping (1).

Now we consider a similar problem for cones. Let ¢ be a domain in
S (£ 87, and let ¢ be the cone {xeR"|a/|x|e@}. We
consider a homeomorphism f: C —C whose restriction to €' is quasicon-
formal and which satisfies on the boundary oC' the condition

(2) fa) = Ja |5 e,
where K >1 is a constant.
By Rickman [1], Theorem 1, or Vaisald [4], Theorem 2, f can be ex-

A

tended to a quasiconformal mapping f:R"-—>R" so that

f(f(' . f(-’”), when xeC
w) - fa}[K_lx, when xER"\O.

The following distortion theorem is valid for f.
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Theorem 1. Suppose that f:C—C is a quasiconformal mapping
which satisfies the boundary condition (2). Then there exist positive constants
A and M>1 such that

(3) |2 %/2 < |f@)) = Ale|*

holds for |x|=M or |x|<1/M. Here A dependsonly on K and K(f).

Proof. Denote A = 2H (0,f), where H (0,f) is the linear dilatation
of f in the origin. The assertion for small values of || follows then im-
mediately.

For big values the result follows from the preceding one by inversion
o (@) =a/|z|2. Now ¢ lofogp isa quasiconformal mapping of R" with
the same dilatations and values on ¢C' as f itself.

In the following theorem we give the natural lower bounds for the

dilatations.
Theorem 2. If f satisfies the boundary condition (2), then

K, (f) = K™ K (f) =z K.

Proof. Choose 0< r,<<1/M < M < r, such that il < ryfa.
TLet I' be the curve family which joins the sets G(ry) =r G =
{a]a/r,e @} and G(ry) = r,G in C. Then by Sections 7.7 and 6.4
of [3]

M(I) = m,_y (G) ] (log (ry [ 1) )"
and
M(fT) < m,_y(G)[(log (A7 rs | Arf)) .
Letting 7, — c0  we obtain by M(I") = K(f) M (fI')
Ko(f) =z K",
Since K,(f) < K, (f)"", we have
K(f) =z K.

Theorem 3. If Ky(f) = K", then f maps each ray r(y) =
{ty|t > 0}, yeG, onlo a similar ray, and the image of

Gty = G

is for every t >0 the set G(t*). Further, the volume derivative o(x,h,)
of the homeomorphism h, = f|G(t) s equal to "V for almost
every w € ((t).
Before the proof of Theorem 3 we introduce some preliminary lemmas.
Lemma 1. If K,(f) = K", then
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< (L@ = o, [f@) | 1" [f@) |7 < 2log A (1 +n) K" m,,_y (G)

Cc

where o |f(x) | 1is the directional derivative of |f| at x 1in the direction
of w.

Proof. Let jeN, j > M and j* > 1; then Theorem 1 is valid for
| =4, and 55/2>1/7%. On almost every ray r(y) = {ty|t >0},
y €@, f and thus also |f| are locally absolutely continuous. Moreover,
f is differentiable at almost all points of 7(y). Theorem 1 implies

log (j%/2) — log (A*) < log |f(jy) | — log | fy[j) |

= 1 ) 1)
By Holder's inequality we obtain
(2K logj — 2log2)" < (2logj)"! l{la Aty |17 | fity) | e
: i
< (2logjy {L )" g | e
< @logjt TLay) | ftg) |~
177
the inequality L (ty) = L,(ty) follows from the triangle inequality.
Since L(x)" < Ky(f)J (v,f) at almost every point of

0, = (zeC|1j < |2] £ ]},

7

if follows by integrating over ¢
(2K logj — 2log A)" m,_; (()
= (2logj)"™ 1o Lfle) [ [f) [~ dm(x)

/

S (logjy™ [Lje” fie) | dmia)

= (’10{:})”‘17(” ! IJ JS) @) |7 dm(@)
]
= (2logj)" P K" [ |z | dm(z)
fC
! 2K
< (2K logj)*™* [dm, , [ t'dt
G 1—1j*K

