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ON THE ALGEBRAIC INDEPENDENCE OF THE
VALUES OF SOME E-FUNCTIONS

KEIJO VAANANEN

In the following @ denotes the field of rational numbers, C the field
of complex numbers and C(z) the field of rational functions of z with
coefficients in C.

1. 1In this paper we shall consider the functions

(’}1'

. 0
(1) uo,i(Z,V 3 P’) = (l/Z!)gleKV,u (z) 3 uz',o(z:\"i*) = (l/ll)ﬁK\‘,u(Z) s
i =012,...,

where K, , is the Kummer function

(2) K, .(?) =

n

18

(6o 4+ D evalp + = Dby + 1) (v + 0 — 1)e",
v, #0,—-1,—2,....

The function values K, .(x), K. .(z), where o # 0 is an algebraic
number and v, p € Q, have been considered in many papers (see [1], [3]).
We shall now prove the following theorems. (Throughout this paper we
denote differentiation with respect to z by a dash.)

Theorem 1. Let o # 0 be an algebraic number, and let v and u be
rational numbers satisfying the conditions

v #0,—1,—2,...; p, po—v #0,+1,+2,....
Then the numbers of each of the two sets
U ol , v, w),  ugple,v,w), e k=0,1,...,n;
Uy olee, v, @),  wpgloe, v, @), €% 1=0,1,...,m,

are algebraically independent.
Theorem 2. Let the conditions of Theorem 1 be satisfied. Further, let
v #1,2,.... Thenthe 2(m + n) + 3 numbers
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(3) 161‘,0(0.,\/,51,), u;,()(‘xav>f)-)> u(),k(olwv:fl'): u’(’)»k(“’vnu'): eu’
1=01,....m, k=12, n,

are algebraically independent.

2. In the proofs of our theorems we shall use the method of Siegel and
Sidlovskii. Thus we shall prove the following lemmas.

Lemma 1. Let v and p. satisfy the conditions of Theorem 1. Further,
let v # 0 be arational number. Then the 2n + 3 functions

Q(O-k(’t$\’!{)‘), “‘(,).k(zaV,H), 67:7 kj: 0,1,...,’/1,

are algebraically independent over C(z) .
Lemma 2. Let the conditions of Lemma 1 be satisfied. Then the 2m + 3
functions

ui,o(zﬂhﬂ): u;'yo(zfv>{)')v (/'.”’ i:O>1a--~,77l;

are algebraically independent over C€(z) .
Lemma 3. Let v and p satisfy the conditions of Theorem 2. Further,
let v # 0 be a rational number. Then the 2(m -+ n) + 3 functions

U, 0(2 'V {‘L) ’ u:‘, O(Z s Vo P“) > Uo, x\A

(
t=0,1,...,m, Lk=12,...,n,

are algebraically independent over €(z) .

3. We begin by proving Lemma 1. For the sake of simplicity we put
wo,  (Z,v,0) =u,, k=0,1,.., and use in the following the notations
w(k) and w'(k) to denote respectively the functions wu,,u,,..., u, and
Uy 5 Ug ey U,

The function u, = K, ,(z) satisfies the differential equation

(4) ug + (vjz — Dug — (/z) uy = 0.

Thus we can deduce that the functions «(n) satisfy the following system of
differential equations,

(6) wup+ vz — Dug— (nf2)upy— (1/2)upy =0, u_;=0, k=0,1,...,n.

It follows that if P = P(z,u(n),u'(n),e*) is a polynomial in z,
u(n), w'(n), €, then 2P’ will also be a polynomial in the same variables.

In the proof of Lemma 1, which will be performed by induction, we need
the following lemma.

Lemma 4. Let us assume that we have an irreducible polynomial
P = P(z,u(n),u'(n),e*) satisfying
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(6) P = .fpz.eivz =0,

1=0
where P;, 1=0,1,...,m, are polynomials in z, wu(n), w'(n) such that
P, ==0. If the functions w(n), u'(n) are algebraically independent over
C(z), then P must satisfy, identically in z, w(n), u'(n), €', the equation

(7) zP" = (az +b)P, a, bCQ,
and, further, P iust be of the form
P =P, em+P,, m=1,

m

where the polynomials P, and P, are homogencous with respect to u(n) ,
w'(n) and one of them is a polynomial in z alone.

