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HAUSDORFF DIMENSION, ORTHOGONAL
PROJECTIONS AND INTERSECTIONS WITH PLANES

PERTTI MATTILA

1. Introductlon

Let E be a plane set which is measurable with respect to the s-dimen-
sional Hausdorff measure lf,' wilh 0 < /f,'(E) < oo . In [r0] Marstrand
proved among other things the following three theorems:

(l) If I < s < 2 , then the Lebesgue measure gtlp@)l is positive
for almost all orthogonal projections ? : Rz ---> RL .

(2) If 0 < s < l, then the Hausdorff dimension of p(E) is equal to
s for almost all orthogonal projections p : nz ---> Rt .

(3) If I < s < 2,thenat, #" almost all points r eE t'he following is
true: For almost all straight lines I through n, lf,n|(E A l) < oo and
theHausdorff dimensionof E nl isequal s-r.

Results similar to (f ) and (2) were also obtained by Kaufman [7] with
potential-theoretic methods. Kaufman was also able to show that the ex-
ceptional set, of projections in (2) has åf,' measare zero.

In this paper we generalize the results (l)- (3) by replacing the dimen-
sions 2 and I byarbitrarydimensions n and rn,0lnx<n. Weuse
the method of Marstrand in (l) and (3) and that of Kaufman in (2). Cer-

tainly Marstrand's ideas could. also be used to generalize (2), but Kaufman's
method is shorter and gives a result on capacities and on the Hausdorff
me&sures of the exceptional set. On the other hand, Marstrand's method
allows us to improve (t) in two respects. X'irstly, the conclusion g*lp(E)] > 0

can be replaced by the stronger conclusion ! N(p lE ,ild,9^y : @,
where N(plE,y) is the number of points in the set fr n p-l{y}. Sec-

ondly, the hypothesis that the Hausdorff dimension of E is greater than
n'L carL be replaced by the weaker hypothesis C*(E); 0 , where C- is the
capacity corresponding to the Riesz kernel lr-yl-*. As a corollary it
follows that if the integral-geometric me&sure 9f@) is finite, then
c_(E) : o .
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When we consider a set E wilh /f'(E) > 0, two assumptions will
often be equally convenient; namely, that il is a Suslin set, or that .O is
2(s measurable with #'(E) ( @ , because in both cases E contains
a compact set K with 0 < tr'(K) < oo . The case where E is lf,' measur-
able and #(n)' : oo is entirely different. In fact, assuming the continuum
hypothesis Besicovitch [f] has constructed an ]f,L measurable plane set G

such that g'(G) : I and that the only subsets of G of zero 92 measure
are countable sets.

Several instructive examples and remarks related to the present subject
can be found in p0l.

Most of the terminology and notation will be as in l5l.

2. The measures 8I,* and Tn,*

Let O(n) be the orthogonal group of the Euclidean z-spa,ce -B' and
let 8o be the unique Haar measurc on O(n) such that 8"lo(n)l : I .

If m is anintegersuchthat 0<m<n,then O*(n,m) isthespaceofall
orthogonal projections from R* onto R*, and G(n,m) is the space of all
zz-dimensional linear subspaces of R". We shall use the O(z) invariant
measures 8f,* on O*(n,m) and ln,* on G(n,m) (see [5, 2.7.16(6)]).
If peo*(n,m) and VeG(n,m), ACO*(n,m) and.BCG(n,m),
then by definition

Of,*(A) - 8*{geo(n): poge A },
Tn,*(B) - 8*{geo(n): g(V) €B}.

measures $ff,* and Tn,n-* are related by

Tn,n-*@) - OI,*{p e O*(n, nt) : ker p e A }

for ACG(n,n-rn).
If 0 < I < n, we let tf s be the s-dimensional Hausdorff measure

over R" as defined. rr'15,2.10.2(l)]. Then tf,': 9*, the Lebesgue measure
in R* .We denote by B^t the unit sphere {r e R" : lrl : I } and, when
aeR" and r)0, by B*(a,r) or B(a,r) the closed ball {reR":
lr-al ( r ]ri)

Throughout the rest of the
0<nL<n.

paper m and n will be integers such that

2.4. Lemma. There'isacunstant c, d'epenil''i'ngonlyan n anil, m
such that

/f,"-l{reS"-1 : lp@)l <ö} ! qö*

for all, p eo*(n,m) and, ö > 0.

