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LINEAR PICARD SETS FOR ENTIRE FUNCTIONS

SAKARI TOPPILA

1. Introduection and results

1. In the terminology of Lehto ([5]), a plane set E is a Picard set for
entire functions if every transcendental entire function takes all finite
values with at most one exception infinitely often in the complement of
E . 1t is proved in [8] that a countable set K = {a,} whose points con-
verge to infinity is a Picard set for entire functions if there exists & > 0
such that

{z: 0<[z-—a,,[<l
0g |a,]

for all large = . This result is sharp in the sense that, corresponding to
each real-valued function A(r) satisfying the condition A(r) - co as
r — oo , there exists K = {a,} with lima, = co such that # is not a
Picard set for entire functions and

{z:0<|z——an|<h @] }ﬂE’z(ﬁ

(la,|) log |a,|

for all large n . We shall prove the corresponding result for linear sets.

Theorem 1. If the positive numbers e < a, < a, < ... satisfy the
condition

ea,

(log a,)*
for some & > 0 and for all large n ,then E = {a,} is a Picard set for entire
functions.

This theorem is sharp. It is proved in [9] that if A(r) — co as r — oo,
there exist real numbers 0 < a, < a, < ... such that E = {a,} is not a
Picard set for entire functions and

a’n+1 2 Ay +

a'ﬂ

for all sufficiently large n .
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We denote by U(z,r) the open disc of centre z and radius ». We
shall prove the following theorem from which Theorem 1 immediately
follows.

Theorem 2. Let 0 < a < 2. Let the positive numbers e < a; < a, < ...
satisfy the condition

(a) (AN = a, + (‘lag_d‘:);
for some & > 0 and for all large n . If the radii of the discs C, = U(a, ,r,)
satisfy the condition

(b) log (1/r,) = K (log a,)*,

where K = 20 (1 + 1/e), then the union U C, is a Picard set for entire
functions.
We denote by [a,b] the closed segment « < a <0, and (a,b) is the
segment a << @ << b. Theorem 2 is sharp in the following sense.
Theorem 3. Let 0 < a < 2. There exists a countable set E = {a,},
0<a,<ay,< .., lima,=oco, satisfying (a) for e = 1/T such that the
linear set

@
U (an — Ty Qy =+ Tn) ’
n=1

where

log (1/7‘") - (1Og an)2+u s

L@ -

s not a Picard set for entire functions.

The corresponding sharp result for disecs €', whose middle points need
not lie on a ray is proved in [10]. If we have 0 <« <1, &> 0, and
K, a sufficiently large constant, then the conditions

A 2 0< g —a,| < e Jan] Nk =
= # =l < og Ja, ¢
and

(B) log (1/r,) = K, (log a,)**2

[ee]
guarantee that U U(a,,r,) is a Picard set for entire functions. If K,
n=1

in (B) is taken too small, then U U(a, ,r,) need not be a Picard set.

2. Lehto and Virtanen [7] gave the following definition for normal
meromorphic functions: If f is meromorphic in a simply connected domain
G, then f is normal if and only if the family {f(S(z)) }, where ¢ = S(z)
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denotes an arbitrary one-to-one conformal mapping onto itself, is normal
in the sense of Montel. In multiply connected domains f is said to be
normal if it is normal on the universal covering surface. We shall consider
the following problem: If £ is a closed set, under what conditions does
there exist a normal meromorphic function in the complement of £ with
at least one essential singularity in £ ? Lehto and Virtanen [7] proved
that if f is normal in G, then f is normal in every subdomain of &,
and that a meromorphic function can not be normal in any neighbourhood
of its isolated essential singularity. This implies that if £ is a finite set
and f isnormal in — /&, then f is a rational function. Only finite sets
have this property. We shall prove

Theorem 4. If E is an infinite closed set, there exists a non-rational
normal meromorphic function in — K .