For the proof of this lemma we refer to [7] (pp. 5—6).

First let n = 0. The algebraic independence of the functions u,, u,
is proved in [3]. If the functions u,, wug, ¢ were algebraically dependent
over ((z), then we should have an equation of the form (6). By Lemma 4,
this yields

(8) P =P, e +Py=0,
where P satisfies (7), P, and P, are homogeneous polynomials with
respect to w,, wuy such that P, = ¢,2z" or P, = ¢z’ with non-zero
constants ¢, , ¢,. Further, we can assume that v > 0.

1°. Let P, = c¢,z'. Then a = my, so that P, satisfies, by (7), the
differential equation
(9) 2Py = (myz+0b)P,.
It we denote

!
P, = > Aut"ug,
i=0

where A, are polynomials in z, then (9) and the algebraic independence of
the functions wu,, wu, implies that
(10) 24+ (1 —t+1D)zAd, 1 +@E+D)pdy,=((my—9)z+b+iv)4d,,
t=0,1,...,l, A_;=A4,,=0.
Let k, be the degree of the polynomial 4,, ¢ =0,1,...,0I. If my—1¢ #0
Vi=0,1,...,1 then (10) with 7= 0,1,...,{—1 gives
ky=ky+1, 1=0]1,..,1.

Thus k,_,+1=k,. Butif ¢=1, then (10) gives %k, , =k, . This con-
tradiction means that there exists one ¢, say i,, such that my = i,.
Thus (8) must be of the form
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!
(11) €, 20e0" +‘20Aiué‘fu{,i = 0.
i=
We now denote
By (z) = e Puy, Uy y(z) = 20"V2 B, u(2).

From the proof of Lemma 7 of [1] it follows that the functions U, ,(z),
Ui u(z), €% are algebraically independent over C(z). Since v € Q, this
implies the algebraic independence of the functions B, .(z), B .(z), e*/2.
From (11) it follows that

l
¢, i 4 €2 3 A BBy /2 + By ) = 0.
i=0
Since B, .(z), B .(z), €*? are algebraically independent over C(z), it
follows that 2¢; =1. Further, we must have ! = 1. This leads to a con-
tradiction.
2°0 It Py = ¢pz’, then @ =0,and P, satisfies the differential equa-

tion
ZP;I’L = (_mYz+b)Pzn'

If we repeat the reasonings used in the early steps of the first case, we get
—my =1y, 1,€{0,1,...,0}.

This is impossible, since —m y < 0. Thus Lemma 1 is true when »n = 0.

Now let us assume that this lemma holds when »n = k. Next we shall
prove that this implies the truth of Lemma 1 with n =%k + 1. We split
the proof into three steps, called in the following A, B and C.

4. Step A . We define
b= wgUpiq — UGy

and prove that the functions w(k), w'(k), t are algebraically independent
over C(z). If we assume, against this, that these functions are algebraically
dependent, then we have

(12) P =3Pt —0,
i=0

where P is an irreducible polynomial in 2z, w(k), »'(k), t, and P,,
v=0,1,...,m, are polynomials in z, wu(k), «'(k) such that P, ==0.
By induction hypothesis, m = 1.
By (5), we obtain
2t = (2 —v) t + ugu, .
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From this and (5) it follows that z P’ is also a polynomial in =z, wu(k),
w'(k), t . Further, by (12), z P’ = 0. Thus the induction hypothesis implies
that the polynomial z P’ must be divisible by the polynomial P . Since
the degree of z P’ with respect to ¢ does not exceed that of P, there is a
polynomial S in z, w(k), «'(k) such that

(13) :P' = SP

identically in 2z, w(k), «'(k), t. If we compare the coefficients of ¢
in (13), we obtain an identity

2P, +m(Ez—v)P, =8SP,.

Since the degree of z P, with respect to wu(k), u'(k) does not exceed that
of P, ,and the degree of z P], with respect to z exceeds that of P, at
most by one, it follows that § = az + b with constants @ and b. Thus
the identity (13) takes the form

(14) 2P = (az+b)P.

