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ON E-PERIODIC QUASIREGULAR MAPPINGS IN R"

0. MARTIO

1. Introduction

Let f: R*— R be quasiregular ie. f is continuous, ACL", and
(@) < KJ(x,f) fora.e. xeR". Themapping f is called periodicwith
a period o # 0 if f(x + o) = f(x) forall x € R*. If f is non-constant,
then it is well-known that f is discrete and open. Hence in this case the
module 2 of all periods of f is spanned by k, 1 <k < n, linearly in-
dependent periods , ..., w, . The mapping f is then called k-periodic and
wq, ..., w, are called primitive periods. Let W denote the (n—k)-dimen-
sional linear space orthogonal to the linear space spanned by wy, ..., w, and let

k
Q = {VL = > o Ogoci<1}.
i=1

Then F,= @, x W is a period strip for f. For 4 C R and y € R* we
let N(y,f,A) denote the number of points, possibly infinite, in the set
AN fYy) and we set N(f,A4) = sup, .z N(y,f,4).

Quasiregular mappings share many common properties with plane
analytic functions, see [1—3], however, the following theorem only applies
to periodic quasiregular mappings in higher dimensions.

1.1. Theorem. If f: R*—R* is quasiregular and k-periodic,
1l <k <n-2, then N(f,F;) = o0.

In the above theorem the assumption 7f: R*— R* is quasiregular”
can be replaced by f: R* > R» is quasimeromorphic”. This turns out
to be a slight technical difficulty, see 5.3, but all the other assumptions
are strictly necessary, for examples and more details on periodic mappings
see [4].

The proof of Theorem 1.1 is by contradiction. However, some of the
details, especially Chapter 2, are of independent interest. We shall mainly
use the terminology of [1], [4], and [6].
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2. Modulus inequalities for periodic mappings

We follow [8] to define the modulus of a family I" of paths » in R as
M) = inf fg” dm,
Qe F(I)
R
where F(I') is the class of all non-negative Borel-functions o : R*—>R

such that
/ ods =1

7
for all yel'.
2.1.  Suppose that f: R*— R* is quasiregular and k-periodic,
1 <k <mn, with the primitive periods w,, ..., w,. Let I' be a path
family in R». We denote by I'; a path family such that fI'y=1. We
define the modulus M’ of I'; as

M'(I') = inf f o' dm,
CEF(Ty)
Fy
where F'(I')) is the family of all non-negative Borel-functions o' : R* — R
such that o’ is invariant under £ ie. o'(x + w) = o'(x) for all x € R

and all we Q, and

f o'ds =1

N
for all y € I',. Observe that for given I" there does not, in general, exist
I'; and in the case I'; exists, it is not uniquely determined; moreover, in

many cases JM'(I) = M(I)) .
For A C R* we denote by 24 the orbit of A4 under Q, i.e.

RA = {y=2+ov:2ed, we Q}.
22. Theorem. Let f, I',and I, beasin2.1. If N(f,Fy =
N < o0, then
1

(2.3) KN M(Iy) = M(I') = K,(f)M'(I) .

Proof. At first we shall prove the left hand side of (2.3). Let g € F(I") .
Set
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see [1, p. 16]. Let I} be the family of all locally rectifiable paths y e I';
such that f is locally absolutely continuous on y . Then slight modifica-
tions in the proof of [8, 28.2] show that M'(I}) = M '(I7) . Now for

yel/ and o =foy
fg'dszfgdszl

o Y

and since o' is invariant under £, o’ € F(I). This implies by a trans-
formation formula for Lebesgue integrals

M(T) = MI)) < f g dm, = f of(@)" Lz , f) dm,(2)

Ty Fy
< K,(f) f o(f (@) I , f) dm, ()
Fy
— Kolf) f o) Ny . f, F) dm,(y)
< KN [ gdm,.

Since o € F(I') was arbitrary, the first inequality follows.