We denote

If'(2)]
Q(f(Z» 1 + lf(z)IZ '

The proof of Theorem 4 is based on the following theorem of Lehto and
Virtanen [7].

Theorem A. A non-constant f, meromorphic in a domain G of hyper-
bolic type, is normal in (¢ if and only if there exists a finite constant C  so
that for all z in @,

(©) o(f(2)) ldz| < Cdog(z),

where dog(z) denotes the element of length in the hyperbolic metric of G .

3. We denote S(a,f) = {z:a<argz<p} and L, = L(a) =
{z:argz=a}. Let f be an entire transcendental function. We say
that L, is a line of Julia of f if, for every ¢ > 0, f takes every finite
value except perhaps one infinitely often in S(a — e, a + ¢) . The set of
all Julia lines of f is denoted by J,. Then J, # ¢ and the set {ei:
L,€J,} is closed. On the other hand, if J = {L,: a€ E} # ¢,
{ee: o€ B} isclosed, and 0 <p < 1/2 or p = oo, there exists an entire
function f of order ¢ such that J, =.J. This is proved by Polya in the
case ¢ = oo and by Anderson and Clunie [1] in the case ¢ = 0. In fact,
the function f constructed by Anderson and Clunie can be chosen such
that f is slowly growing, ie.

log M(r, f) = O((log 7)?)

as 7 —>oo. In the case 0 <p <1/2, we take L,€J and construct an
entire function ¢ of order p such that, for every & > 0, |g(z)| tends to
infinity uniformly outside S(a — e, a + ¢) as [z] - co. Let & be a slowly
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growing entire function such that J, =.J . Then f(z) = g(z)k(z) is of order
o and J,=J.

Let now f be an entire function of order o, 1/2 < ¢ < co. Cartwright
[3] has proved that there exists S(a, ) where f = a + z/o, such that if
Sy ,v+alo)NS(a,pB) # ¢, then S(y,y + /o) contains at least one
Julia line of f. Therefore, if 1/2 < ¢ << 1, there exist L,, Lz €J, such
that 27— 7o <Bf—a <m,and if 1 <p < oo, there exist L,, L,
L,€J,suchthat a<p <y,f—a<zfo,y—f <nfoand y —a=nfo.
Conversely, if J satisfies these conditions, there exists an entire function
of order o such that J,<J . We shall prove

Theorem 5. Let {eiw: a€ E} be closed and J = {L,: a € E}
# ¢. If

(i) 1/2<o <1 and there exist Lo, Ls€.J such that 27— nfo <
f—a<m or

() 1 <o <oco and there exist Lo, Lz, L,€J suchthat a <f <y,
p—a<amlo, y—p=<afo and y—a=nfo,

then there exists an entire fuction | of order o such that J,=J .
We denote 1ogd = max {0,logd} for d > 0. We need Schottky’s
theorem in our considerations. It is proved by Ahlfors in the following form.
Schottky’s theorem. If ¢ isregular and g(z) # 0,1 in |z] <1,
then
1+ Jz]

Ig lg(x)| < 77 (7 + 102 [9(0)]) .

2. Proof of Theorem 2

4. Contrary to our assertion, let us suppose that there exist an entire

transcendental function f and 7, > 0 such that
{0, 1) = U©,r) U U C,.

n=1
It does not mean any restriction to assume that f(C',) N {0, 1} # ¢ for
every 7. Similarly, we may assume that f(0) # 0, because if f(0) =0
then we can consider the function 1 —f. We denote by K,, K,,
constants depending only on the numbers ¢ and « in Theorem 2, and
M,, M,, ... are constants depending on f.

