Annales Academia Scientiarum Fennicae Series A. I. Mathematica Volumen 1, 1975, 111-123

LINEAR PICARD SETS FOR ENTIRE FUNCTIONS

SAKARI TOPPILA

1. Introduction and results

1. In the terminology of Lehto (5) , a plane set E is a Picard set for entire functions if every transcendental entire function takes all finite values with at most one exception infinitely often in the complement of E. It is proved in [8] that a countable set $E = \{a_n\}$ whose points converge to infinity is a Picard set for entire functions if there exists $\varepsilon > 0$ such that

$$
\left\{z: 0 < |z - a_n| < \frac{\varepsilon |a_n|}{\log |a_n|} \right\} \cap E = \phi
$$

for all large n . This result is sharp in the sense that, corresponding to each real-valued function $h(r)$ satisfying the condition $h(r) \rightarrow \infty$ as $r \to \infty$, there exists $E = \{a_n\}$ with $\lim a_n = \infty$ such that E is not a Picard set for entire functions and

$$
\left\{ z:\, 0 < |z - a_n| < \frac{|a_n|}{h(|a_n|) \log |a_n|} \right\} \cap E = \phi
$$

for all large n . We shall prove the corresponding result for linear sets.

Theorem 1. If the positive numbers $e < a_1 < a_2 < \dots$ satisfy the condition

$$
a_{n+1} \ge a_n + \frac{\varepsilon a_n}{(\log a_n)^2}
$$

for some $\varepsilon > 0$ and for all large n, then $E = \{a_n\}$ is a Picard set for entire functions.

This theorem is sharp. It is proved in [9] that if $h(r) \to \infty$ as $r \to \infty$, there exist real numbers $0 \le a_1 < a_2 < \dots$ such that $E = \{a_n\}$ is not a Picard set for entire functions and

$$
a_{n+1} \, \geq \, a_n + \frac{a_n}{h(a_n) \, (\log a_n)^2}
$$

for all sufficiently large n .

doi:10.5186/aasfm.1975.0124

We denote by $U(z, r)$ the open disc of centre z and radius r . We shall prove the following theorem from which Theorem 1 immediately follows.

Theorem 2. Let $0 < a \leq 2$. Let the positive numbers $e < a_1 \leq a_2 \leq \ldots$ satisfy the condition

(a)
$$
a_{n+1} \ge a_n + \frac{\varepsilon a_n}{(\log a_n)^a}
$$

for some $\varepsilon > 0$ and for all large n. If the radii of the discs $C_n = U(a_n, r_n)$ satisfy the condition

(b)
$$
\log (1/r_n) \geq K (\log a_n)^{2+a},
$$

where $K = 20 (1 + 1/\varepsilon)$, then the union $\cup C_n$ is a Picard set for entire functions.

We denote by [a, b] the closed segment $a \leq x \leq b$, and (a, b) is the segment $a < x < b$. Theorem 2 is sharp in the following sense.

Theorem 3. Let $0<\alpha\leq 2$. There exists a countable set $E=\{a_n\}$, $0 \le a_1 < a_2 < \ldots$, $\lim a_n = \infty$, satisfying (a) for $\varepsilon = 1/7$ such that the linear set

$$
\bigcup_{n=1}^{\infty} (a_n - r_n, a_n + r_n),
$$

where

$$
\log (1/r_n) = \frac{1}{8} (\log a_n)^{2+a},
$$

is not a Picard set for entire functions.

The corresponding sharp result for discs C_n whose middle points need not lie on a ray is proved in [10]. If we have $0 < a \leq 1$, $\varepsilon > 0$, and K_0 a sufficiently large constant, then the conditions

(A)
$$
\left\{ z: 0 < |z - a_n| < \frac{\varepsilon |a_n|}{(\log |a_n|)^a} \right\} \cap E = \phi
$$

and

(B) $\log (1/r_n) \ge K_0 (\log a_n)^{2+2\alpha}$

guarantee that $\bigcup_{n=1}^{\infty} U(a_n, r_n)$ is a Picard set for entire functions. If K_0 in (B) is taken too small, then $\cup U(a_n, r_n)$ need not be a Picard set.