To prove the right hand side of (2.3) let o eF'(I}). Set
E = {xeR:3f(x) and J(x,f) >0} and E, = R"\E. Then, by
[1, 2.26 and 8.2], m,(B,) = 0. Define o: R"—> R as

o@) = J@/f'@), wek,
= 400, xekl,

and p: R R as
oly) = sup {o(@): @ ef7y)}.

Then o is a non-negative Borel-function, see [9, p. 6]. Next we shall show
that o € F(I')) where Iy = I'\I, and I is the family of all paths f
in R» such that either f is locally non-rectifiable or there is a path o
in R* such that foa C # and f is not absolutely precontinuous on o
in the terminology of [9, Definition 2.4]. Then, by [9, Lemma 2.6],
M(I')) = M(I'). Fix B el and assume that f is a closed path. We
parametrize B by means of its arc length. Let o« €l be such that
foa =p. Now « is absolutely continuous and for almost every ¢ either
a(t) e B, or
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L= 101 = If'@®) @) = Uf @) )] .

Thus the inequality o(ax(t)) = p'(«(f)) [o'(f)| holds almost everywhere.
Consequently

1 < f@' ds = fg’(oc(t)) /()] dt < /o‘(a(t)) dt < f@ds.

o B

If the path f is open or half open, we obtain the result by using a simple
limit process, see [8, § 3].
To complete the proof we estimate the integral

f 0" dmn :

R”

At first it is easy to show using the method of [1, 7.15], the periodicity of
f, and the finiteness of N(f, F,) that there exists a countable net of open
disjoint cubes @), @y, ... such that (1) R*™\fB, = Ucl@;, (2) the
components of f~1¢), which meet F, form a finite collection Dj, ..., Dj,
and (3) f defines quasiconformal mappings f;: D;—@,. Since, by
(1. 2.27], m,)fB;) = 0, (1) implies

(2.4) fg”dmn = > [ ovdm,.
i=1

R® Q;

Fix i and let B; = D; N F,. Denote by j~j' the equivalence relation
D; C Q(Dj) . Let the equivalence classes be ay, ..., a,. Clearly p < N .
We define 4, = U E;, jea,, I = 1,..,p. Now each A, is open in
F, and mapped injectively onto @, by f. For every y €@, we let {x,} =
Sy nA4,, 1 = 1,...,p. Foralmost every y €@,

b
e(y)" = max o (@) /Uf ()" < IZIQ'(%)”/Z(J"(%))”

=1...p

,\
b
O

N
Il
M~

o ((F1A) @)U f (f14) )"

Il

l

P
< Kz(f)lzl o (f1A) ) Iy, (f14)7) -

1

Here we have used the quasiconformality of the mappings (f|4,)! re-
stricted to the components of f(int 4,) and the fact that oF; is of m,-
measure zero and f preserves sets of measure zero, see [1, 8.4] . Integrating
(2.5) over @; and using a transformation formula for Lebesgue integrals
we obtain
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4
f edm, < K(f)S f S (F1A) ) Ty » (F1A)) dm, )

Q; Q;
L ;—1 i—1
= K03 S [ U g) dn)
=1jea; J
le;
i
= k(>3 [eram, = K3 [ onam,
1=1 jeq =1
£ 4y
J
= Kl(f) O’”dm;
1710 N Ey

Summing over ¢ yields by (2.4)

ey =y = [ oan, < K [ onam,.

RN Iy

Since o’ € F'(I';) was arbitrary, the result follows.

2.6. Remarks. (a) It is possible to prove better modulus estimates
than (2.3) in the spirit of [9]. However, we shall only need the right hand
side of (2.3).

(b) The right hand side of (2.3) is true without the assumption
N(f,F,) < co. Almost the same proof applies to this case.

(¢) The essential idea in the inequalities (2.3) is that instead of f we
consider the mapping ¢: M — R* from the orbit space M = R*/Q2
induced by f. The inequalities (2.3) now become ordinary modulus in-
equalities for the quasiregular mapping ¢ defined on the manifold M .

