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ON THE LOCAL BEHAVIOR OF
QUASIREGULAR MAPPINGS

JUKKA SARVAS

1. Introduction

Consider a non-constant quasiregular mapping f: ¢ — R* from a
domain G C R» into the n-dimensional euclidean space R", n = 2.
Let B, be the branch set of f. Forany 4 C R* and y e R+ let
N(y,f,A) be the cardinality of A4 N f*y). We call N(f,4) =
sup{ N(y,f,A)| y € R*} the multiplicity of f in 4 . If i(z, f) denotes
the local topological index of f at x e, then

i(x,f) = min{ N(f,U)| U is a neighborhood of x}.

Suppose x € B, and 4 is an open cone with vertex at xz and angle
«€(0,n]. In [3, 44] it is proved that if » >3 and 4N B, = O,
then i(x,f) < C, where C is a constant depending only on 7, «
and the maximal dilatation K(f) of f. In this paper we will show that if
n>2 and f, x and A4 are as above, then i(x,f) < C’, where (" is
a constant depending only on n, «, N(f, 4) and K(f). For n >3 we
will use this result to derive a new proof for the above cone theorem [3, 4.4].

Our notation and terminology is the same as in [2] and [3].

2. Terminology and preliminary results

2.1. We let the notation f: G'— R" include the assumption that
(¢ is a domain in R"* and f is continuous and non-constant. If f: G — R”
is quasiregular, we write K,(f), K,(f) and K(f) for the inner, outer and
maximal dilatations, respectively.

Suppose that f: (¢ — R is open and discrete. If x e and r >0,
we let U(x,f,r) denote the x-component of f-1B"(f(x),r), and for
0 < r <d(f(x), ofG) wewrite, I*(x, f,r) = inf{ |x—y||yeoU(x,f,r)}
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and L¥(x,f,r) = sup{|e—y|| yeaoU(x,f,r)}. By[2, 2.9] there exists
r,> 0 such that U(x,f,r) is a normal neighborhood of « for
O<r<r,. If U,f,r,) is anormal neichborhood, it can be shown as
in [2, 4.8] that the mapping r+~>I*(x,f,r) is continuous for r € (0, r,] .

If B, F and D are subsets of R*, we let A(E,F ;D) denote the
path family joining £ and F in D . We say that path family I is
minorized by path family I7,, abbreviated I > I',, if every path in
I'y has a subpath which is in I, .

If xeR", eS8 and a € (0,n], we let Cone (v, e;a) denote the
open infinite cone with vertex at «, axis {x + te| > 0} and angle
o, le.

Cone (¥ ,e;a) = {yeR'| e (y—x) > |y—a|cosal},

where e (y—2) means the scalar product of these vectors. Further we
write

(2.2) b(x) = m, (8"~ Cone (0,e;a).

In [3, 5.2] it was proved that for a quasiregular mapping f: G — R*,
the inverse linear dilatation H*(x,f), x €@, is bounded in G by a
constant depending only on » and K . In fact, the proof of [3, 5.2] allows
a slightly stronger statement. The next lemma is a combined version of this
stronger form of [3, 5.2] and a part of [2, 2.9].

23. Lemma. Let f: (G —R" be open and discrete, and x € .
Then there exists r, > 0 such that for every r € (0,r,],

(1) Uz, f,r) is a normal neighborhood of x ,

(2) eU ,f,r) = U, f,r) nfA8"f(x),r) for 0 <r<r,,

(3) f, in addition, f is K-quasiregular, then L*(x , f,r) < C* ¥ ,f,r),
where

(2.4) 0% = O*n,K) = exp[c, K],

here ¢, being a constant depending only on n .

Using (3) of the above lemma, we can restate [3, 4.3] in a quantitatively
better form:

2.5, Lemma. Suppose that f: G—R" is K-quasiregular and
xel. Let r,>0 and C* = C*mn,K) be as in Lemma 2.3. Then for
every r e (0,r,], we have: If |w—y| < ¥, f,r))C*, then

f@) = f) = 7”(;’*@;‘;7)) le—yl",

where = (i( , f)/K ()"0
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Proof. By Lemma 2.3, for every » e (0, rJ U(x,f,r) is a normal
neighborhood of « and L*(,f,r)/l*@x,f,r) < C*. Fix re(0,r]
and choose y € @ with 0 < |y—a| < I*( f )/ c*. Then we proceed
as Martio in [1, 6.1]. Let s = |f(x) — f(y)| > 0. Hence,

(2.6) L¥@,f,s) < C¥l*¥w,f,s) < C*|lv—y| < I¥@,f,n).

Thus, cl U, f,s) C Brx, ¥ ,f,r)). For the condenser (U(x,f,7),
cdU,f,s) = E,wehave, by [1, 5.13 and 5.15],

1—n K( )
®, 4 l:log SZ] = cap fE < ; (xl ’];5 cap K

KI(f) W, 1 Z*(IL ,f , 7-) 1—n
i,/ [l"g L@, f, s)] -

It follows that s < rl*@,f,r)™ L*(,f,s)", which implies with (2.6),
f@) — fy)| < ri*¥@,f,r)"C* |x—y|*. The lemma is proved.

3. On multiplicity and local index

3.1. Lemma. Suppose that f: G — R* is K-quasiregular and
xe@. Let r,>0 and C* = C*n,K) be as in Lemma 2.3. If
m>1, 0<t<L*x,f,r,) and A is a non-empty Borel set in
U,f,r,), then

' N(f, 4)
(3.2) i@, f) < o, Ki(f) Ko(f) M(T) (log m)*

log m)* "’
where I' = A(S"(a, t/(mC*?), 8" (x,t); A).
Proof. By [2, 3.2],

(3.3) M) < Ko(f) N(f, 4) M(fT) .