Here we can assume, by Lemma 10 of [4], that a, b€ Q.
If 4y, #y,..., %, is another solution of (5) with n =%+ 1, and
[ = @yl — Uolhy., , then

2t = (2 —v) T+ Uoly, -

Thus (14) holds even when we replace the solution u (k 4+ 1) by any other
solution @ (k + 1). Now denote (k) = u(k), = U1+ 0y, where
y is a solution of (4), linearly independent of u,, and ¢ is an arbitrary
constant. By integrating (14) we then obtain

2Pt + o(ugy’ — ugy))' = c(o) 2% .
=0

When we differentiate this equation with respect to ¢ and put =0,

we obtain
m

(g’ — uby) 3i Pgi=t = ¢'(0) e

=1

Now ugy’ —ugy = czve*, ¢ # 0, and this gives the following equation
m
(15) S1i Pgi-1 = ¢(0) c-1zbHve(e-z
=1

m
First let m > 1. If ¢'(0)=0, we have > ¢Pti-1 = 0. This is

. i=1
impossible, since P is irreducible. If ¢’(0) # 0, then b +v must be a
non-negative integer. If @ = 1, then we have the same contradiction as

before. If a # 1, then we can eliminate ¢ from the equations (12) and
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(15), and thus obtain an algebraic relation over €(z) between the functions
u(k), w'(k), e'*V#_ This conflicts with the induction hypothesis. Thus
m = 1, and (15) has the form

P, = ¢'(0) cm1zhtveta-s
Thus b + v must again be a non-negative integer. IMurther, it follows from
the induction hypothesis that @ = 1. This implies that
P, =cp@t™, ¢, #0.
We have now proved that the equation (12) has the form
(16) P = ¢t +Py = 0.

Now we shall analyze the polynomial P,. Denote
!
PO = Z [Iz >
i=0

where each H, is a homogeneous polynomial of degree ¢ with respect to
u(k), w'(k). Replace now in (14) u; by u,=ou,, 1=0]1,...,k+1,
with an arbitrary constant ¢ . By integrating (14) we then obtain the equa-
tion
!
c??Vot + D 6'H, = c(c) 2"e* .
i=0
When we differentiate this equation twice with respect to o, and put
¢ =0, we have
2™t + 2 Hy = ¢"(0) 2 .

Thus H, — P, = ¢"(0)z%?/2, and this together with the induction hy-
pothesis gives the result P, = H,. Thus P, isahomogeneous polynomial
of degree two with respect to w(k), «'(k).

Let s=[k/2]. If s>0, put w(k—1)=u(k—-1), a4, =
Uy + G Uy, Upq = Upyq + 6wy, With an arbitrary constant ¢ . By putting

Py = A, + Pyguy, + Poyug + Pygui + Pryugug + Pogug?
where A4; and P, do not contain w, or wu;, and integrating (14), we
obtain
CoP TVt + o(uguy — uguy)) + Ay + Proluy + oug) + Poy(ug + o ug) +
+ Pyg(uy + 6 ug)? + Py + 6 wg) (g, + 6 ug) + Poo(uy, + 0 10)% = ¢(o) 2% .

When we differentiate this equation with respect to o, put ¢ =0 and
again invoke the induction hypothesis, we obtain the result
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P o= @™t + (uquy — uguy)) + aq(2) (wouz — ugwy) + 4,

11—l
=zzo “z.ZE) (Ui 1m1—; — Wjhgr1-1-5) + Ay,
- 7:

where ay=c@b*v, a; = a,(2) is a polynomial in z, and A4, is a homo-
geneous polynomial of degree two with respect to u(k — 1), w'(k—1).
Next, let us assume that for some ¢ < s we have

i =1
_Z Z Ufpsy—qmg — Willgr1——) + Aqs

where A, is a homogeneous polynomial of degree two with respect to
ulk —1i), w'(k—1), and a,=a,z) are polynomials in z. Let usagain
denote

A; = Aoy + Prgtyy + Poyuiy + Poqui -y + Pryttye_ gy + Poguz; .
The substitution @k —1¢—1) = wk—1—1), Wy = Up_; + G Ug
Upoyoy = Uppqog + O Upyeeey Upyq = Uppq + 6 Uy in (14) now gives

P i
Z Z UUperqmgy — Wlgrrg—g + O (Utipg 1y — Ujlip1-1-y))
(17) + Ay + Pro(w; + 0 ug) + Poy(ui—y + 0 ug) + Pog(ug_; + 6 %)? +
+ Pyy(Ug—; + 6 Ug) (uf—; + 6 ug) + Pog(ui; + 0 up)? = (o) 2% .