2.7. We shall need a modulus estimate for a special path family. As-
sume that f is as in 2.1 and, moreover, that the primitive periods of f are
the coordinate unit vectors e, ...,e,, 1 <k <mn—1. Let W be the linear
space spanned by ¢, ..., e, and V its orthogonal space. For R, > 0 we
denote

n

C(Ry) = {weR:d,V)<R}.

Here d means the usual euclidean distance.

28. Lemma. Let Ry, =1 and let I, be a path family described
i 2.1 with two additional properties:

(a) Bach o« el is contained in R"™\C(R,) .

(b)  If sup,d(«(t), V) = 1", then the length of o is =1'[2.
Then M'(I}) < C|R, where C depends only on n and k.
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Proof. For x e R* we use the representation =z = (2,2 ) eV x W.
Let

o'(x) = o'(2,7) = 2|74 A" §f 2’| > R, and
o'(x) = 0 otherwise.

’

Let « €I’ and suppose that supd(«(t), V) = ». Then ' > Ry > 1.
Now by (b)

fgr d.S‘ > fzrr—(1+m—k)/nd8 > 7,/~(1+n—k)/n,,.' — 7.I(k—])/n > 1.

o o

Clearly o’ is invariant under (2, hence o' € F'(I). This implies by
Fubini’s theorem

M () < fg'”dmn = / /9’"(lmn_k dm,

Fy VNclFp W
[ee]

= 2”[ |2/ |~ P dm, (2') = 2"w;_k_1fr_2 dr
W NCC(R,) R,

’
= 2w, , 4/R,,

where ), denotes the p-dimensional measure of S? .

3. Behavior of f at oo

Suppose that f: R*»— R” is quasiregular and k-periodic, 1 <k <n-—2,
with N = N(f,F;) < co. Assume that the primitive periods of f are
1y vees € -
3.1. Lemma. Under the above assumptions lim f(x) = o0 as x— o0
in F,.

Proof. Choose yefF, with card(fy)nF,) = N and let
SMy) nF; = {x,..,xy}. Foreach i let U; denote a normal neighbor-
hood of x;, see [1, 2.4]. We may assume that QU, N U, = @ for i + j.
Set U=0U, V=nfU, and @ = {xech: |g|<]1, i =
I,..,n}. We may assume that U C @; for if this is not the case, we
may take a bigger cube instead of @,. Now f(C2Q,) C CV for if
there exists x € C2¢, such that f(x) e V', then card (f7f(x) n F)) > N
which is impossible.

Let @ = 2@\ Qcl@, where we have used the notation

pd = {xeR: xlpedy},
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p e B\N{0}, for a subset 4 of R». Observe that @ is connected; the
proof breaks down here for k = n—1. For each integer m > 0 we define
g,: @—> R as g¢,(x) = mx andset f, = fecg,. Then f, : @—CV,
hence {f,} isa normal family [2, Theorem 3.17]. Passing to a subsequence
if necessary, we may assume that {f,} converges uniformly on every
compact subset of ¢ . By [5, p. 664] the limit mapping f, is quasimero-
morphic. We shall first show that f; is constant.

Choose a point x,€@ and a number 1€ (0,d(z,,2Q)). By
the periodicity of f for every m > 2/r, there exists x,eF =
cl (B, 7o) \B"(xo, 74/2) such that f,(x,) = f,(¥,). Since F is compact
in @, there exists a subsequence of {x,} converging to y, € F'. On the
other hand fy(y,) = fy(%,) . Since this is true for all r, € (0, d(x,, 2Q)),
x, is not an isolated point of fy'fy(x,) . Thus f, cannot be discrete and
so it is constant = a .

Now we shall show that lim f(x) = @ as @ - co in the period strip
F,. For a moment we may assume that a = oo . Let M > 0 and denote
E=013/2)0Q), E,=g9g,eE, and F, = F,n (9,18 \g,¥). Choose
m, such that f,oE C CB/M) for m >m,. Now for m>m,,
ofF, C fE, U fE, ., C CB«M). Since fF,C CV and [ is open,
fF, C CB*M). This shows the existence of the limit.

