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I,II\EÄR PICARI} SETS FOR F]NTIRF] FUI\CTIOI\S

SAKARI TOPPILA

1. Introiluction anil results

l. fn the terminology of Lehto ([5]), a plane set E is a Picard set for
entire functions if every transcendental entire function takes all finite
values with at most one exception infinitely often in the complement of
E . It is proved in [8] that a countable set E : lo"l whose points con-
verge to infinity is a Picard set for entire functions if there exists e ) 0

such that

{,,0 <tz-ant.- ffilnt: r
for all large n. This result is sharp in the sense that, corresponding to
each real-valued function h(r) satisfying the condition h(r) --> a as

r --> oo , there exists E : la.l with lim an: e such that .E is not a
Picard set for entire functions and

la"l
h(la"l) log la"l

for all large n. We shall prove the corresponding result for linear sets.

Theorem I. Il the positiae numbers e (-at<a2<... satisly the

cond,iti,on

an+t 2 ",+ ffi
lor some e > 0 and' lor alllarge n,then E : lonl i,s a Piaaril set lor entåre

funct'i,ons.
This theorem is sharp. It is proved in [9] that if. h(r) -+ oo as r --] oo ,

there exist real numbers 0 ( &t1 az< ... such lhat E : la*l is not a

Picard set for entire functions and

& n+t

for all sufficiently large n .

Ct',n

I,' 0
I

inE:+

h(on) (log eå'
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We denote by U (z , r)
shall prove the followirg
follows.

Theorem 2. Let 0

satis fy th,e condition

the open disc of centre z and radius r . We
theorem from which Theorem I immediately

(a) &n+t ) 
"_ 

+ å#1"
lor some e ) 0 and,lor alllarge n . II the rad,i,i ol the d,iscs Cn : U(an, rn)
sati,s ly the cond,ition

(b) log(llr") > K (log an)2*" ,

where K : 20 (l + l/€) , then the uni,on U Cn i,s a Picard set lor enti,re

luncti,ons.
We denote by lo, ö] the closed segment a 1r ( ö , and (a, å) is the

segment a <n < b. Theorem 2 is sharp in the following sense.
Theorem 3. Let 0<a12. Thereeti,stsacountableset E:la,l ,

0 ( a, l az I ... , liman: F , satisfyi,ng (a) lor e: Il7 such that the
lineq,r set

ö (an-rn,ar*rn),
n:L

where

log (r lr ") - (log &n)Z*o ,

'i,s not a Picard, set lor enti,re functions.

The corresponding sharp result for discs C, whose middle points need
not lie on arayisprovedin [0]. If wehave 0(a ( 1, e> 0, and
Ko a sufficiently large constant, then the conditions

(A) I"' o .-tz-a,t<å#i"ln, : r
t

and

(B ) log (t lr ,) ) K o (log a )z+2"

guarantee that il tl1a,,r,1 is a Picard set for entire functions. II Ko
n-l

in (B) is taken too small, then U U(a,, r,) need not be a Picard set.

2. Lehto and Virtanen [7] gave the following definition for normal
meromorphic functions: If I is meromorphic in a simply connected domain
G , then f is normal if and only if the family {l(S(z)) } , where (: B(z)

I
8



Linear Picard sets for entire functions lr3

denotes an arbitrary one-to-one conformal mapping onto itself, is normal
in the sense of Montel. In multiply connected domains I is said to be
normal if it is normal on the universal covering surface. We shall consider
the following problem: If E is a closed set, under what conditions does
there exist a normal meromorphic function in the complement of .B with
at least one essential singularity in E ? Lehto and Virtanen [7] proved
that if f is normal in G, then f is normal in every subdomain of G ,
and that a meromorphic function can not be normal in any neighbourhood
of its isolated essential singularity. This implies that if E is a finite set
and I is normal in - E , then I is a rational function. Only finite sets
have this property. We shall prove

Theorem 4. If E] i,s an infini,te closeil set, there er'i,sts u non-rati,onal,
normal meromorphic funct'i,on in - E ,

We denote

eu@):#ffi
The proof of Theorem 4 is based on the following theorem of Lehto and

Virtanen [7].
Theorem A. A

boli,c type, 'i,s nornxa,I

that lor all z i,n G ,

(c)

non-constant I , nxeromorphic i,n a d,omai,n G ol hyper-
in G i,f and, only i,f there eri,sts q, linite constant C so

eflrd) ld"l < C d,os(z) ,

where ilos(z) ilenotes the element ol length i,n the hgperbol,ic nzetric ol G .