By differentiating this equation with respect to ¢ and putting ¢=0,
we obtain

i+1 i+1- ,
’
P = ZZOaz 'Zo (U1 =gy — UUps1y—y) + Ay -

It follows that
(18) Z Z Wfqo gy — Wilkgqq—y) T A,

where again 4, is a homogeneous polynomial of degree two with respect to
ulk —s), «'(k—s). We now have two possibilities, either 2s=4% or
2s+1=k.

1°. 2s=1k. Denote

~

8§—

P, = _Zo(uju'ésﬂ—l—j — Uy gyyg-g) -
=

Since the polynomial P = Zs: a,P,+ A, satisfies the differential equation
=0
(14) with a = 1, we obtain
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(19) Y (za}—(b+v)a)P, +lioalus_lus+zA; — (z+b)4,.

We have ay=cybtv, and so zaf— (b +v)a, = 0. Thus (19) with the
induction hypothesis gives a, = ¢;zbtv, I = 1,..., s, where ¢, are constants.
We now immediately obtain the equation

(20) lgs:oclzb’r"us_lus +z2z4;=(+b)4,.

Denote
Ay = Ay + Prgug + Poyug + Pygu? + Prwug + Poud,

where 4,,,; Py,, Py, and P,,, P,; P, are homogeneous polynomials
of degree two; one and zero, respectively, in wu(s —1), u'(s—1). So
P,,, P,;, Py are polynomials in z satistying, by (20) and the induction
hypothesis,

2Py — (2 +b) Pyo + p Ppy + c@?™ = 0,
(21) 2Py —(b+v)P;+22Pyy+2uPy =0,

2Pl + (2—b—2v)Py+2Py; = 0.
Let d,, d, and d; be the degrees of the polynomials P,,, P,; and Py,
respectively. ~ Further, let ¢ be the coefficient of 2% in Py,
If d,>0b+v—1, then it follows from (21), that d, =d; =d, + 1. The
second equation of (21) now gives

docf.— (b +v)clp+2¢c—2¢c = (dy—b—v+1)c/u =0,

which is impossible. If d; <b+v—1, then d,=d, =b+ v, and from
the second equation of (21) it follows that

— dotofi + (b +v) cofn +2¢9 = 2¢4 = 0,
but this, too, is impossible, since ¢, # 0. So we are left with the case
dy = b+v—1. Then we must have d, =d; =d, + 1. Thus (21) again
gives the following contradiction,

dy(c —co)f. — (b +v) (e —co)fu +2¢+ 2(cp—¢) = 2¢5 = 0.
2°. 28+ 1 = k. By substituting a(s) = w(s), sy = gy + 0Ugy,
Ugpg = Ugpg+ G Uy yeee, Uggrp = Ugeip+ 6 U, in (14), we obtain
2 8_l ’ ’ ’ ’
IZE)“ZIZO(ujuszrz— 1mg — Wilg o gy T O(Ulsy 1y — Ulhgyygj))
= j=

+ Ao+ Poglugyy + 0 ug) + Poy(ugyq + 0 ug) + Pog(%yq + 0 %)% +
+ Pry(sgpq + 6 %) (Ugyq + 0 %) + Poy(thgiy + o ug)? = c(o)’e*,

where we have presented 4, in the form
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Ay = A+ Pigugyq + Poytgry + Pogidyn + Prattsats + Popttd s
and here A, ,; Py, Py, and P,,, Py, P are homogeneous poly-
nomials of degree two; one and zero, respectively, in u(s) , »'(s) .

We differentiate this equation with respect to ¢ and put ¢=0. In
this way we obtain the equation

8
’ ’ ’
l%“t(uou&u—z — Ul gy 1) + Prgug + Poyug + 2 ugw g 1Pog +
+ Pyy(uguiyy + ugt ) + 2 ugus 1 Pog = ¢'(0) 2% .

We see from the induction hypothesis that this equation is impossible. This
contradiction completes the proof of step A .