Let r> 2r,. Applying Schottky’s theorem to the function A(z) =
f(z%) we see that 10g |h(i )| < M, rt and therefore 10g |f(—7)| < M7t .
Applying Schottky’s theorem repeatedly, we see that 1og |f(z)] < M,
on .
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{—r+iy: ly <r}Uf{z+iy: lyl=r, —r<az<2r}.
It follows from (a) and (b) that we can choose s, r <s < 2r, such that,
forany n, U(s,0)NC, = ¢ where

ETr

4 (log r)”
Applying Schottky’s theorem in U(s +¢r,r — d/4) and iI'l Us—ver,
r — 6/4), we see that
1g |f(s + iy)| < My (log r)* rt;
it 6/2 < |y| <r, and the same theorem applied in U(s, d) gives
16g f(s +iy)| < M, (logr)*rt;

for —r <y <r. Now it follows from the maximum principle that
log M(r) < M, (log r)*rt;, where M(r) = M(r,f) = max{ |[f(z)|: [z| =
r}. The order of f isat most 1/2 and we may write

f(z) = bI_Il(l — z[t,)
where 0 < |t;| < || < ... and b # 0.

5. Let us suppose that there exists n, such that {0, 1}<f(C,) for
every n >mn,. Let r > 10a, . If either a, <3r/4—1 or a,>7r+1
for any =, then n(r) = n(3r/4), where n(t) = n(t, 0) is the number of
zeros of f in |z| <t, zeros of order p being counted p times.

Let 3r/4—1<a,<r+ 1. Wechoose &€C, suchthat f(§)=1.
We denote ¢, = n(a, + 1) — n(a, — 1); here ¢, > 1 because C, con-
tains at least one zero of f. Itisseen that |1 — &/t,| < 1for [t,| > 57/8,
and therefore

0 = log [f(¢)| < n(57/8)logr +g¢,logr,.

Now it follows from (b) that

. n(5r[8) log r 2 n(5 r[8)
1
( ) qn S log (1/7.") —_ K (]Og :r)l+a :
Let b, be the number of the points a, satisfying the condition

3r/4 —1<a,<r+ 1. It follows from (a) that b, < e (logr)*,
and we see from (1) that
2 (3 r/4)

n(r) — n(3r/4) < cKlogr
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Therefore n(r) < n(3r/4) (1 + 1/(101og r)) for all large values of 7, and
we get

n(r) < n((3/4)4r) (1 e 5—151{%—;)4 < n(r/e) (l - log,lzg r> .

Now it is seen that

n(emr) < n(r)tl;[l(l + [ Flogr
This implies that n(R) = O(log R) as R oo and so ¢, =0 for all
large n. We are led to a contradiction and conclude that there exists an
infinite subsequence C', of the dises C', such that {0, 1}¢£C,) .

) < n(r) (m + 1).

6. If r islarge, then |1 -+ 7/t,| > 1 forevery m and |1 + ¢/t | = 7/4
for m = 1,2, ..., n(r). Therefore we obtain

n(r)
log [f(—7)| = log |b 1;11(1 +rft,)| = n(r)log (3/2),
and see that
(2) n(r) < K,log M(r)

for all large values of ».
We choose n such that {0, 1} 4 f(C,), and denote

ea,
n Ty

2 (log @)

If |f(z)] > 8 forevery z€I', = {z: |z —a,| = 9, }, then it follows from
Rouche’s theorem that {0,1} < f(C,) Dbecause f(C,)N{0,1)} # ¢.
Therefore, there exists (€ I', such that |f({)] < 3, and we deduce from
Schottky’s theorem that log |f(z)] < K, on I',. Applying Schottky’s
theorem in Ua,+ia,,a,—0,2), we get 1og |f(a, +ia,)| <
K, (log a,)*, and because |f(z)] < f(—2 |z]) if l|z| is large, it follows
from Schottky’s theorem that

(3) log M(4a,) < K, (loga,)

if n islarge enough, say n > n,,and {0, 1} & f(C,).