= (2K logj)" " m, _, (¢) (2K logj + 2log 7).
This implies
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0 écf(Lf(x)" = o, [fl) [[") [f@) |7 dm(x)
=< m, (@) (2mn + 1)log AK" + &),

where lime = 0. Letting j-—co yields the lemma.
§ =0

Lemma 2. If Kyf)= K"", then the function
(L = o 1D

is integrable in C.
Proof. Let A and B be those subsets of €' where o, |f(x)| =0,
resp. o, |f(x)|< 0. By 0 <a,|f(x)| = L(x) the inequality

(L/ - 3 If § L/ 8 If

holds in 4 and the integral of ((L;, — &,[f[)/[f])" over A is finite
by Lemma 1.
To obtain the respective result for the set B we prove that

)" [ f@@) | 7" dm(x)

is finite. If j = M, then for almost all rays r(y) = {ty |1/j =t = j},
yeld,

log (j* [ 2) — log (A/j") = f 9y | fl@) | ][ 1 f() [) dmy ()

= [ @ 1f@)]]]1f@)])dm( )é I (L) [ f(2) ]) dmy() .

rj.(y) n4 rj.(y) nA4

By Holder’s inequality and integration over (/ we obtain
(2K logj — 2log A)"m,_, (G) < (2logj)"~ 1 f L)' | f@) | ™" dm(x) .

I
On the other hand,

Y L f(@) | T dm(x) < K" (2K 1ogj + 2log A)m,_, (G).

J

From these inequalities it follows that

[ L@ | f@) | dm@) < [2 (0 + DK og i + e m,_y(6).

CjﬂB
Letting j»» 0 yields
lf —n dm ) < 2 (n + 1) Kn—l loglmn—l(G) ‘

The inequality | o, | fx) || = Ljx) implies



Extremal quasiconformal mappings of a cone 69

[ (L) = o, [f@) )] | f@@) )" dm(z) < 2" (n + 1) K" log Am,,_y () .

B

Hence ((L, — @, [f])/|f])" is integrable over C'.

We consider again the extension f of [ and define a sequence
g;: B"— R" of quasiconformal mappings by

= f(j2) 1755 = 1,2,

For every j is Ky(g; | C) = Ko(f) = K" and g, |eC = f|eC. B
Vaisala [3], 20.5, 21.3, 37.2 and by the above Theorem 2 the sequence
g; has a sub@equence g;» j€J C N, which converges uniformly on com-
pact subsets of R" and whose limit mapping is quasiconformal with
Ko(g | C) = K*™'. The formula (3) is still valid for ¢ with the same
bound 4.

Lemma 3. The mapping g maps each ray r, onto a ray r,.

Proof. Suppose a << b. We choose a set B CG,m, ,(B) =m, {(G),
such that g¢; is for every je. locally absolutely continuous on every
ray r,, ye€k . Denote L, = L*’;" By Fatou’s Lemma

ftimint (1 () = 7 1) ) de) dn, 40

G j—ow,je] \a

b n

< liminf | <I (Ly(ty) — o, 1g;(ty)|) dt) dm, () .
jrwo,je] G \a

Since  Ly(ty) = j" % L(jty) and &, |g(ty) | = j"%o,|f(jty) |, the latter

integral is at most

i G (L) — o, 1) " dt) o) (f ‘_1‘”>H

G

= (log bfay™* ((L,(jx> - an.fux)l)f-’f)"dmw),

C(a,b)

where C(a,b) = {xeCla <|ax] <b}. Setting jx =2z we obtain

(log (bfa)™ [ ((Lfz) — o, |f(2) [)j~")" dm(z)

C(ja, jb)

= (log (bfa))" 1 b*" [ ((Lyz) — &, | f(2) |) (jO) )" dm(z)

C(ja, b)