2. Lehto and Virtanen [7] gave the following definition for normal meromorphic functions: If f is meromorphic in a simply connected domain G, then f is normal if and only if the family $\{f(S(z))\}$, where $\zeta = S(z)$ denotes an arbitrary one-to-one conformal mapping onto itself, is normal in the sense of Montel. In multiply connected domains f is said to be normal if it is normal on the universal covering surface. We shall consider the following problem: If E is a closed set, under what conditions does there exist a normal meromorphic function in the complement of E with at least one essential singularity in E ? Lehto and Virtanen [7] proved that if f is normal in G , then f is normal in every subdomain of G , and that a meromorphic function can not be normal in any neighbourhood of its isolated essential singularity. This implies that if E is a finite set and f is normal in $-E$, then f is a rational function. Only finite sets have this property. We shall prove

Theorem 4. If E is an infinite closed set, there exists a non-rational normal meromorphic function in $-E$.

We denote

$$
\varrho(f(z)) = \frac{|f'(z)|}{1+|f(z)|^2}.
$$

The proof of Theorem 4 is based on the following theorem of Lehto and Virtanen [7].

Theorem A. A non-constant f , meromorphic in a domain G of hyperbolic type, is normal in G if and only if there exists a finite constant \overrightarrow{C} so that for all z in G ,

(C)
$$
\varrho(f(z)) |dz| \leq C d\sigma_G(z),
$$

where $d\sigma_G(z)$ denotes the element of length in the hyperbolic metric of G.

3. We denote $S(\alpha, \beta) = \{z : \alpha \leq \arg z \leq \beta\}$ and $L_{\alpha} = L(\alpha) =$ $\{z : \arg z = a\}$. Let f be an entire transcendental function. We say that L_a is a line of Julia of f if, for every $\varepsilon>0$, f takes every finite value except perhaps one infinitely often in $S(a - \varepsilon, a + \varepsilon)$. The set of all Julia lines of f is denoted by J_f . Then $J_f \neq \phi$ and the set { e^{ia} : $L_a \in J_f$ is closed. On the other hand, if $J = \{L_a : a \in E \} \neq \phi$, $\{e^{ia}: a \in E\}$ is closed, and $0 \leq \varrho \leq 1/2$ or $\varrho = \infty$, there exists an entire function f of order ρ such that $J_f = J$. This is proved by Polya in the case $\rho = \infty$ and by Anderson and Clunie [1] in the case $\rho = 0$. In fact, the function f constructed by Anderson and Clunie can be chosen such that f is slowly growing, i.e.

$$
\log M(r\,,f)\,=\,O((\log r)^2)
$$

as $r \to \infty$. In the case $0 < \varrho \leq 1/2$, we take $L_{\alpha} \in J$ and construct an entire function g of order ρ such that, for every $\varepsilon > 0$, $|g(z)|$ tends to infinity uniformly outside $S(a - \varepsilon, a + \varepsilon)$ as $|z| \to \infty$. Let h be a slowly growing entire function such that $J_h = J$. Then $f(z) = g(z)h(z)$ is of order ρ and $J_f = J$.

Let now f be an entire function of order ρ , $1/2 < \rho < \infty$. Cartwright [3] has proved that there exists $S(a, \beta)$ where $\beta = a + \pi/\varrho$, such that if $S(\gamma, \gamma + \pi/\varrho) \cap S(\alpha, \beta) \neq \phi$, then $S(\gamma, \gamma + \pi/\varrho)$ contains at least one Julia line of f. Therefore, if $1/2 < \varrho < 1$, there exist L_{α} , $L_{\beta} \in J_f$ such that $2 \pi - \pi/\varrho \leq \beta - \alpha \leq \pi$, and if $1 \leq \varrho < \infty$, there exist L_{α} , L_{β} , $L_{\gamma} \in J_{f}$ such that $a < \beta \leq \gamma$, $\beta - a \leq \pi/\varrho$, $\gamma - \beta \leq \pi/\varrho$ and $\gamma - a \geq \pi/\varrho$. Conversely, if J satisfies these conditions, there exists an entire function of order ρ such that $J_f \subset J$. We shall prove

Theorem 5. Let $\{e^{ia}: a \in E\}$ be closed and $J = \{L_a: a \in E\}$ $\neq \phi$. If

- (i) $1/2 < \rho < 1$ and there exist L_a , $L_\beta \in J$ such that $2 \pi \pi/\rho \leq$ $\beta - a \leq \pi$ or
- (ii) $1 \leq \varrho < \infty$ and there exist L_{α} , L_{β} , $L_{\gamma} \in J$ such that $\alpha < \beta \leq \gamma$, $\beta - \alpha < \pi/\rho$, $\gamma - \beta < \pi/\rho$ and $\gamma - \alpha \geq \pi/\rho$,

then there exists an entire fuction f of order ρ such that $J_f = J$.

We denote $\log d = \max\{0, \log d\}$ for $d \geq 0$. We need Schottky's theorem in our considerations. It is proved by Ahlfors in the following form.