(2.1)

(2.2)

The

(2.3)



Hausdorff dimension, orthogonal projections and intersections with planes 229

Proof . It is sufficient to consider 0 < d < ll2, and we may assume

that p is given by

p(%r...rfrn)_ @,

Define f : B*(0 ,Il2) x gn-m*L ,S"-1

f(a , r) : (y ,(1

Then f is Lipschttzian and maps B*(0
lp@)l <ö) for 0

K and using [5, 3.2.23f , we find that

/f,'-'{reS-L: lp@)l <ö} { K"-t#ÅlB*(0,å) x B"-*11
: KFL g*lB*(0 , ö)l ff,-*t(Sau-r; _ K,-1 a(m) af,**r(S*r) ö* .

2.5. L e m m a. There is a constant c, il,egtenil,ing ooly on n anil m
such that

fltr,^{p eo*(n,m) : lp(r)l < ö } < crö* lrl*
forall re&" anil, ö>0.

Proof. Since p(r) : lrlp(rllrl) for r * 0, we may assume that
re9*t. X'ix qeo*(n,m) anddefine A:O(n)-tB*l bg <D(g):S@)
for g eo(n). Applying statement (3) in 15, 3.2.471 wlth t: rL-L ,

r*p : n(n-f)/2 andobserving l}rrat' ff'+p isthenaconstantmultiple
of fl because of 15, S.Z.ZA11)1, we find a constant c depending only on
m such that

8*lo-t@)l - c ff"-t@)

for E C S"-1 . I{ence by (2.L) and Lemma 2.4,

8,*.,*{ p e O*(n, rru) : lp@)l

- 8*{geo(n): l@"9)(r) l<ö}
: 8*(o-t{y e rS"--1 : lq(ilI < ö})
: cnr"-t{y e rS"-1 : lq(ilI < d}

The corresponding inequality for the me&sure Tn,*
Lemma 2.5 and (2.3):

2.6. L e m m a. There 'i,s a constant ca dependdng only
such that

Tn,*{Y eG(n,rn): dist (r,V)

forall re R" a,nd ö>0.

) ... , fr*) .

C R* x R'** by

lvlTl' ,).

, ö) x gn-m--L onto { r e S*1 :

the Lipschitz const'ant of f bV

follows from

on 1L a,nd m
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3. Integral inequalities

In this section we assume that
(3.1) M is a sqparable metric space,
(3.2) I : R" x M -> Rt is a non-negative Borel function such that
I(r,a) < lrl for all (r,a) eR' x M ,

(3.3) a and å are positive numbers and, q is a Borel regular measure over
lll such that

q{aeM: E(r,a) <ö} < bö"lrl*"

forall reR" and ö>0.
The separability of llrl makes the subsequent applications of X'ubini's

theorem legitimate. The results of this section will be applied with
M:O*(n,rr), I: (*,p)r->lp@)l and M:G(n,m), X: (r,T)
+ dist (r , V). Lemmas 2.5 and, 2.6 guarantee that 8f,* and T*,*
satisfy the condition (3.3) with a : rm arrd d. : n-n'L , respeatively. In
Sections 5 and 6 we shall replace q by other measures orrer O*(n,m)
and G(n , m) .

3.4. ff p measures & set X (i.e. p is an (outer) measure over X) ,

p(X)<@, & and f arereal numbers, a>0 and /; X-->{r:0<
r <& ) is p measurable, then

rtd,pc{reX: f(r) {r},

where the right hand side is a Riemann-Stieltjes integral. In the cases

where f > 0 or inf/(X) > 0, this follows immediately from the fact that
I rf, dp lies between the sums Z!:rri p{ r : rr*, < f(*) < ,n} and

)l-tr'r-rp{r: rr-r<f(r) <r;) whenever 0: ro.--\1... .--rx: a.
In the general case one can a,pproximate by functions å - .op (f ,Iln) ,