5. Step B. In order to prove the algebraic independence of the func-
tions wu(k + 1), w'(k + 1) over C(z),let us imagine, contrary to this propo-
sition, that these functions are algebraically dependent over C(z). Then
the functions w(k), w'(k), t and v = u, ,/u, are also algebraically
dependent over C(z). From step A it follows that » is algebraic over the
field F = C(z,u(k), ' (k),t). Now

o = (g s — ubug ) =
is an element of F. Thus Lemma 1 of [2] implies that v itself is also an

element of F. Thus there exist two polynomials @ and P in z, u(k),
w'(k), t,having no common factors, such that

(22) Qv—P = 0.

When we differentiate this equation and multiply the result by zu§, we
obtain
(23) zudQ v+ 2Qt —zulP’ = 0.

If @ =0,then Q¢ = uiP’, and this is impossible by step A . So it
follows that @' # 0.

The left-hand side of this equation (23) is a polynomial in the same
variables as Qv — P . That polynomial must be divisible by Qv —P,
since otherwise we would obtain a contradiction with step A by eliminating
v from the equations (22) and (23). This means that there exists a poly-
nomial R in =z, wu(k), w'(k), t such that we have, identically in z,
w(k), w'(k), t,

zud@ = RQ,
zQt —zulP' = —RP.
It R is not divisible by u,, then (24) yields the result that both poly-

nomials @ and P are divisible by «2. This contradiction gives the result
R = uyS, where S isa polynomialin z, u(k), w'(k), ¢.

(24)
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Denote

m

Q:ZAiti7 Am$0’
=0

where A, are polynomialsin z, u(k), »'(k). The first equation (24) gives
uo(z A;n + m (Z - V) Am) =S Am v

From this and step A it follows that S cannot contain ¢, and is at most
of degree one with respect to z or with respect to w(k), u'(k).

First let us assume that S is not divisible by u, . Then (24) implies that
@ is divisible by u,,say @ = u@,. By (24),

zugly = (S —zug) @y,
2Qof —zu P’ = —SP.

From these equations it follows that § — zu; must be divisible by u,,
since otherwise @, , and also P, would be divisible by u,, which is im-
possible. Thus we obtain

(25) 2Qp = (124 0)Qy,
2Qot = zul — {(az+b)uy + zug} P

with constants ¢ and b .
Let us denote

QOZiBiti’ P:-ipitl! BmPn$0;
=0 =0

where B, and P; are polynomialsin z, u(k), u'(k). Now the first equa-
tion of (25) gives

2B, +m(z—v)B, = (az+0b) B, ,
by which
B

. ~btmv,(a—m)z
m = Caitmvela—miz

The induction hypothesis implies that @ = m . Further, b 4+ m v must be a
non-negative integer, and

— b++myv
Bm - CmZ .

If n>m+ 1, then the second equation (25) gives, by step A, the
following equation

Uz Pp+n(z—v)P,) —{(mz+b)uy+zu)} P, = 0.
This yields

Pn = c”zb+nvu0€(m—n)z,
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but this contradicts the induction hypothesis. Thus n=m 4 1. By
comparing the coefficients of " in (25), we obtain

2t = (2 Py 4+ (2 — b —nv) P,) —zueP, .

Since ¢, # 0 and the right-hand side of this equation is of degree =1
with respect to u(k), u'(k), we have obtained a contradiction.
Next let S = (az + b)u, with constants @ and b. Then (24) is of
the form
2Q" = (a2 +0)@Q,
2Qt—zudP = —(az+b)uiP.

Thus @ must be divisible by 3. On the other hand, if we denote as before

m
szAiti’ Am$0:
i=0
and use step A, we obtain

zAL+m(z—v)4, = (az+b)A4,.
Hence,

Am — cmzb-x-mve(a-m)z , cm # 0.

The induction hypothesis yields @ =m. Thus 4, is a polynomial in
z alone, and @ cannot be divisible by %2 . This is the desired contradiction,
and completes step B .

6. Step C. Here we prove that the functions w(k + 1), »'(k+ 1),
e’*, y€Q and y # 0, are algebraically independent over C(z). Let us
assume that these functions are algebraically dependent over C(z).