Finally, if @ # oo , then f is bounded. This violates Liouville’s theorem
in » dimensions, see [1, p. 29]. The lemma follows.

3.2. Remark. The above proof is similar to the proof of Theorem 8.2
in [4].

33. Lemma. fR* = R».

Proof. This immediately follows from Liouville’s theorem [I, p. 29]
and Lemma 3.1.

3.4. Let P: R*— R» denote the projection to the linear space W
orthogonal to the periods of f.

35. Lemma. Suppose that C C R* is such that PC is bounded.
Then there exists r, > 0 with the properties
(a) fiB*(r) and Cf-'B"(r) are connected,

(b) O C fB),
for all v =r,.

Proof. By Lemma 3.3 there exists @ € f~%(0) . By the periodicity of f
and Lemma 3.1 each component of f~1B”(r) is mapped onto B”(r) and
hence the finiteness of f~1(0) N F, implies that for large r, say r =1,
the a-component U(r) of f-1B#(r) is the whole of f~1B*(r). Take ry =1’
so that Br(r,) D fC. Then C C U(r) for r >r,. If now CU(r) isnot
connected, let F denote the component of CU(r) such that F n F, is
not bounded. Observe that since 1 <k <n—2 there exists only one
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such component. The proof breaks down here for t = n—1. Let E be
a component of CU(r)\F# . Since f is open and does not take the value
oo, the periodicity of [ implies fint £ C B#(r), hence int £ = @ .
Setting U = CF we thus have fU C clB*(r). Now fU C B*(r) since f
is open. But this implies U C U(r) which shows K = 0. The lemma
follows.

3.6. Remark. If k= mn—1, then the above lemma holds except the
result Cf~LB7(r) is connected”, see [4]. This result turns out to be es-
sential in the constructions of the next chapter.

4. Construction lemma

Here we do the main construction for contradiction. The construction
of the path family 7" in Lemma 4.2 and its modulus estimate are based
on Rickman’s method in [6], and we shall frequently refer to his work and
omit some details.

4.1. Let f be as in 2.7. Recall that C(r) denotes the cylinder
{weR:dx,V)<r} and V is the linear subspace spanned by the
periods ey, ..., e, of f. Fix »; > 0 so that Lemma 3.5 holds with €' = C(1) .
Let r>r,. Then by Lemmas 3.5 and 3.1 f1S*7'(r) meets the line
L = {te,: 1t >0} at some point x. Set y = f(x) eS*(r). For
¢ €(0,m] welet C(y, ¢) be the open spherical cap of angle ¢ centered at
y on the sphere S7—1(r) .

42. Lemma. There evists a family 1" of paths y: [0, t,]— S"7(r)
such that
(@) 90 = y.

(b) M) = drN""' where d = d(n) >0 and M5 means the n-
modulus on a sphere |8, § 10].

() y hasalift o: [0,t,]— CO() starting at x and such that the length
of o is = |x|.

For the proof it is convenient to consider the orbit space M = R"/ Q
which is a connected and oriented # -manifold obtained from cl ', by
identifying its opposite faces. Let x: R"-— M be the canonical projection.
Then 7 is a covering mapping. Now f induces a discrete and open map-
ping ¢g: M — R such that f=gecx and card (g4 y)) < N for all
yeR. Let M* = M U {0} denote the one point compactification of
M and i: M — M* the natural inclusion mapping. By Lemma 3.1 ¢
has a continuous extension g¢g*: M* — R with g*(0) = oo .

We remark that all the local topological results in [1, pp. 8 —11] con-
cerning discrete and open mappings f: G — R*, (G C R* a domain,
remain valid if instead of f we consider g: M — R*. Especially we shall
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use the notation U(z,g,r) for the z-component of ¢1B"(g(z),r) of a
point z in M . Similarly we shall use the concept ~normal neighborhood”
in M and the notation N(y,q,A4) = card (g7 (y) n 4), A C M.