7L : Lr2,...,
3.5. Lemma. If 0<r<a. anil, reR",then

a,

! r'dp: !

r
J F (r , q,)-' dvo

where c - b[I + t(o-t)-t]
Proof . Apply 3.4, integrate by purts, a,nd use (g.2) and (3.3) to deduce

.[ or.,e)-'dvo: I'r-'d,p{a: 
F(r,a,) <r}
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lxl

< l*l-'p{a: F(r,e) <lrl } + t f ,'-lq{a: F(r,a) <r}d,?rr

lrl 
o

<bl*l'-tbtlrl* .[ ,"*tilgrr : b[t + t(u - t)-t]lrl'.
I

3.6. Lemma. If p i,saBorelregularrne&su,reoaer R*, p(R") (oo,
reR* and, ö)0,then

ff
I p{A eR": F(r-A,a) !ö}ilga < bö" I l*-yl-"dpy.JJ

Proof. Observing that {(y,u)eR'xM:E(r-y,a)<ö) is a,

Borel set and applying X'ubini's theorem and (3.3), we obtain

r
J r{a eR": x(r-Y,e) <å)il'qa

ff
I C{aeM: F(r-A,e) <ö}dpy < öö" I l*-Al-"dpy.JJ

3.7. If p meq,sures -8", ueR', aeM and r20, wedefine

tpi(p,r,a) : liminf ö-p{yeB(r,r): I(r-y,a') <ö1,
ö{0

V"Qr,r,a) : tyVi@,n,a) .

The set {(A,r,a): UeB(r,r), I(r-y,d) <d} is a Borel set in
R" x R" x M . Therefore p{A eB(r,r): I(r-y,e) < d} is a Borel
function with respect to (r , o) according to X'ubini's theorem, and it follows
by standard methods (cf. 14, 3.al) that bofh yi and gn are Borel functions
with respect t'o (r , a) .

3.8. Lemma. If p, dsaBnretrregular{twalsu,reoaer R', p(n") (@,
reR'anil r)0,then

ff
l rpi@,x,&)d,Va <b J l*-Al-"dpy.

J 
B@,t)

This follows directly from X'atou's lemma and Lemma 3.6.

4. Projections into lower dimensional space

Here we adopt the notation of the previous section with lll : O*(n , m) ,

I: (r,p)>lp@)l , ct:rn and g:8f,*. Then
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,p!(p,r,p) : liminf ö*p{yeB(r,r): lp(n-y)l <ö}.
|... , d{o

For any function f , N(f , g) is the number of points (possibly 0 or
oo) in the set l-'{a\ . If A is a Borel set of fi" , then the function
y r-> N(p I A,il is g* measurable for all p eO*(n,nr.) (see [5, 2.10,10])
and the function (y ,p)r->N(p lA ,A) is 9* x flf;,* measurable (see

[5, 2.10.f6]). Actually, it can be seen as in 6.1 that these functions are
measurable wheiiever A is a Suslin set, but we shall not make use of this
fact here.

If ,rz measures a set X and AC X, t'hen p L1 is the restriction
measure defined by (p L A) (B) : p(A n B) for B C X .

4.1. Lemma. If p'i,saBorel,regularrLeasureouer R", E isaBorel
setof R" with p(E) { co, peo*(n,m) anil h>0, then

p{reE: ,p*QrLE,r,p) <h} < 2m^mt|U I nrnlE,A)d?^A.

Proof.,, t, tl sufficient to prove that

p{reE: rp*Q"LE,r,p) <h} 1 2-m*tzO I ,rnlE,y)dg*a.

To simplify the notation, we assume that p is given by

Let r and d be
R _ R* x R-*

Let

and

?(h,...,frn): (rr, ,fr*)

positive numbers such that d I r f n. We identify
and express Rn-* as

Dn-rnlL:

where Qn't are closed cubes parallel to the coordinate axis with
mutually disjoint interiors and with sidelength d. We rnay assume that
I N@ I E , y) d,9*y < oo . Then we can choose the cubes Q, such that
g*(plU A (R* x aQt)l) 0, because g^lp(n 

^ 
V)1 can be positive

only for countabl;i meny disjoint (n - f)-dimensional affine subspaces Y
of R".