From Lemma 4 and step B it follows that our assumption implies an
equation

P =P, em + P, =0,
where P,, and P, are polynomialsin z, w(k + 1), »'(k + 1), and one of
them is a polynomial in z alone. Further, we have

2P = (az+b)P, a, bEQ

identically in z, w(k + 1), w'(k+1), €. So P,, = ¢,2° or P, = ¢’
where ¢,, and c, are non-zero constants and b must be a non-negative
integer.

We first assume that y=1. If P, = c,2’, then a=m and P,
satisfies the differential equation

2Py = (mz+0)P,.

In the same way as on p. 7 of [7] we can now deduce that
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l .
(26) P, = Py, +.21Qi(u(l)uk+1 — Uollgy1)’s @ #0,

where P, and @, are polynomialsin z, u(k), »'(k). Further, ason p. 8
of [7], we obtain

l .
¢1(0) z%em* "‘.217' Q:(ugy — woy') (Ugtpyy — Uglhpyg)™t = 0,
=

where y is a solution of (4), linearly independent of wu,. Since
ugy — ugy' = ce*fz¥, ¢ # 0, we have

!
(27) ¢4(0) Ve — ¢ 314 Q (gt y — wuguiy) = 0
i=1
If ¢{(0) =0, then we have a contradiction with step B . If ¢;(0) # 0,
then m =1 and also, by step B, I =1.Thus @, =dz"", d = c¢{(0)/c.
So it follows that the polynomial

Py = Pyo + d 2" (ugyyy — Uglgyg) = Pog — d 2"
satisfies the differential equation
2Py = (2 +b) P, .

This is impossible as was proved in step A (see pp. 98—101).
If Py = cep®,then ¢ =0 and P,, satisfies the differential equation

2P, = (—mz+0b)P, .

We can now deduce that P,, has the same form (26) as P, . The equation
analogous to (27) is now of the form

l
(28) €1(0) 2" — ¢ e D 314 Q (Ugtyyy — Uglhyyq)™! = 0.
i=1
The left-hand side of this equation must be divisible by the polynomial
P = P, em 4 cz®. This is impossible, and thus the functions u(k + 1),
u'(k + 1), e* are algebraically independent over C(z) .
Let y # 0 be an arbitrary rational number. If P, = ¢, 2", then we

can again deduce that P, has the form (26), and the equation analogous to
(27) is of the form

1
¢1(0) 2*+ve™* — ¢ ez_Zli Q(uglyyy — Uglgyy) ™t = 0.
i=

From this it follows that

1
¢1(0) 2¥Pyfc,, + ¢ e".Zli Qi(UgUpyy — UgUpyq)' ™ = 0.
P
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This contradicts with the case y = 1, which we just proved. If P, = cg",
then we obtain a similar contradiction as before, and thus step C holds.
Our Lemma 1 is now proved.

7. We now denote wug ;(z,v, @) = g, UiolZ, vV, ) = U g,
j=0,1,.... In the following let the notations wu(m,n) and w«'(m,n)
denote the functions w,,, u,; and ujq, wy;, ©=01,...,m,

j=12,...,n, respectively.

From (5) and (1) it follows that the functions u(p , n) satisfy the follow-
ing system of differential equations

ug, ;+ (Ve — 1) ug ; — (pf2) wo,; — (1/2) g, o1 = 0y g1 =0,
(29) ui o+ (vfz = 1) uf o — (w/2) w9 + (1/2) Uig,0 = 0, U_g,0=0,
1=0,1,...,p, j=12,...,m.

Lemmas 2 and 3 will now be proved simultaneously. The proofs will be

performed by induction. If m =0, then Lemmas 2 and 3 follow from

Lemma 1, which we just proved.
Now, let us assume that the functions

(30) ulm ,n), w'm,n), e

are algebraically independent over C€(z). Using this assumption, we prove
that the functions

(31) wm+1,n), w'(m-+1,n), 7,

too, are algebraically independent over C(z). Let us assume the contrary
case that the functions (31) are algebraically dependent over C(z). We
shall prove that this leads to a contradiction.

The proof is divided into three steps, called here A1, B1 and C1.