We shall use the following notation for paths: Let M’ be M or R*.
If a: [a,b]—M and f: [¢',b']— M are paths with «(b) = f(a’)
we denote by o *f the path obtained by going at first along o and then
along . By o' we mean the inverse path of o .

The following path lifting lemma can easily be obtained from [3, 3.11]
by replacing G by M .

4.3 Lemma. Supposethat f: [a,b]— R" is a pathand z € g7 (f(a)) .
Then two cases are possible: Either there is a path o : [a,b] — M such that
goo = and «la) =z or thereis t €(a,b] and a path o: [a, t)-— M
such that goo = Bllat), «l@) =z, lim, ,ioa(r) = o, and if y:
[a,t)— M is any partial lift of [ ,i.e. goy = Blla,l), starting at z,
then t' < t¢.

In both cases « is called a maximal lift of f starting at z.

In the following lemmas we study inverse images of caps and their com-
ponents. Fix ¢ e€(0,x]. Let £ be a component of ¢71C(y,¢), let
C = clg'Cly, ¢), and let C" be a component of C'. By C*u,¢) we
denote the w-component of ¢ 1C(y,¢) if uweg(y).

44. Lemma. Let f:[a,b]—clCly,qp) be a path such that
Bla,b] C Cly,q), BO) =y, and let weg™p(a) nclh . Then there
evists a lift o.: [a,b]—cl B of B suchthat (1) a(a) = w, (2) «(a,0] C K,
and (3) «(b) € g~ (y) . Moreover, afa ,b] C E if andonlyif B(a) € Cly, ¢) .

Proof. Assume at first that g(u) = p(a) = zecl (Cly, p))\C(y, ¢) . Let
U= U,g,d) be a normal neighborhood of «. Fixt e (a,b) with
pla,t] C Cly, ¢) N B*z,d). Using [6, Lemma 3.3] which also holds for
the mapping ¢ there exists v e U n K such that ¢(v) = f(t). Let
o [, t]— U be alift of f|[a,] terminating at v, see [1, 2.7]. Then
o (@) = w and oy(a,t] C B . Let o, be the maximal lift of g, = f|[£,b]
starting at v . Then by Lemma 4.3 either (i) ay: [t,b0]—FE or (i)
wy: [t,8)—E for some ¢ <b and icay(r)—> o0 as 71t . Now the
case (ii) is impossible by Lemma 3.1. Hence the required lift o of f is
Oy o Oy .

If pla,b] C C(y, ¢), then we can select « to be the maximal lift of
f starting at w . The rest of the proof then follows as above. The last
assertion of the lemma is trivial.

45. Corollary. B = C*u,¢) for some ueg(y).
46. Lemma. g = Cly, ).

Proof. The proof is similar to [6, Lemma 3.5 (d)].
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47 Lemma. (' = U cdC*u,9) = F.

ueg(y)NC’

Proof. Clearly F C C'. Let zeC'. Then g(z) eclCy, ¢). Select
apath B: [a,b]—clC(y, ) suchthat p(a) = g(z), fla,b]C Cly,q),
and B(b) = y . By Lemma 4.4 there exists a lift «: [a,b] — cl C*(a(d) , ¢)
of B where «(a) =2 and «(b) eg~'(y). Now the locus of « belongs
to €', hence «(b) € 0", and since z € cl C*(a(b) , @), the lemma follows.

k
48. Corollary. € = UclC*u,,¢) where wu;,egy) and
k<N. =1

Proof of Lemma 4.2: We start with the following construction: Let
L* = a{te,: t <0} and denote 2’ = m(x). We recall that x is the
point selected in 4.1. Consider the set

D, = {pe(0,a]: L*¥ nC*a',¢9) = O}
and set ¢, = sup @,. The first step is to prove:

a) @, # O,
(4.9) b) @,eD,.,
c) the a’-component of cl (g7*C(y , ¢,)) intersects L*.