If freHn, ö q

: {yeR,: lr,t-Utl < ö,I(*, ö , Q)

i- 1,...,'n'Lr lrn-U| < Q, i- m*1,...,nj

f(") - liminf ö-tnpW n I(r,ö,cl)l for ffie;Rn,
d.1.0

@

u Qo,
i:t
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Eo : E n{rePn x Qt: f@) <h} for i : 1,2,....

By standard. arguments [4, 3.4] one can see that / is a Borel function. Let
e > 0 and fix i. By [5, 2.2.2f lhere is a closed set InC En such that

p(En) < (l + e) p(r').

Next we select closed cubes P, C R* patallel to the coordinate axis such
that

p@)C Jr,, is*tP) <e*lp(Fa)l+e.
J:L J:L

Then J'n C ,.å, P, x Qn and

pt(I) <2p{nn(P,xQ)].
J:L

We shall show that

(l) FlEt ^ @i x Qn)l < z-ltg*(P,) for i : r,2,....

Suppose that (f ) is false for some 7 . Then dividing P, repeatedly into
2- eongruent subcubes, we get a decreasing sequence (.Bu) of subcubes of
P, such that

(2) diam (.Bo) : 2-h diam (Pi) ,

(3) FlFt ^ @o x Qr)l > 2^ h g*(R) .

Since the compact non-empty sets n, n (Re x Qr) form a decreasing
sequence, there is a point x e nf,aPi o (Rn x Qt). Let öå be the
sidelength of Ro. Then

En n (Ru x Qr) C E n I(n,ö6,i1),

and it follows from (3) that

(4) lim inf ö;* plU 
^ 

I(r , öo , d)l > 2* h .

,i+o

X'orany 0<d<ä1 thereis fr suchthat öu<ö.--2ön becauseof
(2). Then (4) yields f(r) >h. Bub this contradicts with the fact that
r e Dn. Hence (l) holds, and we get
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Letting " i 0, we have

p(fr,) < 2*h g*lp@t)1.

Summing with respect to i, and recalling that 9*lF(Er A E)l : 0 for
i, + i,' , we obtain

@

<h\

2*h I *rnlE,y)d,s*y.

p{r en: f@)

@

i:l

Since d <rln, we have

I(r,ö,d) C {yeB(r,r): lp(r-y)l < muzö}

for sufficiently small d > 0 . Hence

p{reE: rp\|"LE,r,p) < h\ ! 2*m*tzo I ,rolE,y)d?*y.
Letting r .[ 0 completes the proof.

X'or the definition of the integralgeometric measute 9i see 15, 2.f0.5].
4.2. Theo rem. Let p be a Borel, regular rneasure ouer R' and' E

a p measurahl,e subset of R" with 0 < p(E) < a . If

I l*-vl-*ilpv I a
E

fo, p almostall refr, then

["r@lE,y)ite*y : oo
J

for 8f,* almost all p e O*(n , m) , and' .9f@) : oo .

Proof . Since .E contains a closed set of positive p me-ilsure 15,2.2.2-Bl,
it is sufficient to prove the theorem in the case where p is closed. Let P
bethesetof those peo*(n,m) for which tN(pl&,y)d9*y { o.
ThenitfollowsfromLemma4.Ithat p eP implies qt*@LE,n,p) > 0

for y, almost all reU, whence laV-\tLE,r,p)dpr > 0. On the
other hand, under the present, assumptions Lemma 3.8 combined with
Fatou's lemma shows that l rp'(p L E, r, p) dilf,*p : 0 for p almost
all r e.O. Thus by Fubini's theorem,

f I r-WLE,r,p) itpr ittf,*p : [ [ r-WL E,r,p) itLf,*p d,p* : 0.