3. Wedenote S(a,f):1",a(argz<B) and L":L(q):
I z : arg 

" 
: o |. Let I be an entire transcendental function. We say

lhat L" is alineof Juliaof I if,forevery e)0, I takeseveryfinite
value exeept perhaps one infinitely often in B(o - e , a ! e) . The set of
all Julia lines of f is denotedby Jr. Then J, * ö and the set { ed":
L"(Jr) is closed. On the other hand, if J : llo; a( E I + ö,
lei": a €.4 ) is closed, and 0 ( q { LlZ or Q: oo, there exists anentire
function / of order g such that Jr:,/. This is proved by Polya in the
case g - oo a,nd by Anderson and Clunie [f] in the case q : 0. fn fact,
the function f constructed by Anderson and Clunie can be chosen such
that t is slowly growing, ile.

og M(r, l) : O((log r)'z)

&s r -->oo. In the case 0 ( q ( ll2,wetake Lo("I and construct an
eniire function g of order g such that, for every e ) 0, lg(z)l tends to
infinityu'niformlyoutside B(o- e,q*e) as lzl -->oo. Let h beaslowly
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growing entire function such that J n: J . Then l@) : g(z)h(z) is of order
p and Jt:J.

Letnow I beanentirefunctionof order Q,ll2 (g(oo. Carbwright

[3] has proved that there exists B(" ; f) where p : a * nlQ,such that if
S(y,y*nldn8(c,f) f S, then S(y,y +nld contains at least one

Julia line of l. Therefore, if ll2 < g < 1, there exist .Lo , Lp( J, such

that 2n-nlq <P - a{n, and if I {q (oo, there exist Lo, Lp,
Ly(Jr suchthat a 1f 1y, f - a lnlQ, y - P <nlg and y - d>nlQ.
Conversely, if "I satisfies these conditions, there exists an'entire fiinction
of order g such Lhat J, c J . We shall prove

Theorem 5. Let 14": a( E I be closed, and, J : lL": a( E I
+ ö. rl
(i) Llz ( s

fi-a1n or
(ii) I (s

p-aanlg, T-pSnle a,nd

Lp(J suchthat2n-nle

Lp , Lr ( J such that a
y-alnlQ,

then there eri,sts an enti,re luction I ol oriler q such tknt J r : J .

Wedenote l6gd,: max{0,logd} for d>0. WeneedSchottky's
theorem in our considerations. It is proved by Ahlfors in the following form,

Schottky's theorem. It g is regular and' g(z) t' 0,1 in lzl < l,
then

lög ls(z)l = 
=# 

(7 + rög lg(o)l) .

2. Proof of Theorem 2

4. Contrary to our assertion, let us suppose that there exist an entire
transcendental function I and ro ) 0 such that

l-t({o,l}) c U(0 ,ro} cn

It does not mean any restriction to assume that' l(C") n {0, t} # d for
every n. Similarly, we may assume that l(0) I 0, because if l(0) : 0

then we pan consider the function f - I . We denote by Kr, Kr,
constants depending only on the numbers e and a in Theorem 2, and
Mr, Mr, ... areconstantsdependingon l.

Let r > 2 ro . Applying Schottky's theorem to the function h(z) :
f(zz) we see that 169 lh(i,r+)l S Mrrt and.therefore lög ll(-r)l I Mrrt .

Applying Schottkys theorem repeatedly, we see that lög l!(zll < Mrr;
on

q

UU
t't: L
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t-r+iy,lal 1r lu {r*iyt lyl:r,
It follows from (a) and (b) that we can choose I ,

forany n, U(s,ö) ffCn: + where

n <2r1.
12r, such bhat,

s - 
er

(log 11" '

Applying Schottky's theorem in U(s * ir ,r - ö14) and in U(s - dr ,

r - öl\, we see that

lög ll(s + i y)l I M, (log r)" rt;

if. ö12 < lAl < r, and the same theorem applied in U(s, ö) gives

lög ll(s +iy)l l Mn(logrf rå;

for -r 1A 1r. Now it follows from the maximum principle that
log M(r) I Mn (log r)'1å;,where M(r) : M(r,f): m&x lll@l: lzl:
r ) . The order of I is at most 1/2 and we may write

le): aIltr -zlt,)e:1

where 0 { lrrl < lrzl <... and b +O.