The proofs of a) and b) are easy and similar to [6, Lemma 3.5]. To prove
c¢) suppose that this is not true. Let (" denote the a’-component of
C = clgCy, ¢,) . Since €’ is compact in M and since by Corollary 4.8
there exist only a finite number of components of ', we can find a neighbor-
hood V' of €’ such that V' A C = @, cl V' iscompactin M, and
c (V') n L* = O . Suppose that ¢, <<z . Then there exists ¢ > g,
such that C(y,q) C gV’ and C(y,¢) ngeV’ = O. But then
C*@' ,¢) C V' and so ¢ed,, a contradiction. If ¢, =m,
geV' n S (r) = O and eV’ n g '8 r) = O. Thisimplies by Lemma
3.5 ¢glB'(r) C V' and so ¢ 'B*r) n L* = ©. But by Lemma 3.5 L*
meets ¢ 71B*(r) .

The next step is to prove that the following situation holds: There
exists a sequence A, ..., 4 1 <p <N, of different components of
g C(y , ¢,) such that

a) A, = C*@',q,) .

b) ecd)nec(dy) # 0, ©=1,.,p-1.
c) cl(Ap)mL* # 0.

d cld)nd; =9, i#].

1‘) )

(4.10)

This can be easily done by using Corollary 4.8 and (4.9) c), see also
[6, Lemma 3.6]. Let A4,,..,4, be the sequence in (4.10). Let
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Bop: [0,t,,]—clCly, @) be the path described in [6, 3.8] and param-
etrized by means of arc length. Here veT = T, [6, 3.8] and B, ,
has the properties (1) B,,(0) = bed (Cly, g\l . g, (2)
Buslt,s) = y, and (3) B,,(0,¢,]1C Cy, ) -

Fix veT. Let y be the lift given by Lemma 4.4 of 8, =§,, ,
b, = fla;), 1in clA;, starting at a,ecl(4;,) necl(4; . N\4;, U 4,4,
t = 1,...,p—1. Let «, be the corresponding lift of f; in cl 4,,; starting
at a;,, © = 1,.,p—1. Suppose that the following conditions are
satisfied:

a) y, terminates at o’ .

(4.11) b) o, and p, terminate at a common point for
1 = 2,.,p—1.

¢) o, ; meets L*.

Then of = yj %oy *py% ... %9, 4 %o, ; is a path which connects 2’

and L*, and y, = goaf is a path on S*7I(r). By the properties of
7: R*— M there is now a lift «, of y, with respect to the mapping
f and starting at 2 such that «, connects x and =z lL* =
QzeRr: z=1te,, t <0}), hencethe length of «, is > |x|. By
Rickman’s reasoning in [6] we have the property b) of Lemma 4.2 for the
path family I" = {y,: v € T}. Thus it is enough to show the existence
of the paths in (4.11). However, this is not possible in general, hence we
shall give an outline how to continue the construction in (4.9) and (4.10) if
some of the conditions in (4.11) fails and still achieve the samelike situation
as in (4.11).

Suppose now that (4.11) a) is not true. Then N(y,¢,4,) > 2 and
@, + O where

D, = {@ge(0,¢]: ¢g'Cy,p) has more than one component in

Ay, +=1,..,p—1.

Set ¢, = sup @, . As in (4.10) we can now form a finite number of com-
ponents Ay, ..., 4,, of ¢g7'C(y, ¢, in A4; so that

» 4114
1
Ay UV A, Ve, s Q)

is connected for some a,; € cl (4,;) N el (4, ;). Setting by; = g(a;;) and
B = B, b and lifting as above we finally obtain, repeating this process,
if necessary, in 4;; and so on, a path with the property (4.11) a). Observe
that the above repeating process ends after at most N steps.

If (4.11) b) is not true, we do the above construction in each A4, .