Uå.* vf,*(P) - o . This prove, ,;
,9f@) : oo , follows from the first

first assertion. The second assertion,
a,nd, [5, 2.L0.15] .
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4.3. Capacity. The inner capacrty C" , 0 ( s 1n, is defined as follows:
If 1{ is a compact subset of R,, then

C,(K) : suP Pr(-g") ,

where the supremum is taken over all (non-negative) Radon meås-
ures p such that the support, of p, spt#, is contained. in K and

I lr-Al-'dpA < I for all r espt, p,. For arbitrary E C R" , we set

C,(E) : suP{C,(K): KC B, K iscomPact}'

The corresponding outer capacrty CJ is defined fot E C R" by

C{(E): inf{C"(G): ECG, G isopen}.

Then Cf(.&') : C"(E) for all Suslin sets .E of R" (see 19, Theorem 2.8,

p. l56l).
If p is a Radon me&sure and J lr-yl'd,py < I for all r esptp.,

it follows easily (see [9, Theorem 1.5, p. 66]) that I lr-yl'dpy < 2" for
aIl r e-8" . Hence C,(E) > 0 if and only if there exists a Radon mea,sure

p suchthat sptpCE,0(p(E)<oo and Ilr-yl-'dpy < I forall
r e R". Thus we obtain from Theorem 4.2:

4.4. T h e o r e m. If E C R",i,s measurabl,e wi,th respect to eaery

Radanrneasureand,i,f C*(E)>0, then ,l'*ff(p lE,y)d9^y : a for
flf;,- almost al,l, p e O*(n , m) .

If E C R' , we denote by dim E the Hausdorff dimension of E i.e.
dim.D : inf {s: tr"(E):0}.Itiswell-knownthat

dim.O : inf{s: Cf(Z) - 0} - sup{s: Cf(Z') >0}
(see e.g. [6, Section 2] or [9, Theorem 3.13, p. 196 and Theorem 3.14, p.
2001). Consequently,

(4.5) dim.O : inf{s: Q(.@ : 0} - sup{s: C,(,O)>0},

if "O is a Suslin set. Therefore
4.6.'Theorem. If E isaBuslinsetof R" anil dimD>m, then

!*N(plE,ilil?-g: a for flf;,* almostatt Tteo*(n,m)'
This theorem could also be deduced directly from Theorem 4.2, because

for I > rn the use of Riemann-Stieltjes integration shows that
l"l*-yl-*d,/f,"y < o whenever the upper density @*s(J€sLE ,r)
is finite.

In case Z is a Borel set, the conclusion in 4.4 and 4.6 implies that
.9f@) : co . But since 9{ is Borel regular [5, 2.10.1], we have more
generally

4.7. Theorem. If DCR" q,nd,.9f@)(@, then C*(8.):0
onil, dim4 <m
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5. Projectlons into hlgher dlmenslonal space

In the first three lemmas of this section, we assume that 0 I a. 1m ,

ö > 0 and g is a Borel regular measure over O*(n, na) such that

q{peo*(n,m): lp(r)l <d} < bö"lrl-"
forall reR" and. d>0.

If 0 < I < rn and p is a Radon me&sure over R', we denote the
s-energy of gt, by I,(p) i.e.

:

I,(p) : I I O-rt^ itpy itp* .

Then for compact sets K C R" ,

: C"(K)-t - inf 1"(p) ,

where the infimum is taken over all Radon measures p such that
sptpC K and p(K) : I (see [9, p. r39])

5.1. Lemma."If 0<s< u and, K isaco.mpactsetof R*, then

J C,lp(K)l-td,ep < cC"(K)-r,

where c: b tl + s(a-s)-11 .

Proof . The integrand. is measurable; in fact, the function p r-> C,lp(K)l
isuppersemicontinuousin O*(n,m). To seethis, let peo*(n,m) and
e}0.ThenthereisanopensetG)p(K)suchthatC"(G)<
C"fut(K)l+e. When g"is sufficiently close to p, then q(K)CG,
whence C,lq6)l < C,(G) a C"lp(K)l + e.

Let p be a Radon measure such that spt' p, C K and p(K) : I .

If p eo*(n ,m) , then the measure pgtt , defined by pXU(A) :
plp-t(A)l for ÅC R*, is a Radon measure over R*' 15, 2.2.171,
sptp# C p(K) and puplgt(I{)l : r. By [5, 2.4.r8(r)], we have

IJp*ri : [ [ WW-fi1'itpyd,pr.