Schottky's theorem. If g is regular and $g(z) \neq 0$, 1 in $|z| < 1$, then

$$
|\log|g(z)| \leq \frac{1+|z|}{1-|z|} (7+|\log|g(0)|) .
$$

2. Proof of Theorem 2

4. Contrary to our assertion, let us suppose that there exist an entire transcendental function f and $r_0 > 0$ such that

$$
f^{-1}(\{0, 1\}) \subset U(0, r_0) \cup \bigcup_{n=1}^{\infty} C_n
$$

It does not mean any restriction to assume that $f(C_n) \cap \{0, 1\} \neq \phi$ for every *n*. Similarly, we may assume that $f(0) \neq 0$, because if $f(0) = 0$ then we can consider the function $1 - f$. We denote by K_1, K_2, \ldots constants depending only on the numbers ε and α in Theorem 2, and M_1 , M_2 , ... are constants depending on f.

Let $r > 2 r_0$. Applying Schottky's theorem to the function $h(z) =$ $f(z^2)$ we see that $\log |h(i r^{\frac{1}{2}})| \leq M_1 r^{\frac{1}{2}}$ and therefore $\log |f(-r)| \leq M_1 r^{\frac{1}{2}}$. Applying Schottky's theorem repeatedly, we see that $\log |f(z)| \leq M_2 r^{\frac{1}{2}}$ on

 $\{-r + iy : |y| \leq r \} \cup \{x + iy : |y| = r, -r \leq x \leq 2r \}.$

It follows from (a) and (b) that we can choose s, $r \leq s \leq 2r$, such that, for any n, $U(s, \delta) \cap C_n = \phi$ where

$$
\delta\,=\,\frac{\varepsilon\,r}{4\,(\log\,r)^a}\,.
$$

Applying Schottky's theorem in $U(s + i r, r - \delta/4)$ and in $U(s - i r,$ $r - \delta/4$, we see that

$$
\log |f(s + i y)| \leq M_3 (\log r)^a r^{\frac{1}{2}}
$$
;

if $\delta/2 \le |y| \le r$, and the same theorem applied in $U(s, \delta)$ gives

$$
\log |f(s + i y)| \leq M_4 (\log r)^a r^{\frac{1}{2}};
$$

for $-r \leq y \leq r$. Now it follows from the maximum principle that $\log M(r) \leq M_4$ (log r)^a r¹;, where $M(r) = M(r, f) = \max \{ |f(z)| : |z| =$ r }. The order of f is at most $1/2$ and we may write

$$
f(z) = b \prod_{\nu=1}^{\infty} (1 - z/t_{\nu})
$$

where $0 < |t_1| \leq |t_2| \leq \ldots$ and $b \neq 0$.

5. Let us suppose that there exists n_0 such that $\{0, 1\} \subset f(C_n)$ for every $n \geq n_0$. Let $r > 10 a_{n_0}$. If either $a_n \leq 3 r/4 - 1$ or $a_n \geq r + 1$ for any n, then $n(r) = n(3 r/4)$, where $n(t) = n(t, 0)$ is the number of zeros of f in $|z| \leq t$, zeros of order p being counted p times.

Let $3r/4 - 1 < a_n < r + 1$. We choose $\xi \in C_n$ such that $f(\xi) = 1$. We denote $q_n = n(a_n + 1) - n(a_n - 1)$; here $q_n \ge 1$ because C_n contains at least one zero of f. It is seen that $|1 - \xi/t_v| < 1$ for $|t_v| \geq 5 r/8$, and therefore

$$
0 = \log |f(\xi)| \leq n(5 r/8) \log r + q_n \log r_n.
$$

Now it follows from (b) that

(1)
$$
q_n \leq \frac{n(5 \ r/8) \log r}{\log (1/r_n)} \leq \frac{2 \ n(5 \ r/8)}{K (\log r)^{1+a}}.
$$

Let b_r be the number of the points a_n satisfying the condition $3 r/4 - 1 < a_n < r + 1$. It follows from (a) that $b_r \leq \varepsilon^{-1} (\log r)^a$, and we see from (1) that

$$
n(r) - n(3 r/4) \leq \frac{2 n(3 r/4)}{\varepsilon K \log r}.
$$

Therefore $n(r)$ we get

$$
n(r) \leq n((3/4)^{4} r) \left(1 + \frac{1}{5 \log r}\right)^{4} \leq n(r/e) \left(1 + \frac{1}{\log r}\right).
$$

Now it is seen that

$$
n(e^{m}r) \ \leq \ n(r) \prod_{t=1}^{m} \left(1 + \frac{1}{t + \log r}\right) \ \leq \ n(r) \ (m+1) \ .
$$

This implies that $n(R) = O(\log R)$ as $R \to \infty$ and so $q_n = 0$ for all large n . We are led to a contradiction and conclude that there exists an infinite subsequence C_{n_r} of the discs C_n such that $\{0, 1\} \notin \mathit{f}(C_{n_r})$.