5. Let us suppose that there exists no such that {0 , l} - lQ) for
errery nlno.Let rSl}ano. If either aolSrla-l or anlr*l
for any n, bhen n(r): n$rl{, where n(t): n(t,0) is the number of
zeros of f in lzl < t, zeros of order p being counted p times.

Let 3rla-I<a,n<r*L Wechoose t<C^ suchthat l(1):1.
We denote Qn: n(a^+ l) - n(a,- I); here q* ) I because Cn con'
tainsatleast one zero of I . Itis seenthat lI - Elt,l 4 I for lt,l 2 5 rl8,
and therefore

0 : log ll(6)l < n(5 rl8) log r f qnlogrn.

Now it follows from (b) that

-r
r(s

(1) mvn\W\K(log41+"'

Let b, be the number of the points (tn satisfying the condition
Srla - | lan ( r f l. It follows from (a) that b, 1 e-L (logr)",
and we see from (l) that

n(r) - n(s rl\ <'2!2'ln) .
e Klogr'
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Therefore
we get

I{ow it is

n(e*r) I ",n,\(,. O**) < n?) (m * r) .

This implies that n(R) : O(log,B) as -B -+ oo and so Qo:0 for all
large n. We are led to a contradiction and conclude that there exists an
infinite subsequencu Cnrc of the discs C, such that {0, t} + lQ"r) .

6. If r islarge,then ll*rlt*l> I for every nx and l1 *rlt^1>714
f.ot m : r,2, .,,, n(r) . Therefore we obtain

log ll(-r)l 2 log ta T? tr + rlt*)l > n(r)log (3i2) ,
m:l

and see that

(2) n(r) I Ktlog M(r)

for all large values of r.
We choose z such that {0 , ll + l(C,), and denote

o E &no" : 
z (loga,y'

Tt lf(z)l ) 3 forevery z ( ln: lz: lz-anl : ö, ],thenitfollowsfrom
Rouche's theorem that {0, l} - l(C") because tQ") n {0 ,l)l + ö .

Therefore, there exists C< l* such that ll(f)l < 3, and we deduce from
Schottky's theorem that lög ll(z)l I K, on fn. Applying Schottky's
theorem in U(a, + 'i, an , a,n - ö,12) , we get 169 ll(a* { i, a*)l I
K' (log an)" , and because lt@l < l?z l"D if lzl is large, it follows
from Schottky's theorem that

(3) logM(aan) I Kn(logan)"

if n, islargeenough, say n) nr, and {0, r} + !(C").
If possible, we choose n) nt such that {0,1} +lQ") and {0,1} -

l(C"*r), and 21, z2(Cn+t suchthat t@r'l:0 and f(zr): l. Wehave
lzr-zrl 12rn*, and ll-zrlt^l4l .for mln(anf f) . Thereforewe
obtain

0 : log lf@)l < togrn*1a log lb"(?f 
Dp. 

- zrlt*)1
m:7

( log rn+t * n(a, * l) log o,*, ,

and it follows from (b) that

n(r)

n(r)

seen that
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(4) n(an * l)

On the other hand, it follows from (2) and (3) that
K, Ku (log an)". This is in contradiction r,vith (4), and we
exists nz 2 nt such that {O , 1} + l(C ") if n } n, .

Let now ct,n - I 1r I an*L - I . Then n(r) {n(an +
from (2) and (3) that

(5)

for all large values of r

n(r)

7. We denote 7, : d,, + (a, * i a")14 and s, - an ön . Il follows
from Schottky's theorem that log ll(2")l > 2 -I{u log M(a,) where ffu } 0.
Because s,( 1,, we have lög ll(s,)l I Kr, and so

n(an * l)
see that there

1) and rve see

(6) rosl,#

l'urther, l(t *. - 2,,) I (t nt. s,) 
I

1for rn

rosl'f$l 
= 

ros"ff,'l'#l 
= 

n(ra,) ros (6a,tö*)

Because U": #;-*, u'e obtain

I r *l:Hl = 
u, n(3 a,) Lostog a,

and we see from (6) that for all sufficiently large n ,

(7) n(3a,)= rffiP
where &, ) 0.

It follows from (5) and (7) that n(r) : O((log r)'z) as r '-> @ and
n(r)*O((logr)d) if d<I. Thereforewecanchoose d, l<d<2,
such that n(r) - O((log r)d) and n(r) + O((log ,)u-+) . Then log M(r) +
O((log r)d+å) as r --> oo .