Fubini's theorem and Lemma 3.5 yield

f f f f
I r,@rd itep : I I I W@-ilr' dw dpy itpr t c I,Ai,

J ' JJJ
from which the lemma follows.

5.2. Lemma. If O<8(0(, EC R, and, C,(E))0, thenthere
is a Barel set P C O*(n,m),ind,eltenil,ent of V, suchthnt Ee) : 0 and,

C,lp@)l) 0 for all p eO*(n,/n)\P



Ifausdorff dimonsion, orthogorial prr:jectiöris änd intersections with planes 237

Proof. Choose a, compact set KC E such that q(1{)>0. Then
the set

P : {p eo*(n,m): C,lgt(1{)l : 0 }

has the required properties by Lemma 5.1 and its proof.
5.3. Lemma. If E isaSusl'i,nsetof R" and, dim.0 < a,then

there'i,s a Borel, set P C O*(n,m),'i,nd,eltenilent of q, such that E(P) : 0

anil dimp(.O) : dim D for all, 7t eo*(n,m)\P.
This follows from (a.5) and 5.2 if we choose P : vf:tPi, where

P, is the Borel set of Lemma 5.2 corresponding to s : dim.E - lb .

By Lemma 2.5, the above results hold with q. .: lm and g : Of,*.
We now proceed to obtain more exact information about the Hausdprff
me&sures of the exceptional sets of Lemmas 5.2 and,5.3. Recall from [5,
3.2.28f that O*(n ,m) is att ?n (2 n - m - l)12 dimensional submanifold
of class oo of the euclidean space Hom (-B" , -B-) with

0 I 34*lz*Frll2lo*\n, m)l < a .

We use the norm ll/ll : sup{ l/(r)l: lrl :"'1} on Hom(-R" ,R*).
Then B(/,r) : {ge Hom(R",R*): ll/-sll <r} for /eHom(R",8-)
and r>0.

We shall apply the following theorem, which is due to O. Frostman. A
proof is given in [2, pp. 7 - 8].

5.4. Theorem. Let E beasuslinsetof R" and, s>0.Then
tr'(E) > o if anil only i,f there erists a Borel, regular rnecrs'u,re g such that
0<E@)<q und, EIB(r,r)l 1r" forall, reR" ancl, r)0.

To be able to combine the above theorem with the lemmas of this section,
we prove the following

5.5. Lemma. If p isaBorel,regularrnecrsureouer O*(n,m) with
qlo*(n,rn)f <@, t2y:m(2n-rn-3)12 an'd' l

EIO*(n,rn) ^ 
B(p, å)l < ö'

for al,l, p eo*(n,m) and, ö > 0 , then

v{p eO*(n,m) t lp@)l

'is a constant depending only ori n ,fo, all n e R" onil
nx and, t .

Proof. V[e may assume that ffi e ,S"-1 ancl ö

Aa : {p eo*(n,m): l;p(r)l < d },
B : {peo*(n,m): p(r): 0}.

Let, p e :40. Then there is a eS"-L 6kerp such that l*-ol < 2 ö.
0hoose g eo(n) so that g(*) : a and llg - ln,ll l*-ol. One can
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findsucha g bywriting R":V@VL, where {r,a}CVeG(n,2)
and Zr is the orthogonal complement of V ,letting f be a rotation in
7 forwhich f(r): a andtaking g:f @1r,1. Then llp -p"gll < 2ö
and p o g e B. This shows that

Aö C {peo*(n,m): dist(p,B)