6. If r is large, then $|1 + r/t_m| > 1$ for every m and $|1 + r/t_m| \geq 7/4$ for $m = 1, 2, ..., n(r)$. Therefore we obtain

$$
\log |f(-r)| \, \geq \, \log |b \prod_{m=1}^{n(r)} (1 + r/t_m)| \, \geq \, n(r) \log (3/2) \, ,
$$

and see that

(2) $n(r) < K_1 \log M(r)$

for all large values of r .

We choose *n* such that $\{0, 1\} \notin f(C_n)$, and denote

$$
\delta_n = \frac{\varepsilon a_n}{2 (\log a_n)^a}.
$$

If $|f(z)| \geq 3$ for every $z \in \Gamma_n = \{ z : |z-a_n| = \delta_n \}$, then it follows from Rouche's theorem that $\{0, 1\} \subset f(C_n)$ because $f(C_n) \cap \{0, 1\} \neq \emptyset$. Therefore, there exists $\zeta \in \Gamma_n$ such that $|f(\zeta)| \leq 3$, and we deduce from Schottky's theorem that $\log |f(z)| \leq K_2$ on Γ_n . Applying Schottky's theorem in $U(a_n + i a_n, a_n - \delta_n/2)$, we get $\log |f(a_n + i a_n)| \leq$ $K_3 \left(\log a_n\right)^\alpha$, and because $|f(z)| \le f(-2 |z|)$ if $|z|$ is large, it follows from Schottky's theorem that

(3)
$$
\log M(4 \, a_n) \leq K_4 \, (\log a_n)^a
$$

if *n* is large enough, say $n \geq n_1$, and $\{0, 1\} \notin f(C_n)$.

If possible, we choose $n>n_1$ such that $\{0,1\} \notin f(C_n)$ and $\{0,1\} \subset$ $f(C_{n+1})$, and z_1 , $z_2 \in C_{n+1}$ such that $f(z_1)=0$ and $f(z_2)=1$. We have $|z_1-z_2| < 2r_{n+1}$ and $|1-z_2/t_m| < 1$ for $m > n(a_n + 1)$. Therefore we obtain

$$
0 = \log |f(z_2)| \leq \log r_{n+1} + \log |b \prod_{m=1}^{n(a_n+1)} (1 - z_2 / t_m) |
$$

$$
< \log r_{n+1} + n(a_n + 1) \log a_{n+1},
$$

and it follows from (b) that

(4)
$$
n(a_n + 1) > K (\log a_{n+1})^{1+a}
$$
.

On the other hand, it follows from (2) and (3) that $n(a_n + 1)$ $K_1 K_4$ (log $a_n)^a$. This is in contradiction with (4), and we see that there exists $n_2 > n_1$ such that $\{0, 1\} \notin f(C_n)$ if $n \geq n_2$.

Let now $a_n - 1 \le r < a_{n+1} - 1$. Then $n(r) \le n(a_n + 1)$ and we see from (2) and (3) that

$$
(5) \t\t n(r) < K_5 \left(\log r\right)^a
$$

for all large values of r .

7. We denote $z_n = a_n + (a_n + i a_n)/4$ and $s_n = a_n - \delta_n$. It follows from Schottky's theorem that $\log |f(z_n)| \geq 2 K_6 \log M(a_n)$ where $K_6 > 0$. Because $s_n \in \Gamma_n$, we have $|\log |f(s_n)| \leq K_2$, and so

(6)
$$
\log \left| \frac{f(z_n)}{f(s_n)} \right| \geq K_6 \log M(a_n)
$$

Further, $|(t_m - z_n)/(t_m - s_n)| < 1$ for m

$$
\log \left| \frac{f(z_n)}{f(s_n)} \right| \leq \log \prod_{m=1}^{n(3a_n)} \left| \frac{t_m - z_n}{t_m - s_n} \right| \leq n(3a_n) \log (6 a_n/\delta_n)
$$

Because $\delta_n = \frac{\varepsilon \, a_n}{2 \, (\log a_n)^a}$, we obtain

$$
\log \left| \frac{f(z_n)}{f(s_n)} \right| \leq K_7 \, n(3 \, a_n) \log \log a_n
$$

and we see from (6) that for all sufficiently large n ,

(7)
$$
n(3\ a_n) \geq \frac{K_8 \log M(a_n)}{\log \log a_n}
$$

where $K_8 > 0$.