8. Step A 1. By analogy with step A we denote
b= UgoUmi1,0 — %oo¥mi1,0
and prove that the functions
(32) wim,n), w(m,n)
and ¢ are algebraically independent over C€(z). Otherwise we would have
an equation

l
P =3Pt =0,
=0

where P is an irreducible polynomial in 2z, ¢ and (32); and P,
i=0,1,...,1, are polynomials in z and (32) such that P, == 0. By the
induction hypothesis, I = 1.



106 KEe1j0 VAANANEN

In a completely analogous way to step A (pp. 97—98) we can now deduce
that P is of the form

(33) P = cp@ttM + Py =0
and satisfies
(34) 2P = (z+b0)P, b€Q,

identically in z, ¢ and (32). Further, P, is a homogeneous polynomial of
degree two with respect to (32).

Since (34) is an identity, it follows that (34) holds if we replace the solu-
tion wu(m 4 1,n) by any other solution w@(m 4+ 1,n) of (29) with p =
m 4 1.

We now write s = [m/2]. By analogy with reasoning employed on
pp. 98—99 we can deduce that P must be of the form
1

umu;vwl——HLO - u;'o“m-tl—z—-j,o) + 4 }

ay = c2't’ # 0,

(35) z

"Ml

where A is a homogeneous polynomial of degree two with respect to
w(0,n), w(0,n), u,;y, wj,, j=12,...,m —s. From (34) it now follows
that

s
(36) Z b"f‘"')(’ — I)P _’Zalus Ioum s, 0+”A,
(z 4 b) A "
where we have denoted
s—1
!’ ’
P, = 'Zo(uj’ oUmi1-1-5,0 = W, 0%my1-1-i o) -
i=

If s > 0, which means m > 1, then the induction hypothesis yields
zay — (b +v)ay — ezt = 0.

If b+v=0,then za;=c,. But this is impossible. If b+v >0,
then al——dz’—i—ez“fl—!—..., d#0, 1<%=<b+v. Thus we obtain

id—(b+v)d—6li’b+vco = 0,

and this leads to a contradiction.

If m = 1,then P is of the form

P o= e + Ay + Piguyg + Poyugg + Pagudy + Pryteggyy + Pogtt}
where 4,; P,,, Py, and P,,, P,;, Py, are homogeneous polynomials of
degree two; one and zero with respect to (0, n), %'(0,n). When in (34)
wereplace (2, n) by the solution @(0 , n)= w(0,n), @;y = Uy + 6 U;_q, o,
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i = 1,2, integrate (34), differentiate the result with respect to ¢ and put
¢ = 0, we obtain

b+v ’ ’ D ’ <
o2 (Ugottyg — Uootyo) + Prgtho + Portoo + 2 Paglligloo
’ ’ ’ r ' ~b
+ P1(t1otee + Uy oUgg) + 2 Poalbygligy = € (0) zPe?

The induction hypothesis tells us that this is impossible.

Next, let m = 0, and let » =[n/2]. If r > 0, then we obtain, using
the induction hypothesis and a similar technique as on pp. 98—99,

r—1 r—1-1

(37) P = cgx*™ +IZO% jZO (o, n 15 = Uostbo,n—1-3) + A v
where @, = a,(z) are polynomialsin z and A, is a homogeneous polynomial
of degree two with respect to u(0,n —7), u'(0,n —r). Now either
2r=mn or 2r=n—1.

1°. 2p=mn. The substitution @(0,r —1)=wu(0,r—1), g =
Wo; + 6 Uy sy s J=Tyeeym, in (34) now gives, after similar steps as before,

r=1
’ ’ ’ ¢
,Z Wy (Wogttg, y—y — Uggto,r—1) + Prottge & Porttgy + 2 Pagtto o +
=0

2 ’ ’ 9 Ay’ ’ - ’ by
+ P (g, tge + wg,g) + 2 Poglig gy = ¢'(0) 2%,
where we have presented A, in the typical form

/ - ’ 2 . 2
A, = A, + Pigug, + Poyg, -+ Pagtty, + Py g, + Poytigs -

From the induction hypothesis it follows that
2°. 2r=mn—1. By the substitution @
Wp; + 6 g, jor_1> J =1+ 1,...,n,1n (34) we get

z) =
(0,7) = w(O,r), 1wy =

" r—1
o N ~ b ¢ ! /
(38) P = o2t + X a3 (o M02,:1-1-5 — Upori1—1-) T 4
=0 %0
where A4 is a homogeneous polynomial of degree two with respect to
w(0, ), »'(0,7). By (34) we have