X'or p eo*(n,m),we denoteby p* theadjoint of p 15, 1.7.41 and
let O(n,m): {p*:peox(n,m)) be the set of all orthogonal
injections R* ---> R* . If p e B, the image i^ p* is contained in
{yeR":!.r:0). Choosing a linear isometry fr{AeR":y.r:
0)-+-R*1, we c&n define an isometry X: B-->O(n-I ,m) by X(p):
f " p* . Thus it follows from [5, 3.2.23(5)] that 0 q af,'(B) < a and that
B is a r,-dimensional manifold of class oo . Hence the upper density
@*'(ff'LB,p) is positive for all p eB. Moreover, ff'LB a B(p,r)l is
independent of p for all r > 0 . Consequently, there is a positive number
c depending only on ra and na such that

lf,'fBaB(p,r)J > cr'
forall peB and 0<r<1. X'rom(l)itfollowsthat

tr'lB n B(p,3 ö)l

for p e Aa. 'We define a Borel function
f(p,q): l, if peB(q,3ö) , and f(p,q)-
Fubini's theorem,

f : Aax B --> BL setting
0 otherwise. Then by

c ö' V(A)
A5

: I I f@ , s) d'tr'q dvp

A5 B

I: IIr@
BA5

, q) dVp dff'q - elAa n B(q, 3 ö)l dff'q

and q(Ao) < b ötu with ö : g' c-L /f,'(BI'., This completes the proof.
Combining 5.2-5.5, we can state the results of this section as follows:
5.6. Theorem. Let DC R".
(")If 0<s<m anil, C,(n)>0, then C,lp(il)l>0 for 8*,*

almost all p eo*(n,m). More precisely, the Hausilorff ilimens,i,on of the
enceptiarml, set is at most s + m(2n - rn - 3)12.

(b) If D isaSusl,insetand, s: dimE <m,then dimp(E) : dim.O

for 8f,*, rnore precisely ?fs+n(zrbz)12, almost all, p eo*(n,m).
5.7. Remarlts. (t) If I/ eG(n,m),let P, be the orthogonal projec-

tion from R" onto Y .By similar methods as above, one c&n prove that

dim { V eG(n,rn) : C,lPr(E)l - 0 } < I + m (n %t, T l)
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with the assumptions of 5.6(a), and

g^+h(n-F1r{V .G(n,m) : dimPr(E) < dim E ) : 0

with the assumptions of 5.6(b).
(2) In 18] Kaufman has given an example of a compact plane set D

such that dimD < I and that the set of t\cee p eO*(2,1) for which
dim p(D) < dim D is of positive Hausdorff dimension. Later it has been

shown (unpublished) first by Kaufman in the co,sa rL : 2 and then by
Kaufman and the present author in co-operation in the general case that
s+m(2n-n1,-3)/2 is the best possible upper bound' for the Hausdorff
dimension of the exceptional set of Theorem 5.6.

(3) It follows from [9, Theorem 2.9, p.r58] that Cllp@)l < CJ(.E)

for all E C R' and p eo*(n,m).

6. Intersections with Planes

Here we use the methods of Marstrand [10, Section 6] to examine the
intersections of an s-dimensional set with nz-dimensional affine subspaces

of R" . If r e R" and A C R", we denote by r-.4 the r-translate

{AeR"iA-neA} of A.
6.1. Lemma. If E ösasusl,in setof R" anil, t>0,thenthe

function
(r , V) +,'ff'(E 

^ 
r*V)

i,s a Susl,in function in E* XG(n ,m) , i.e. the'i'nuerse i,mage of {a: u } u\
i,s a Suslin set 'i,n R* xG(n , m) for al'l u > 0 .

Proof. We shall apply the following statement, which is a special case

of a result of Dellacherie [3, Chapitre VI, Corollaire 21]:

If A is a Suslin set in R" x R'x G(n , m) and A(r , V) :
{yeR": (y,r,V)eA) for (r,V)eR'xG(n,m\, then the function
(r , V) r-> af,tlA(r , V)l is a Suslin function in R' x G(n , m) .

We choose

A : {(A,n,V): yeil Ar*V}
lE xE"xG(n,m)l a {(y, r, V) : r-Y e Y } .