< """ (log (bfa))™ ( [ () = o, 1f@) D 1fE) )" dm(z)
C(ja ,1b)
for jb = M, because then |f(z)| = A(jb)* . By Lemma 2 this converges
to zero when j-—co. Thus a set EH, CF can be chosen so that
m,_y (By) = m, ;(£) and
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b
liminf [ (L;(ty) — &, |g;(ty) [ ) dt = O
j—s>w,je] a ' :
for every y el .
Fix y € B,. For a subsequence (j,) of J

b

4) lm [ (L (ty) = 2, 1g;,(0) ) dt = 0.
k—>wa
b |
Now [aylg;,(y) ldt = |y, (by) | — |g;,(ay) |
converges to |g(by)| — |g(ay)|. Hence the length of the g, -image of

the interval {ty|a <t < b} also converges by (4) to the same limit. Since
9;,—> 9, an elementary argument implies that the g-image of {fy |a <
t <b} is a radial interval. By the continuity of ¢ this holds for every
y €G. Since a and b were arbitrary, the lemma follows.

Let B C G be a Borel set. By Lemma 3 the g-image of the cone
CB) = {ty |y e B, t >0} is again a cone. Let o,(y) be the volume
derivative of the homeomorphism %, = P,°(q|G): G — G, where P, de-
notes the radial projection of (' onto . The number o,(y) is finite
for almost every » € .

Lemma 4. The number o,(y)

Proof. Let y € G such that o,(y

=1 ae in G.
Y)
small that U = B"(y,r) nS"*' C

< o . For ¢ >0 choose r >0 so
G and

m,_4(h(U)) < (a,(y) + &) m, 4(U).

For arbitrary , < /M, t, =M, i, <t,/A we consider the curve
family

I' = AU, U CWU 5t L)),

where O(U ;#; ,t,) = {tz|ze U, t; <t <t,}. Then
M(I) = m,_y(U)/(log(ty/t;))"
and
M) = (o y) + &) m, 4(U) | (log (5 | 227))"" .
Letting t,— oo, M(I') < K""' M(gI') now implies
o (y) +e=1,

and thus, since ¢ >0 is arbitrary,

oy) = 1.



Extremal quasiconformal mappings of a cone 71

On the other hand, by the inequality
r Gg(y) dm'n—l(y) _31 m, 1 (G) ’

G
g(y) =1 ae. in G. Thus g,(y) =1 ae. in G.
Remark. Tt will be later proved that also f maps the rays 7, onto rays.
From the above proof it follows that then also oy(y) = 1 a.e. in G.

~

Lemma 5. For almost every x €

L) = K |g@@) |||

Proof. Let B C (¢ be a Borel set. Denote C(B;a,b) ={ty|yebB,
a < t<b}. Since h, satisfies the condition (N) and g maps the rays
onto rays, we have
I J,g) dm(x) = m(g(C(B;a,b))
C(B;a,b)

[ g(by) |
= [dm, ,(v) [ wdu
hoB3 I'glay) |

b
= [ o y) dm, 4(y) [ (Lglty) | [t) ™o, glty) | di

B

= I (lg@[/le])"elgw@) | dn@).
C(Bja,b)
Thus  J(x,g) = (1g@)[/|«])"elg
K™ (@, g) = K" (1g() | [la]) e,
a.e. in C'. The lemma follows.
We repeat now the above process with respect to the mapping ¢. We
get a sequence ¢;: R"—R",je.J,

)| and consequently L (x)" =
gle) | < K" (1g@) [ ]2 ][) 7 L)

o) = g(jr)j " .
This sequence has a subsequence ¢;, je€J; CJ, which converges uni-
formly on compact subsets of R”", and its limit mapping ¢ is quasicon-
formal with K,(p | C) = K*'. Further ¢ has the boundary values (2)
on ¢C and Theorem 1 as well as Lemmas 3 —5 are valid for it. We will
prove now that ¢ sends the domain (G onto t*G'.

Lemma 6. Forevery x e

lp@) | = | |".

Proof. For a.e. y e the mapping ¢ is locally absolutely continuous
on the ray r, = {ly |y €@, t >0} and L,(ty) = K |g(ty)| [t for almost
all + >0, see Lemma 5. Choose such y. Let M be as in Theorem 1.
Then for v >a > M
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K(logu — loga) — 2log 4 = log | g(uy) | — log |g(ay) |

h

= [ (e, glty) | [ gty)])dt

a

and consequently

(5) lim [ (Kt — o, gtty) |/ glty) ) dt =0,

because the integrand is by Lemma 5 nonnegative; the nonnegativity of
the integrand is not yet known for f and this is the main reason for the
above process.