To derive (3.2) from this inequality, we estimate M (fI"). By Lemma 2.3
and the assumptions of the theorem, ¢ < L*(x,f,r,) = C*I*x,f,r,).
Hence, by the continuity of the mapping r > *(x,f,r), 0 <r <7r,, we
can choose 7 € (0,7,) such that *(x,f,r) = t/C*. Set I* = ¥, f,r).
The relation ¢/(m O**) = 1*/(m C*) < [*/C* implies, by Lemma 2.5,
fS" N, t/(m C*2)) C el Br(f(x) ,»'), where 1" = r (C*/I*)" (I*|(m C*))"
= rm™, and p = (i(x,f)/K,(f)"" . Let I' be asin (3.2). Since
L¥a , f,r) < C*I*a ,f,r) = t, fI' is minorized by

I" = A8 (f), ), SN f@) ,r) ;s B(f(x) , 7)) .
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Then

r

M(fI) < M) = «m_1<bg< ))kﬂ =,y (ulogm)'—".

rm "
Use this upper bound of M(fI") in (3.3) and the lemma follows.

34. Theorem. Suppose that f: G — R" is K-quasiregular and
xeG . Then for every bounded open cone A4 = Cone (x,e;a) N Bz, s)
with e€ S, ae(0,n) and s> 0,

N(f,4) =

where b,(a) s as in (2.2).

Proof. Let r,> 0 be as in Lemma 2.3 and choose ¢ > 0 so that
O<t<min{s,*@a,f,r)}. Set A = 4N B*(x,t). Then Lemma 3.1
yields for every m > 1

' N(f,A4)
(3.5) i@, f) = ona KiF) Kolf) 3777 (1og m)

n—I1

where I' = A8 Yx, t/(mC*?)), 8" Yz, t); A). By [4, 7.7]
M(I) = b,(«)[log (m C*2)]*—".

Substitute this in (3.5) and let m — co. The theorem follows because
N(f,A) < N(f, 4).

3.6. Remark. In the plane Theorem 3.4 gives the best possible lower
bound for N(f, ). If k& and m are positive integers, we define, using
the complex notation, f: ¢'— C by f(z) = 27t for all z e (C, and set

A4 ={re? | 0<r<l1, 0<qp<2alk}.

Then K(f) = 1, ¢0,f) = mk and N(f, 4) = m . On the other hand,
Theorem 3.4 yields with o = n/k,

bo(m/k) 2nfk
o K(PE WO = g gmk = m

3.7.  Open question. Theorem 3.4 implies that there exists z, € 4 such
that f assumes the value f(z,) at least b,(x) (w, ; K*) 'i(x,f) times in
A4 . Is this typical of all z € 4 (which are sufficiently close to x)? The
question could be formulated explicitly as follows: If f and 4 are as in
Theorem 3.4 with m > 1 such that there are points y € 4 arbitrarily
close to a with N(y,f,4) < m, is i(v,f) then bounded by some
constant depending only on #, K, o« and m?

‘V(fi A) =
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4. On the local structure of B,

4.1. In this section we want to show that the cone theorem [3, 4.4]
can be derived from Theorem 3.4, too. Thus Theorem 3.4 can be considered
as a generalization of [3, 4.4]. First we need the following lemma.

4.2. Lemma. OSuppose that f: G— R is K-quasiregular and
ve@G@. Let r,>0 and C* = C*n,K) be as in Lemma 2.3. If
AC Ux,f r,), then

N(f,4) = max N(f, 4 n [cl Brx, )\ B*(x , t/C¥)]) .
1>0
Proof. Choose any yedAC U(,f,r,). By Lemma 23 for

s = |f@) - fo), oU@,.f,s) = Ul.,f,r) nf '8 (f),s) and
L*,f,s) < C*¥I*@,f,s). Then for ¢t = L¥*@,f,s) we have

AnfAfy) C AneU@,f,s) C An[clB(x, HNB* (x , t|C*)] .

The lemma follows.
43. Theorem [3,4.4]. Supposethat f: G — R* is K-quasiregular,
n >3 and x el . If

(4.4) Cone (v ,e;a) N Br(x,t) C G\B;

with eS8, ae(0,n/2) and t >0, then i(x,f) < C, where C
depends only on n, K and o .

Proof. Let C* = C*(n,K) and r,> 0 be as in Lemma 2.3. Set
sg = min {{*(x,f,r,),t/2} . Let p = y(n, K) be the constant in [3, 2.3].
Then by [3, 2.7] f is injective in every ball B'(x 4+ se,ys) with

y = psina, 0<s =< 5.

Define balls B, = B*(z;,r,), 1 = 1,2,..., by setting
X, = X + Sy¢€, r, = ylz, — x| and

¥ = Xy -6, o=yl —w, >l

Then f is injective in every B, and it is easy to see that U, B, covers
the set

4z = Cone (x,e;f) N Br(x, s9) ,

where f € (0,n/2) with tanp = p/3%. So f depends only on n, K
and «. We want to show that N(f, 4,) has an upper bound depending
only on n, K and «, which will prove the theorem by Theorem 3.4.

To estimate N(f, 4,) we apply Lemma 4.2. Consider any s € (0, so] .
It is easy to see that to cover the set

Ay = Ay [el Br(x, s) B, s/C*)]
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with balls B; we need at most m, balls, where m, is the smallest in-
teger greater than (s — s/O*)/(ys/C*) + 1 = 1 + (C* — 1)}y . Hence
N(f,43) < 2+ (C* — 1)}y. Since s e (0,s,] is arbitrary, Lemma 4.2
implies  N(f, 45) < 2 4 (C* — 1)/y . This upper bound of N(f, 4,)
depends only on %, K and « . The theorem is proved.
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