Let us suppose thab an*1 I i'* for all large n . Let an-, 1r {an.
Then it is seen from (7)that

logM(r) ( log M(a,) < 2Krt n(rs)loglogr,

and hence log M(r) : O((log r)d++) . We are led to a contradiction and
conclude that, there exist arbitrprily large values of ra such lhab ann, > al .
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8. We choose n such that a,*r) al and set g(z) : l@"* z').
Because an{ 6n( ln, we seethat låg lg(aå)l I Kr. ApplyingSchottky's
theorem in

u@ft1'a , ahl4 - öilz) ,

we get
169 lg(afil+tl I Kn (log a,)"t2,

and therofore lög ll@*+a*ll6)l ( Knlogo,. Because f omits the values
0 and I in 33a*132 < l"l I 35a,132, we now see from Schottky's theorem
that 

bg M(a, t a.lr6) I Krolog an ,

This implies that

lim inf 
log -r71(r) a oo

r+@ log r

and we are led to a contradiction. Theorem 2 is proved.

3. Proof of Theorem 3

9. Let 0{-a(-2. Weset f:U(l*o), dn:ent and l@:
6

fI (l - zla^) . It is easily seen that
m:l

dn+r ) ", + dt; y

foralllarge n. Let n > 100 and z( U(a^, d,) where

,1. -- 
d^

14 (log an)" '

We choose positive integers Ic and, 7t such that at-t 1 a,14 1 a* and
ae-r 13 a,n 1oo . Set

l@) : H(z) Q@) Q - zla") B(z) ,

.k-16
where H(z) : fI (l - zla*) , B(r) : II (t - zla*) and

tn:L ,tu-P

Q@) : (r - zlan)-L'nttt - zla*) .

=k

We have

log lä(z)l = togh' ?^= (e - l) tog(a*12):Ef'

and so log lä(z)l , nt+t16. It follows that log lQ@)l > -n and
log lB(z)l ) -n. Therefore,
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(5) tog lH(å) Q@) S(z) | ) nt+tl7

in U(an, d,n) . Now we see that ll@l > 2 on lz - a*l: dn, and t
has therefore exactly one l-point in U(an,iI^). Let us denote by I this
l-point of I . Because f takes on the segment lan - dn , fro * d'nf every
value rz satisfying -2<w12,weseethat f liesontherealaxis. ft
follows from (5) that

bsl+%1, n*'t,
and hence log 16 - onl-r ) nt+rl8: (log an)2+"18. Let Io denote the
segment (an - rn , an * rr) where

log(Ilr,) : (log a*)2+"18 .

Then I has only a finite number of l-points outside U In and. we see

that U .I, is not a Picard set for entire functions. Theorem 3 is proved.

4. Proof ol Theorem 6

10. We construct the desired counterexamples with the aid of Mittag-
Leffler's function

E"(z) : 
^4,TF+-"*\

where 0z-a12. Eo isof order llo, Eo isboundedon S(-anlZ,
2n - aillt) and a E"(z)- exp (zrl") is bounded on,S(- o nl2,anfl).

Set a: Ile. Let us suppose that there exist ZB , Ly( J suchthat
y: p I an. We may suppose that P: - anl2. We ohoose a slowly
growing entire function å such t]rrat J r: J and set t@) : h(z) (8"(z) + M\ ,

where M>O is chosensuchthat lU"(z)l<M- I.outside S(-anlZ,
anl2). Then Jr: J and I is of order g .

L,et, ll2{e(l and a:lle.If y+P+anforevery Lp, Lr(J,
then it follows from (i) that there exist Zp, Ln(J such that 2 n - an 1
y-P < z. Wemayassumethat P:-y where n-q'nl2 1y3nl2.
Set

with 
g@) : E"(z) * E"(- t" z)

cos (y g)L:;;sWa-Qr)'

Lel z : reiv( B(z - anl2,anl2). Then

169 lU"(z)l : Rt@) { re cos (y g)

and
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lög lV"(-t" z)l : Rr(z) + t rp cps (rp e - q n) ,

where Rt(z) and Rr(z) are bounded functions defined on S(z - a nl2 ,

a nl2) . Now we see easily that for every e ) 0 , lg@)l tends to infinity
uniformly.in B(f+e,T-e)UB(7*e,2n-y-e) &s lzl -+oo. If
h is a slowly growing function such that J u: J , then l@ : h(z) g(z)

satisfies Jr:J .