It follows from (5) and (7) that $n(r) = O((\log r)^2)$ as $r \to \infty$ and $n(r) \neq O((\log r)^d)$ if $d < 1$. Therefore we can choose $d, 1 \leq d \leq 2$, such that $n(r) = O((\log r)^d)$ and $n(r) \neq O((\log r)^{d-1})$. Then $\log M(r) \neq$ $O((\log r)^{d+\frac{1}{2}})$ as $r \to \infty$.

Let us suppose that $a_{n+1} < a_n^{\tau}$ for all large n. Let $a_{n-1} < r \le a_n$. Then it is seen from (7) that

$$
\log M(r) \, \leq \, \log M(a_n) \, \leq \, 2 \, K_8^{-1} \, n(r^8) \log \log r \, ,
$$

and hence $\log M(r) = O((\log r)^{d+1})$. We are led to a contradiction and conclude that there exist arbitrarily large values of *n* such that $a_{n+1} \geq a_n^7$.

8. We choose *n* such that $a_{n+1} \geq a_n^7$ and set $g(z) = f(a_n + z^2)$. Because $a_n + \delta_n \in \Gamma_n$, we see that $\log |g(\delta_n^{\frac{1}{2}})| \leq K_2$. Applying Schottky's theorem in

 $U(a^{\frac{1}{2}}/4, a^{\frac{1}{2}}/4 - \delta^{\frac{1}{2}}/2)$,

we get

 $\log |q(a_{\tilde{s}}^{\dagger}/4)| \leq K_o (\log a_n)^{a/2}$,

and therefore $\log |f(a_n + a_n/16)| \leq K_9 \log a_n$. Because f omits the values 0 and 1 in $33a_n/32 < |z| < 35a_n/32$, we now see from Schottky's theorem that

$$
\log M(a_n + a_n/16) \le K_{10} \log a_n
$$

This implies that

$$
\liminf_{r\to\infty}\frac{\log M(r)}{\log r}<\infty
$$

and we are led to a contradiction. Theorem 2 is proved.

3. Proof of Theorem 3

9. Let $0 < a \leq 2$. We set $t = 1/(1 + a)$, $a_n = e^{nt}$ and $f(z) =$ $\prod_{n=1}^{\infty} (1 - z/a_m)$. It is easily seen that

$$
a_{n+1} > a_n + \frac{a_n}{7 (\log a_n)^{\alpha}}
$$

for all large n. Let $n > 100$ and $z \in U(a_n, d_n)$ where

$$
d_n = \frac{a_n}{14 (\log a_n)^a}.
$$

We choose positive integers k and p such that $a_{k-1} < a_n/4 \le a_k$ and a_{p-1} < 3 $a_n \le a_p$. Set

$$
f(z) = H(z) Q(z) (1 - z/a_n) S(z) ,
$$

where $H(z) = \prod_{m=1}^{k-1} (1 - z/a_m)$, $S(z) = \prod_{m=n}^{\infty} (1 - z/a_m)$ and $Q(z) = (1 - z/a_n)^{-1} \prod_{m=k}^{p-1} (1 - z/a_m)$.

We have

$$
\log |H(z)| \geq \log \prod_{m=1}^{k-1} \frac{a_n}{2a_m} \geq (k-1) \log (a_n/2) - \sum_{m=1}^{k-1} m^t
$$

and so $\log |H(z)| \geq n^{t+1/6}$. It follows that $\log |Q(z)| > -n$ and $\log |S(z)| > -n$. Therefore,

(5)
$$
\log |H(z) Q(z) S(z)| \geq n^{t+1/7}
$$

in $U(a_n, d_n)$. Now we see that $|f(z)| \geq 2$ on $|z - a_n| = d_n$, and t has therefore exactly one 1-point in $U(a_n, d_n)$. Let us denote by ζ this l-point of f. Because f takes on the segment $[a_n - d_n, a_n + d_n]$ every value w satisfying $-2 \leq w \leq 2$, we see that ζ lies on the real axis. It follows from (5) that

$$
\log\left|\frac{a_n}{\zeta - a_n}\right| \geq n^{t+1/7}
$$

and hence $\log |\zeta - a_n|^{-1} > n^{t+1/8} = (\log a_n)^{2+a/8}$. Let I_n denote the segment $(a_n - r_n, a_n + r_n)$ where

$$
\log (1/r_n) = (\log a_n)^{2+a/8}.
$$

Then f has only a finite number of 1-points outside $\cup I_n$ and we see that $\bigcup I_n$ is not a Picard set for entire functions. Theorem 3 is proved.