If possible, we choose n > n, such that {0, 1} 4 f(C,) and {0, 1} <
f(C,yq), and 2y, 2, €C,,, suchthat f(z;) =0 and f(z;) = 1. We have
|2y — 2| < 27r,,, and |l —zft, | <1 for m > n(a, + 1). Therefore we

obtain
n(an+1)

0 = log |f(2))] < logr,.;+log (b I (1—=z/t,) ]

m=1

< logr,.; +nla, +1)loga,.,,
and it follows from (b) that
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(4) n(a, + 1) > K (loga,, ).

On the other hand, it follows from (2) and (3) that #n(a,+ 1) <
K, K, (loga,)*. This is in contradiction with (4), and we see that there
exists n, > n; such that {0, 1} ¢ f(C,) if n > n,.

Let now a,—1<7r<a,.,— 1. Then n(r) <n(a,+ 1) and we see
from (2) and (3) that

(5) n(r) < Ky (log )

for all large values of 7.

7. Wedenote z, = a, + (¢, +1a,)/4 and s, =a,—9,. It follows
from Schottky’s theorem that log |f(z,)] = 2 Kglog M(a,) where Kg> 0.

Because s, € I',, we have 16g [f(s,)| < K,, and so
[(z2) ‘

g ¥ 221 > o M .

(6) log Gl = Kqlog M(a,)

Further, |[(t, —2,)/(, —s,)| < 1for m > n(3a,), and therefore

log | 162 | < 10 [T |22 22| < n(3a,) log (6 a,/s,)

g :f(sn) _— o =1 t]n . Sn —_— n g n n N
X ca .
Because 0, = ———"— , we obtain

2 (log a,,)
f(z,) | .
log |52 < K,n(3a,)logloga,
Bljs,| = fon@an)loglos

and we see from (6) that for all sufficiently large = ,

Kylog M (a,)
log log @,

(7) n(3a,) =

where Ky > 0.

It follows from (5) and (7) that n(r) = O((logr)?) as 7r— oo and
n(r) # O((log r)%) if d < 1. Therefore we can choose d, 1 <d <2,
such that =n(r) = O((log r)?) and n(r) # O((log r)?~*) . Then log M(r) #
O((log r)%**) as r — oco.

Let us suppose that a,., < ai, for all large n. Let a, ;<7 <a,.
Then it is seen from (7) that

log M(r) < log M(a,) < 2Ky’ n(8)loglogr,

and hence log M(r) = O((log »)**+). We are led to a contradiction and
conclude that there exist arbitrarily large values of »n such that a,, , > a7.
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8. We choose = such that a, ., > a? and set g(z) = f(a, + 2?).
Because a, + 6, € I', , we see that ng lg(o3)] < K,. Applylng Schottky’s
theorem in

Ula}f4,a}/4—0}/2),
we get
log [g(a}/4)| < K, (loga,)?,

and therefore 10g |f(a, + a,/16)] < K4log a, . Because f omits the values
0 and 1 in 33a,/32 < |z| < 35a,/32 , we now see from Schottky’s theorem
that

log M(a, + a,/16) < K, loga,.

This implies that

fizn g 222
r—>wm log

and we are led to a contradiction. Theorem 2 is proved.

3. Proof of Theorem 3

9. Let 0<a<2. Weset t=1/(1+a), a,=e" and [(z) =
ﬁ (1 —z/a,) . Itis easily seen that

m=1
a”

7 (log a,)*

a’n+1 > an +

for all large n . Let »n > 100 and z € U(a, ,d,) where
@y
d = 14 (log @,)* "
We choose positive integers k£ and p such that a,_; <a,/4 <a, and
a, 1 <3a,<a,. Set

f(z) = H(z) Q(z) (1 — z/a,) 8(z)

where H(z ﬁ —zla,,), S(z) = ﬁ (1 —z/a,,) and
m= m=p
Q@) = (1= #fa,) 1T (1 = 2ja,)
We have
k-1 a, k—1
log |H(z)| > log % > (k—1)log (a,/2) — > m!
=1 m=1

and so log [H(z)| > m+1/6. It follows that log |@(z)] > —n»n and
log |S(z)] > —mn . Therefore,
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(5) log [H(2) Q(2) 8(z) | = n'*H[7

in Ua,,d, . Now we see that |f(z)| >2 on |z—a,l =d,, and f
has therefore exactly one l-point in U(a, ,d,). Let us denote by  this
1-point of f. Because f takes on the segment [a, —d,,a, + d,] every
value w satisfying —2 < w < 2, we see that { lies on the real axis. It
follows from (5) that