Letnow l(g(oo and a:l/g. If T*f *an forevery Lp,
L.C.J,thenby(ii)thereexist Zp, Ly, Lv<J suchthat f <y<rlt,
y-p1an, Ip-ylan and V-Plan. Wemayassumethat
P: - anl2. SeI

g(z) : E"(z) + Eo(t" z e-tv1

where V_ V-a,fi12 and"

t-: cos (f p)

cos (V e - y g - ?alz)

Then g(z) is bounded on B(rp ,2 " + P) and, for every e ) 0 , lg@l
tends to infinity uniformly on S(f +e,T-e)US(7+e,rlt-e) as

lzl -+ oo . lf h is a slowly growing function such that Ju: J, then

l@ : h(z) (s(z) + M)

satisfies Jr: J, provided the constant lly' is chosen sufficiently large.
Theorem 5 is proved.

ö. Proof of Theorem 4

ll. Let E be an infinite closed set. We choose a linear mapping -L

suchthat {0,""}cI:L(E) and 0 isalimitpointof F. Then X
contains an infinite countable set A : lo"l such that larl < Ila and

lan+l I lo,16 for n ) l. We set

(r) t@

fn order to prove Theorem 4, it is sufficient to prove fhat I is normal in
the complement of B : A U {0, oo} . If I is normal in -8, then it is
normal in - -!' , and because both p(l(z)) ld,zl and il,os(z) are conJormal
invariants, it follows from Theorem A that lQ(eD is normal in - E .

It follows from Theorem I of Lehto [6] that

lim sup l"l e(t@)
I
€>
2
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Therefore there exists M L

etf4)) < *lel

for all a satisfying the condition 0 < lzl < 10. Differentiation yields

e ( t Q)) : l.HL*, nul å,;+rl
Because larl < 1/4 and la^*tl 1 lanls , we see easily that

(3)

in lrl

(1)

(2)

(5)

in 2ld,*rl < lzl < la"llz for anY n z l -

We åenote by D l;,e complement of the points 0 , I and oo , and

let op(w ,w,) be the hyperbolic metric of D. constantinescu 1+1 has

proved that

rim rprl1"" l1l\@"t"'l I
w-0" \ -l?ll1/ lffit:2'

Thereforethereexists ö, 0<ö <L12, sucht'hat'

ldwl -._ 
-. 

j 
.

do p(us) -
ll_t
ul

in 0 ( lwl < ö. The transformation 111 : Llz defines a conformal mapping

of D onto itself. Therelore d,op(w) : ilop(z), and if 0<-21ö, we get

from (5)

_)dtL ld*l 4 ' l1l : 4laul tog lul.ffi:7ffi'
This implies that

(6)
ldwl -.

do o@) 
r

ldwl ,.ffi
in llö < lwl < oo. similarly, we see by means of a linear transformation

that there exists M, ) 0 such that

(7)

in0
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f : lz: lzl>. ö, lz- 1l) d, lzl <tlå)
is a compact, subset of. D , there exists M") M, suchLhat

(8) ffi1M,
in T.

We denote by G the complement of B : A U {0 , oo} and Dn in
the complement of the points 0, cr,n and oo . Because Dn) G, then
d,op,(z) 1 d,os(z). Since D is mapped conformally onto D, by z: e,n'u) ,

we have d,op^@) : d,ozQt), and therefore

(e) =ld"l , . =ld'\ , - l1"l ldwl 
.

do6(z) = doo^(z)- dop(w)

We denote Q, : {z: larllö < lzl <oo }, and setfor n } 2

Q": lz: la,llö < lzl < lanan-rl| l.
It follows from (9) and (6) that

(io) yL<4pt I '"'
d'o6Q) - '"* la I

in Q,. Let z(Q,.If n:l wegetfrom(10) and(3)

eueDm = 'u lTl^rlål = '
Let n > 2 . It follorvs from (4) that

s(t@) = år.1#
in Qn and rve obtain from (10)

pu@) 
-*PL, = 'ul?l^rl;1.,,1*l'* l*ul
< 8 + 16 lanlan_rl+log lan-rla,lå ( 16 .

Let d la,l I lzl < la"llö and z ( G . Irfoilows from (9), (7) and (8) that

#fu ! M"ta't 
'

and we obtain from (2) and (3)

pff(z))-*PLr=*+P =Y# - M4.

Let lan+tanlä < lzl < ö la,l . We get from (9) and (5)

#fu < a.t^rl?l
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Together rvith (4) this implies that

eu*D;#e)

We have pror,'ed that

sUQ)) ldrl < (M u * L6) d,oe@)

for any z ( G . It follows from Theorem A that f is normal

4 is proved.

a*l
7l

in G . Theorem
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t2)

t3l
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