4. Proof of Theorem 5

10. We construct the desired counterexamples with the aid of Mittag-Leffler's function

$$
E_a(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1 + a n)}
$$

where $0<\alpha<2$. E_a is of order $1/a$, E_a is bounded on $S(-a\pi/2)$ $2\pi - a\pi/2$ and $a E_a(z) - \exp(z^{1/a})$ is bounded on $S(- a\pi/2, a\pi/2)$.

Set $a = 1/\rho$. Let us suppose that there exist L_{β} , $L_{\gamma} \in J$ such that $\gamma = \beta + \alpha \pi$. We may suppose that $\beta = -\alpha \pi/2$. We choose a slowly growing entire function h such that $J_h = J$ and set $f(z) = h(z) (E_a(z) + M)$, where $M>0$ is chosen such that $|E_a(z)| < M-1$ outside $S(-a\pi/2$, $\alpha \pi/2$. Then $J_f = J$ and f is of order ϱ .

Let $1/2 < \varrho < 1$ and $\alpha = 1/\varrho$. If $\gamma \neq \beta + \alpha \pi$ for every L_{β} , $L_{\gamma} \in J$, then it follows from (i) that there exist L_{β} , $L_{\gamma} \in J$ such that $2 \pi - a \pi <$ $\gamma-\beta \leq \pi$. We may assume that $\beta=-\gamma$ where $\pi-\alpha\pi/2 < \gamma \leq \pi/2$. Set

$$
g(z) = E_a(z) + E_a(-t^a z)
$$

with

$$
t = \frac{\cos(\gamma \varrho)}{\cos(\gamma \varrho - \varrho \pi)}.
$$

Let $z = r e^{i\psi} \in S(\pi - \alpha \pi/2, \alpha \pi/2)$. Then

$$
\log |E_a(z)| = R_1(z) + r^{\varrho} \cos (\psi \varrho)
$$

and

$$
\mathrm{I}_{\mathrm{O}}^{+} |E_{a}(-t^{a} z)| = R_{2}(z) + t r^{\circ} \cos (\psi \varrho - \varrho \pi),
$$

where $R_1(z)$ and $R_2(z)$ are bounded functions defined on $S(\pi - a \pi/2)$, $\alpha \pi/2$. Now we see easily that for every $\varepsilon > 0$, $|g(z)|$ tends to infinity uniformly, in $S(\beta + \varepsilon, \gamma - \varepsilon) \cup S(\gamma + \varepsilon, 2\pi - \gamma - \varepsilon)$ as $|z| \to \infty$. If h is a slowly growing function such that $J_h = J$, then $f(z) = h(z) g(z)$ satisfies $J_f = J$.

Let now $1 \leq \varrho < \infty$ and $\alpha = 1/\varrho$. If $\gamma \neq \beta + \alpha \pi$ for every L_{β} , $L_{\gamma} \in J$, then by (ii) there exist L_{β} , L_{γ} , $L_{\gamma} \in J$ such that $\beta < \gamma < \gamma$, $\gamma - \beta < \alpha \pi$, $\psi - \gamma < \alpha \pi$ and $\psi - \beta > \alpha \pi$. We may assume that $\beta = -a \pi/2$. Set

$$
g(z) = E_a(z) + E_a(t^a z e^{-i\varphi})
$$

where $\varphi = \psi - a \pi/2$ and

$$
t = \frac{\cos(\gamma \varrho)}{\cos(\psi \varrho - \gamma \varrho - \pi/2)}
$$

Then $g(z)$ is bounded on $S(\psi, 2\pi + \beta)$ and, for every $\varepsilon > 0$, $|g(z)|$ tends to infinity uniformly on $S(\beta + \varepsilon, \gamma - \varepsilon) \cup S(\gamma + \varepsilon, \psi - \varepsilon)$ as $|z| \to \infty$. If h is a slowly growing function such that $J_h = J$, then

$$
f(z) = h(z) (g(z) + M)
$$

satisfies $J_t = J$, provided the constant M is chosen sufficiently large. Theorem 5 is proved.