If (4.11) c) is not satisfied, then the terminal point of «, ; lies in
A, ngy) . Two cases are now possible:

Casel. A, n L* = @ . Inthis case we choose a point a, € cl (4,) N L*



218 O. MARTIO

and define the path y, similarly as the paths y,, ..., y,_; . The construction
in A, can be continued similarly as in the components 4, ..., 4, ;.
Case 2. A, n L* # @ . In this case we consider the non-empty set

Oy = {pe(0,p]: C*z,9) nL* = O}

where z is the terminal point of «, ;. We repeat all replacing x by =z
and ¢, by ¢ = sup @;. This process ends after a finite number of steps
either in a case like (4.11) c¢) or like Case 1.

Since N(y,g,M) < N, it is clear from the above construction that
for each v € T we end with a path in S*71(r) of the form

yv = /31/),2 *:Bv,z * o *ﬁv,zk
1 1

where z, € S*1(r)\{y} does not depend on v and, moreover, k <N,
and such that y, has a lift with respect to the mapping ¢ connecting
' and L*. For more details we refer to [6] . Lemma 4.2 follows.

5. Proof of Theorem 1.1.

Suppose that the theorem is not true. Performing an auxiliary quasicon-
formal transformation we may assume that f is asin 4.1. We fix 7, >0
so large that Lemma 3.5 holds with € = C(1), see 2.7 and 4.1. For each
r >r, let I', be the path family on S771(r) of Lemma 4.2. We set

I' = ul,.
r>7,
Now if ¢ e F(I'), then p|S"r) e Fg(I'), and by Lemma 4.2
s d
e"dS = M) = st -

Sn—l (,)

Integrating from r, to ¢ >r, gives

f d —1 i
Q" m, > og .
n ZV"+1 =} T
B (t)\ B" ()

Letting ¢-— oo implies
(5.1) M(I') = .

For each y € I' let « denote the lift of » described in Lemma 4.2
©. Set Iy = {a:yel'}. Nowapath a: [0,]— R in [ satisfies
the condition b) of Lemma 2.8; to see this let
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sup {d(a(7), V): 7€[0,8]} = 7.
If d(«(0), V) > 7'/2, then [(x) >7'/2 by Lemma 4.2 c¢). If
d(@(0), V) < r'[2,

we lett P: R*— R» denote the projection P(x) = x — (x;e; + ... + 2} ¢)
and estimate
o) = [a(0) — ()] = [P(x(0)) — P(ex(t))]
= |[Pl®)] — [P@0)] = " =72 = 12

where ¢ is such that d(«(t), V) = supd(a(r), V) = . The other con-
ditions of Lemma 2.8 are true for R, = 1, hence

(5.2) M(I) < C < .

But (5.1) and (5.2) together with the right hand side of (2.3) yield a con-
tradiction. This proves the theorem.

5.3. Remarks. (a) In Theorem 1.1 the condition f: B*— R" is
quasiregular” can be replaced by ”f: R*— R» is quasimeromorphic”,
for the terminology see [2]. The proof goes along the same lines. Theorem
2.2 holds as it is. In Lemma 3.1 the limit can be finite, but using an auxiliary
Mébius transformation we may still assume that the limit is oo . Lemma 3.3
now reads fR* = R, if f really takes the value oo at some point.
Lemma 3.5 cannot be proved in its original form, however, we can easily
avoid the points of f~!(co) since there are, by assumption, only finitely
many of them in F,, and a look at the later proofs will show that we only
need the component F of Cf-1B*(r) for which F,n F is unbounded.
The rest of the proof requires only minor changes.

(b) Theorem 1.1 or its quasimeromorphic form have some applications
to the theory of space quasiconformal mappings. For instance, the domain

G, = {xeR:0<w, <t}, >0,

in R*, n >3, cannot be mapped onto B" by a quasiconformal mapping
f. For if this is possible, then f can be extended by reflection to a quasi-
meromorphic mapping f*: R — R* such that f* is 1-periodic,
int F;, = Gy, and N(f*,F,.) = 1. This phenomenon was observed
by J. Vaisala in [7].
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