Z nt+1/7

{—a,
and hence log |{ — a,|"! > n!t1/8 = (loga,)**?/8. Let I, denote the
segment (a, —r,,a, +r,) where

log (1/r,) = (log a,)*[8 .

Then f has only a finite number of 1-points outside U I, and we see
that U I, is not a Picard set for entire functions. Theorem 3 is proved.

4. Proof of Theorem 5

10. We construct the desired counterexamples with the aid of Mittag-
Leffler’s function

@ P

Boe) = 2 Fitam

where 0 < a < 2. FE, is of order 1/a, FE, is bounded on S(— a /2,
27 —amnf2) and a E,(2) — exp (2Y/¢) is bounded on S(—an/2, an/2).

Set a=1/p. Let us suppose that there exist I, L,€J suchthat
y=f +an. We may suppose that f = —an/2. We choose a slowly
growing entire function % such that J, = J andset f(2) = h(z) (Eu(2) + M),
where M > 0 is chosen such that |H.(z)| < M — 1 outside S(—an/2,
anf2). Then J,=J and f is of order ¢ .

Let 1/2<p<1 and a=1Jp. If y #p + an forevery Ls, L,€J,
then it follows from (i) that there exist Lg, L, € J suchthat 27 —an <
y —p < m. We may assume that = —y where 7 —an/2 <y <=z/2.
Set .

9(2) = Eu(z) + Eu(—1"2)
with
__cos(ye)
cos(yo—em)’

Let 2 = rev€8S(w —an/2,anf2). Then

16g |E.(2)] = Ry(z) + recos (y o)
and
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16g |Eo(—t72)| = Ry(z) +trecos (yo — o),

where R;(z) and R,(z) are bounded functions defined on S(z — a n/2,
an/2). Now we see easily that for every ¢ > 0, |g(z)| tends to infinity
uniformly, in S(f+e,y —e)USy +¢,2n—y —¢) as |z >oco. If
h is a slowly growing function such that J, =.J, then f(z) = h(z)g(z)
satisfies J, =J .

Let now 1 <p<oo and a=1fp. If y#p+ an forevery Lg,
L, € J, then by (ii) there exist Lg, L,, L,€J such that g <y <w,
y—f<am, p—y<am and p—f>an. We may assume that
f=—amn/2. Set

g(z) = Hy(z) + E.(t*z e7i)

where ¢ = p —an/2 and
cos (y o)
cos (yo —yo — 7/2)

Then ¢(z) is bounded on Sy, 2z + () and, for every &> 0, |g(z)]
tends to infinity uniformly on S(f+e,y —e)US(y +e,p —e) as
|z| = oo . If & is a slowly growing function such that .J, = J , then

1(z) = h(z) (9(z) + M)

satisfies J, = J, provided the constant M is chosen sufficiently large.
Theorem 5 is proved.