5. Proof of Theorem 4

11. Let E be an infinite closed set. We choose a linear mapping L such that $\{0, \infty\} \subset F = L(E)$ and 0 is a limit point of F. Then F contains an infinite countable set $A = \{a_n\}$ such that $|a_1| < 1/4$ and $|a_{n+1}| < |a_n|^5$ for $n \ge 1$. We set

(1)
$$
f(z) = \prod_{n=1}^{\infty} \left(\frac{z - a_n}{z + a_n} \right).
$$

In order to prove Theorem 4, it is sufficient to prove that f is normal in the complement of $B = A \cup \{0, \infty\}$. If f is normal in $-B$, then it is normal in $-F$, and because both $\rho(f(z)) |dz|$ and $d\sigma_G(z)$ are conformal invariants, it follows from Theorem A that $f(L(\zeta))$ is normal in $-E$.

It follows from Theorem 1 of Lehto [6] that

$$
\limsup_{z \to 0} |z| \varrho(f(z)) = \frac{1}{2}.
$$

 $\bar{\lambda}$

Therefore there exists $M_1 \geq 1/2$ such that

$$
e(f(z)) \le \frac{M_1}{|z|}
$$

for all z satisfying the condition $0 < |z| \leq 10$. Differentiation yields

$$
\varrho(f(z)) = \frac{|f(z)|}{1 + |f(z)|^2} \left| \sum_{k=1}^{\infty} \frac{2 \, a_k}{z^2 - a_k^2} \right|.
$$

Because $|a_1|$ < 1/4 and $|a_{n+1}|$ < $|a_n|^5$, we see easily that

(3)
$$
\varrho(f(z)) \leq \frac{4 |a_1|}{|z|^2}
$$

in $|z| \geq 2 |a_1|$, and

(4)
$$
\varrho(f(z) \leq \frac{4}{|a_n|} + \frac{4 |a_{n+1}|}{|z|^2}
$$

in $2 |a_{n+1}| \leq |z| \leq |a_n|/2$ for any $n \geq 1$.

We denote by $\,D\,$ the complement of the points $\,0\ ,\ 1\,$ and $\,\infty\, ,$ and let $\sigma_D(w, w')$ be the hyperbolic metric of D . Constantinescu [4] has proved that

$$
\lim_{w \to 0} |w| \left(\log \left| \frac{1}{w} \right| \right) \frac{d\sigma_D(w)}{|dw|} = \frac{1}{2}.
$$

Therefore there exists $\delta, \, 0 < \delta \leq 1/2$, such that

$$
\frac{|dw|}{d\sigma_D(w)} \le 4 |w| \log \left| \frac{1}{w} \right|
$$

in $0 < |w| \le \delta$. The transformation $w = 1/z$ defines a conformal mapping of *D* onto itself. Therefore $d\sigma_p(w) = d\sigma_p(z)$, and if $0 < z \leq \delta$, we get from (5)

$$
\frac{|d w|}{d \sigma_D(w)} = \frac{|dz|}{|z|^2 d \sigma_D(z)} \le \frac{4}{|z|} \log \left| \frac{1}{z} \right| = 4 |w| \log |w|
$$

This implies that

(6)
$$
\frac{|dw|}{d\sigma_D(w)} \leq 4 |w| \log |w|
$$

in $1/\delta \leq |w| < \infty$. Similarly, we see by means of a linear transformation that there exists $M_2 > 0$ such that

$$
\frac{|dw|}{d\sigma_D(w)} < M_2
$$

in $0 < |w - 1| \le \delta$. Because the set

 $T = \{ z : |z| \ge \delta, |z - 1| \ge \delta, |z| \le 1/\delta \}$

is a compact subset of D, there exists $M_3 \geq M_2$ such that

$$
\frac{|dw|}{d\sigma_D(w)} < M_3
$$

in \cdot T .

We denote by G the complement of $B = A \cup \{0, \infty\}$ and D_n in the complement of the points 0 , a_n and ∞ . Because $D_n \supset G$, then $d\sigma_{D_n}(z) \leq d\sigma_G(z)$. Since D is mapped conformally onto D_n by $z = a_n w$, we have $d\sigma_{D_n}(z) = d\sigma_D(w)$, and therefore

(9)
$$
\frac{|dz|}{d\sigma_G(z)} \leq \frac{|dz|}{d\sigma_{D_n}(z)} = \frac{|a_n| |dw|}{d\sigma_D(w)}.
$$