For arbitrary z > 0

Klogz — log ([ 9;(zy) |/ [ 9;(y) ) =1f (Kt — o, [o;(ty) | | | o;(ty) | )dt

—

(Kt —jao,lgCty) |19ty |)dt.

-

Substitution ji = w and (5) yield

z

(Kt — e, lg(gty) || 1gCty) ) dt

1

= T (K= o, gt | L gtup) ) du

j
— Klogz — log (1g(jz) | [ 1g(jy) ) >0 when j— oo, jed,.
Since ¢, — ¢ and ¢ is continuous, the last two formulas give
Loy) | = 2" o(y) |
for all ye@@, z >0, and consequently
oy loly) | = K25 o) |-

Since Lemma 5 can also be applied to ¢,

Lzy) <K |oy) ||z =K oy) |
and thus

Ly(zy) = ¢, o(2y) |

fora.e. 2y e C. At these points grad [p(zy) | = @, | p(zy) |y and hence
o, | p(zy) | = grad | p(zy) |- s = 0 in every to y orthogonal direction s .
This implies that | p(x)| = [« |[X in ', forif |g(x;)| # |e(xy) | at

the points a;,2, €0, |2, | = |2,|, then by a theorem of Fuglede (Vii-
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sala [3], p. 95) the points a; € ¢ and a; € C can be chosen such that
a) |ap | = |25, b) |e@)]|# |e@)], c) ¢ is absolutely continuous
on a regular curve ¢ which lies on the set {x|x/|x{| € G} and which
joins the points 2; and a5, d) the tangential derivative o |¢(x)| van-
ishes a.e. in C'. The integration leads then to contradiction. Hence |¢p(x;) |
= | ¢(xy) | and the boundary condition (2) gives the result.

Remark. The last part of the above proof implies: If o_[f(x) | = 0 a.c.
in (!, where s is any direction orthogonal to a, then |[f(x)| = |x[*
in . This fact will be used later.

Lemma 7. There is a sequence J, C N such that for every y e

lim [g,(y) [ = 1.
el

Proof. Let ke N. Since |g(y)|-—= o) | =1, jeJ,, uniformly
in S, we can choose 1, €.J; such that

L — k<o (y) <1+ 1k

for every y e (/. FKFurther ¢ -y i e.J,, uniformly in 7,8, Thus
o -/] s ) 1 k
there is j, €, so that

L= 1k < g, Gu) | [ 1gty) | <1+ 1]k

for every # € (/. Denote J, = (1,7, k=1,2,.... Now the prop-
y 1 2 kJi)
osition follows immediately from

) | Gad) ™ = 1) i ™ =
L3, @) [ gly) | 7Y gy 175 =
L9, ) | g [ Lo ()]

The mapping h = 1I-e f ol : R'"--R", where [ is the inversion
I(x) = x/|a|?, satisfies the conditions K,(h|C) = K,(f) and h|oC =
f1eC . The above results can thus also be applied to & and to respective
sequences. If we denote

f/J/j(!/) = Jl\f('//}) )

then we see immediately the validity of the following lemma.
Lemma 8. Thereis a subsequence J, of J, such that for every y e G
lim Jg,() | =1, lim [gy,() ] = 1.
er i€
Now we are ready to prove Theorem 3.
Proof of Theorem 3. We show first that
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[ (Ly(e)" = o, [f@) [[7) [fx) | 7" dm(x) = 0.