(39)  — 2" NMuggttgy + 2 (2ay; — (b +v)a,) Z Ay o, +2 A =
=0
(z+0) 4,

where
r—1
P, = jzb(uoﬂ‘(;,zr—uqa = WU, 2rr1-1-5) -
By the induction hypothesis we get @, = d ;"' , where d, are constants.
As on pp. 100—101 we obtain a contradiction if d, # 0. Thus a,(z) == 0.
Thus we see that the functions w, ,, g, donot occurin P .
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By continuing in the same way we can deduce that none of the functions
g, ;> Uy, 55 [1/2] > 0, can oceur in P . Thus we finally see that P must be
of the form

(40) P = c2"™t + ¢ 2"V (uggtber — Loothor) + Pagtde + Prittootoe + Postel

where P,,, P,,, P, are polynomials in z. These polynomials must
satisfy the equations (see p. 100)

2Py — (2 +0) Pyg + p Py + 02"V = 0,
(41) 2P — (D + V)P +22Pyy+2uPyy— g™ = 0,
2P+ (2—b—2v)Py+2Py; = 0.

Let us assume, at first, that ¢ =0. If d,, d, and d; are the degrees
of P,,, Py; and P, respectively, then (41) gives dy =dy; =d; + 1 =
b+v. If d is the coefficient of z% in P, , then it follows from (41) that

—doyd + (b +v)d—2pd+2pd—cy = —c, =0,

which is impossible, since ¢, # 0. This gives step A1 of Lemma 2 (we
have not yet used the assumption v # 1,2,... of Lemma 3).

Next, let ¢ # 0. The degrees dy,=d; and d;+ 1 cannot exceed
b 4+ v. Further, since v # 1,2,... in Lemma 3, it follows from (41) that
P, and Py arenot =0. Nowlet Py, = kz! +1z1+ ..., k #0.
By putting Py = k2=t 4 127 + ... and by using the last equation (41)
we obtain

th—0O+2Vk+k = 0.

This yields &y #0, since 1 —b—2v =1i—nyg—v # 0, nyg=0+v.
From the second equation (41) it follows that P, = kpz'"2 + Lzt ...,
where &, # 0. Then we use the first equation (41), which gives

(-2 ky—bhy = 0.

Thus b is an integer, and so v =n,— b must also be an integer. This
contradiction completes the proof of step A 1.

9. Step B 1. Here we can use a word to word repetition of step B
(pp. 101—103), now defining » = u,,.4, o/tyo . We thus obtain the algebraic
independence of the functions (32) and w,,., ¢, %1, Over C(2).

10, Step C1. The functions (30) and wu,, 5 ¢, #%,.q,0 can now be
proved to be algebraically independent over €(z) in a completely analogous
way to the proof of step C'. (It should be noted that Lemma 4 remains
valid if we replace the functions u(n), «'(n) by the functions u(m + 1, n),
w'(m + 1, n).) Thus Lemmas 2 and 3 are true,
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11. The functions wu(m ,n) and «'(m ,n) are E-functions (for the def-
inition of E-functions see p. 33 of [6]). Further, by (29), the functions
w(0,n), w'(0,n), e¢; wum,0), w'(m,0), ¢ and wu(m,n), u'(m,n),
e satisfy

(wos)" = wgy > (ug))” = (L —v[2) ug; + (u/z) wo; + (f2) uo, 01, Y =y,
uO,—IE()’ j=0,1,...,n;

(i) = uio, (o) = (1 —=v[z) o + (f2) o — (1f2) iy, 0, ¥ =y,

U_10=0, 2=01,...,m,
and
(we))" = gy 5  (Ug;)" = (L —v[z) ug; + (/2) wg; + (1/2) Ug,j—15 Uo—1 =0,
(Ug0)" = uig, (ui)" = (L —v[2) ujp + (nf2) wso — (1/2) iy, ¢ U_y,0=0,

y':y; 1=0,1,...,m, j:],?,...,?’b.

Thus we can end our paper by establishing that the truth of our theorems
follows from our lemmas and Sidlovskii’s theorem [5].
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