We denote $\;Q_1\,=\,\{\,z:\,|a_1|/\delta\leq|z|<\infty\,\} \,,$ and set for $\;n\geq2$

$$
Q_n = \{ z : |a_n|/\delta \leq |z| \leq |a_n a_{n-1}|^{\frac{1}{2}} \}.
$$

It follows from (9) and (6) that

(10)
$$
\frac{|dz|}{d\sigma_G(z)} \leq 4 |z| \log \left| \frac{z}{a_n} \right|
$$

in Q_n . Let $z \in Q_n$. If $n = 1$ we get from (10) and (3)

$$
\varrho(f(z))\frac{|dz|}{d\sigma_G(z)} \, \leq \, 16\left|\frac{a_1}{z}\right| \log\left|\frac{z}{a_1}\right| \, \leq \, 8 \; .
$$

Let $n \geq 2$. It follows from (4) that

$$
\varrho(\bar f(z)) \ \leq \ \frac{4}{|a_{n-1}|} + \frac{4\,|a_n|}{|z|^2}
$$

in Q_n and we obtain from (10)

$$
\frac{\varrho(f(z))\frac{|dz|}{d\sigma_G(z)}}{\leq 8 + 16} \frac{a_n}{|a_n|} \log \left|\frac{z}{a_n}\right| + 16 \left|\frac{z}{a_{n-1}}\right| \log \left|\frac{z}{a_n}\right|
$$

$$
\leq 8 + 16 |a_n| a_{n-1} |^{1} \log |a_{n-1}| a_n |^{1} \leq 16.
$$

Let $\delta |a_n| \leq |z| \leq |a_n|/\delta$ and $z \in G$. It follows from (9), (7) and (8) that

$$
\frac{|dz|}{d\sigma_G(z)} \, \leq \, M_3 \, |a_n| \; ,
$$

and we obtain from (2) and (3)

$$
\varrho(f(z)) \, \frac{|dz|}{d\sigma_G(z)} \, \leq \, \frac{M_{\,1} \, M_{\,3} \, |a_{\,n}|}{|z|} \, \leq \, \frac{M_{\,1} \, M_{\,3}}{\delta} \, = \, M_{\,4} \; .
$$

Let $|a_{n+1} a_n|^{\frac{1}{2}} \leq |z| \leq \delta |a_n|$. We get from (9) and (5)

$$
\frac{|dz|}{d\sigma_G(z)} \, \leq \, 4 \, |z| \, \log \left| \frac{a_n}{z} \right|.
$$

Together with (4) this implies that

$$
\frac{\varrho(f(z))\frac{|dz|}{d\sigma_G(z)}}{\leq 8+16}\frac{z}{|a_n|}\log\left|\frac{a_n}{z}\right|+16\left|\frac{a_{n+1}}{z}\right|\log\left|\frac{a_n}{z}\right|
$$

$$
\leq 8+16\|a_{n+1}/a_n\|^{\frac{1}{2}}\log\|a_n/a_{n+1}\|^{\frac{1}{2}}\leq 16.
$$

We have proved that

$$
\rho(f(z)) |dz| \leq (M_4 + 16) d\sigma_G(z)
$$

for any $z \in G$. It follows from Theorem A that f is normal in G. Theorem 4 is proved.

References

- [1] ANDERSON, J. M., and J. CLUNIE: Entire functions of finite order and lines of Julia. - Math. Z. 112, 1969, 59-73.
- [2] BAKER, I. N., and L. S. O. LIVERPOOL: Picard sets for entire functions. Math. Z. 126, 1972, 230-238.
- [3] CARTWRIGHT, M. L.: Integral functions. Cambridge Tracts in Mathematics and Mathematical Physics No. 44, Cambridge University Press, Cambridge, 1965.
- [4] CONSTANTINESCU, C.: Einige Anwendungen des hyperbolischen Masses. Math. Nachr. 15, 1956, 155-172.
- [5] LEHTO, O.: A generalization of Picard's theorem. Ark. Mat. 3, 1958, 495-500.
- $[6]$ -> The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity. - Comment. Math. Helv. 33, 1959, 196-205.
- [7] \ast -, and K. I. VIRTANEN: Boundary behaviour and normal meromorphic functions. - Acta Math. 97, 1957, 47-65.
- [8] TOPPILA, S.: Some remarks on the value distribution of meromorphic functions. -Ark. Mat. 9, 1971, 1-9.
- [9] -» Some remarks on linear Picard sets. Ann. Acad. Sci. Fenn. Ser. A I 569, $1973, 1 - 17.$
- $[10]$ $\sqrt{ }$ On the value distribution of integral functions. Ann. Acad. Sci. Fenn. Ser. A I 574, 1974, 1-20.
- [11] WINKLER, J.: Über Picardmengen ganzer und meromorpher Funktionen. Math. Z. 109, 1969, 191-204.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland \mathcal{N}

Received 18 November 1974