C
Denote for je.J,

”’/(!/) = mln { lJl/;(" VP f(x))) = )

xel
bi(y) = max { |g;(@) | | P f(jx) =y},
reG
where P, is the radial projection of R" onto S"'. Since

G L= 1Tg;0 15 @i L= Loy 1155
we obtain as in the proof of Lemma 1

[ (2K logj + log [ g;(y) | — log [gy;(y) [ )" dm(y)

< (2 log j)! j [o, | fte) || "] flx) ]| " dm(v)

~ (2log )“ YL@y | fla) | " dm(x)
(J
bk
< (2K log j)*t [dm, (y) T Vdl
G a;()/i¥

= (2K log j)** [ (2K log j + log b,(y) — log a,(y)) dm,_,(y) .

Hence
O = [Uyle) = [e, [ f) [17) [fee) [ dm(x)
(vj

K™ [ (log b;(y) — log a;(y)) dm, _(y)

~z<)K‘Uwﬂ””ru%rww{~mam”uiwﬁmew

k=1

Since ¢;—1, ¢y,;,—1, je€Jy, uniformly on §*', we have for every

yeld
lim a;(y) = lim b,(y) = 1.
§€‘J1 ;‘G’J:,

Moreover [g;(y) | = 4, [gy,;(y) | = 1/4, bj(y) = %, a;(y) = 1/A for j =M,
hence by the Lebesgue convergence Theorem

Iy = [ 1f@) 117) 1) |7 dm(@) = 0.

Il

Thus Ljx) = |o,|f(x)|| and consequently & |f(x)| =0 a.e.in C for
every direction s orthogonal to . Remark after Lemma 6 implies that
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f maps every domain G(f) onto G(t*). Thus L(x) = o, [f(x) | = K || Kt
for a.e. 2 eC, and the length of the image of an arbitrary segment
{ty la =t = b} is for a.e. y el equal to b — | ie. the distance
between ((a¥) and G(¥). Now P,(f(ay)) = P,(f(by)) and by the
continuity of f even for all # € (/. This means that f carries every ray
r, onto a ray. Finally, by Remark after Lemma 4 o(r) = 1 a.e. in (.
The theorem is proved.

We show now that in the case K (f) = K" ' the mapping f need not
he defined by (2) in .

Example. Let w(z) = ¢'ze
plane disc D = {z| |z | < 1/2} onto itself. Then w(z) = z on the boundary

2i |2

be a quasiconformal mapping of the

|
of D and J(z,w) =1 forevery ze D, see[2, p. 17]. Let
G={veR|ad+al+ai=1,af+a3<1/4, x>0}

and let P be the orthogonal projection of ¢/ onto D. Then the composed
mapping ¢ = Pl owe P: ¢ also satisfies the conditions ¢(z) =
for a e a6 and the area derivative o(v,¢p) =1 for 2 e, because
lw(z)| = |z| for every zeD. Denote the supremum of the maximal stretch-
ing L,(y) by M, where the supremum is taken over all y e G .

We define now the mapping f:C-—C by

f@) = o/ ) el %,

where K = M is a constant. Then f(x) = |« |[* ' on the boundary of ¢
and the volume derivative at x is

K|a| %t (o] K02 gl 2], p) = K| BR=1)
Since K = M, the maximal stretching of f at x is K |x|*'. Thus
Ko(f) = K*,

but the mapping ¢ is not the identity mapping.

Theorem 4. If K,/(f) = K, then f is composed of the mapping (2)
and a rotation.

Proof. Theorem 2 and the inequality K(f) = K,(f)" imply K,(f)
— K" and hence Theorem 3 is valid. Let a €' be a regular point of f
such that o(P,@) = 1. Let 4 =|of@)|=K|«x["" 4, ..., 4
be the semiaxis of the dilatation ellipsoid H(f'(x)), 4, = ... =4,. By
Theorem 3

((;) j’g .« o }. = {.’17 ’ (n—1)(K—1)

n

x| K=

and hence 7, = | The definition of K, (f) gives

b

e Ay = K |5 | U < K

i "
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x5t Thus A, = |a| %', The equality (6) implies then, since
" q Y p

;vz::ﬂ.3: . = ”71214771](71.

Hence f| (¢ is a rotation, and the theorem follows.
Remark. The rotation in Theorem 4 can appear only if dC' is contained
in an (n-2)-dimensional linear subspace of R”.
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