5. Proot of Theorem 4

11. Let E be an infinite closed set. We choose a linear mapping L
such that {0,c0} < F = L(E) and 0 is a limit point of F . Then F
contains an infinite countable set A4 = {a,} such that |a;] < 1/4 and
|@piq] < |a,® for n > 1. We set

© (z—a,
) o = 1 (352).
In order to prove Theorem 4, it is sufficient to prove that f is normal in
the complement of B = A U {0,00}. If f is normal in — B, then it is
normal in — F , and because both p(f(z)) |dz| and dog(z) are conformal
invariants, it follows from Theorem A that f(L({)) is normal in —F .
It follows from Theorem 1 of Lehto [6] that

lim sup [2] o(f()) = -
20
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Therefore there exists M, > 1/2 such that

(2) o(f(2)) = 57

for all z satisfying the condition 0 < [z < 10. Differentiation yields

Ny __Lf(z | & 2a,
O(f(")) - 1 + ‘ (2)|2 kzlezZ'_a%E .
Because |a,| < 1/4 and |a,, | < |a,[*, we see easily that
4 |a
(3) o) = 113
in |z| > 2 |a,|, and
4 4 la,
) i) < o+

in 2la,. | <2 <la,|/2 forany n = 1.

We denote by D the complement of the points 0, 1 and oo, and
let op(w,w’) be the hyperbolic metric of D . Constantinescu [4] has
proved that

1

1 Drlap(@

lim |w|{log | — || =5
u—»O‘ ( w |dwi

Therefore there exists 0, 0 < 6 < 1/2, such that

i ldwl e | L
(9) Ela-;(z) < 4 |w]|log b

in 0 < |w| < 0. The transformation w = 1/z defines a conformal mapping
of D onto itself. Therefore dop(w) = dop(z), and if 0 <z <0, we get

~

from (5)

ldw| |dz| 1' = 4 |w|log |w| .

ot~ Ao = 11"
This implies that
: ldw]
( I /y Y
(6) do () < 4 |w|log ||

in 1o < |w| < oo. Similarly, we see by means of a linear transformation
that there exists M, > 0 such that

[dw|
- < M,
do p(w)

in 0<|w—1]<0. Because the set

(7)
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T ={z:]z] =6, z=1]=>0, |z <1/}
is a compact subset of D, there exists M, > M, such that
|dw|

Elap(u‘)

(8) < M,

in 7.

We denote by G the complement of B = 4 U{0,c0} and D, in
the complement of the points 0, @, and oco. Because D, >, then
dop,(2) < dog(z). Since D is mapped conformally onto D, by z=a, w,
we have dop,(2) = dop(w), and therefore

|dz| _ |dz] a,| [dw|
dog(z) — dop,(2)  dop(w)

(9)

We denote @, = {z: |ay|/0 < |z| < oo}, and set for n > 2
(l)n = {Z: |anl/a _<_ izl S ]a'nan—-lpi } ‘
It follows from (9) and (6) that

92l e
doglz) — 4 |2] log

-/

(10)

an

in @,. Let 2z€Q,. If n=1 we get from (10) and (3)

. ldz| ey .
U(f(,.)) Elv—-o‘(}(z) < 16 ; lob —1 S S,
Let n > 2. It follows from (4) that
4 4 ia
2 o — 1 7nl
oD = o, JiF Ter
in ¢, and we obtain from (10)
|dz] la | 2| [ z | | 2
— <] ik | — | - | o | —
a(f(z))da(;(z) < 6’ . log @ 1 IG’OL"~1 log 0

S 8 + 16 ]an/an—ll;‘ log Ianhl/a’n]% S 16 .
Let 0 a, < |z] < |a,|/0 and z€ G . It follows from (9), (7) and (8) that

|dz |
dog(z)

< My a

Ill’

and we obtain from (2) and (3)

ldz| _ M, M;la,| _ MM,

~ ~ == ﬂ .
dool?) = 1ol =6 s

e(/(z))

Let Ja, ;a,} < |z2] < 6la,l. We get from (9) and (5)

|dz|
dag(?)

)

< 4 |z| log
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Together with (4) this implies that

|dz|
do ( )

n+1

< + 16

log

o(f(2)) 10g

'ﬂ

- 16 Ian+1/an| IOg !a / n+11% S 16 .

We have proved that
0(f(2)) ldz] = (M, + 16) dog(2)

forany z € G . It follows from Theorem A that f is normalin G . Theorem
4 is proved.
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