Then -4 is a Suslin set, as an intersection of a Suslin set and a closed set,

A(r , V) : E n r,V , and the lemma follows'
We adopt the notation of Section 3 with M : G(n , m) and. F(r , V) :

dist (r ,V) for (r,Y) eR"xG(n,m). Then if p measures -B' , r e&n,
VeG(n,m) and. r)0, wehave
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tp|--Q",n, V) : lim inf ö*-* t {y e B(r,rl : dist (r-y, I/). < d }.
6.i0

The following lemma can be proved by the same method as Lemma 16

in p0l. We omit the details.
6.2. L e m m a. SuTrytose that E ,i,s .an nf,' measurahle subset of R*

with 0</f'(E)(ö, t>O and, VeG(n,m). If lft(E.rtoV):
0 for al,l a e R" , then

limsup r-' rlt\-*(tr' L E, *, V) :'ga"
tIo

for af,' almost all, n e B .

6.3. Lemma. If 0<u<s, EC R" anil, tr"(E)1@, then

limsup ,"-' [ @-al*il#"y < s(s-z)-lr+o t ntrrr, r,

for /{' almost aIL r e R" -

Proof. Let u e A" and r > 0. Applying 3.4 and integrating by parts,
we h&ve 

/

t @-yl-" d#,y - [ n-" itlr"ln n B(r, q)]J"J
EOB(r,r) O,

< r* zf,'fT a B(r,r)l + " I Q*t ff'lT A B(r, p)f dgtq .

{
The assertion follows from the fact that the upper density 6*s(3(s L E , r)
is at most one for #' almost all r e R" 15,2.10.19(5)].

6.4. L e m m a. If E i,s an 2(s measurable subset of ftn with
0</f'(E)1cn, then

dim"E Ar,V > s+rn-n

for /f,'xy*,^ al,mnst all, (r ,V) e ExG(n,m) .

Proof. It is sufficient to prove this for an arbitrary compact, subset
I of E and s*m-n)0. Let 0 <t<s+rrL-n. Denoting

f(*, V) : limsup r-t rttr-*(tr' L X, r, V)
,W

for (r , V) e R* x G(n , m) , we infer with the help of Lemmas 3.8, 6.3 and
the obvious generalization of [10, Lemma f 0] that I f@ , V) d,y*,*V : 0
for tf" almost all reF , whence

(r) f I ro*'d/n,,,: o.
F



Hausdorff dimension, orthogonal projections and intersections with planes 241

Applying Lemma 6.2 to the set

Dv: {reT: #'(I nr,V) - 0}

for V eG(n,rn),we find that f(*,V) : oo for ff' almost' all ret12,
Hence (r) implies that #"(Ev) : 0 for yo,* almost, all V eG(n,m).
The rfut {(r,V): r eUr) is Jf,'xy*,* measurable by Lemma 6.1, and

X'ubini's theorem can be used to show that #'xy^,*{(r , V) : r e iln) : 0 ,

The lemma follows by the arbitrariness of , '

6.5. Lemma. Supgtosethat r anil, s arepos'i,tirse numbers, rceR*,
E C R" and, #"(E) < oo. If t > n-m, then

f*
I #"**"(l\B(r,r)l n r*V) dy*,*V < c r** tr'lu\B(r , r)l ,

J

where c is a constant d,egtend,i,ng onl'y on m, rn an'il, s, If s <n-m ,then

[.D\B(r,r)] nr,V : A

fo, y,,* almost all, Y e G(n , m) .

Proof. For every positive integer lc , choose balls Bu,tC 4" t

d : 1,2, ..., such that

.u'\B(r ,r) c J ao,n, -B'\B(r ,rl2),. i:r
'@

Z "(")4-" 
(diam Bo,r)' I /f,'l0\B(r,r)l + lrl ,

t:1
diamBo,; < k-t, i : 1,2,...'

Since Bu,, C,R"\B(r, rl2), we obtain from Lemma 2.6 lhat'

T*,*{V eG(n,m): Bo,n,lrr"V + A) I cs2**r*(dtamBn,r\*^

If s > n-nx, we get

f
/ ldiam (Bn,; A z*V)f'+*" dy,,^V { csz"-* r*-' (diam Bu)' '

J

Here we agree that dtam A : 0 . The integrand is continuous, and there-
fore measurable. We sum over i and use X'atou's lemma to infer

f ri* inf å tutu ^ (Bo,n n r*v)J'!nc-n dyn,*v
J fr ->co i:L

But
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/f' +* (lD\B(r, r)l n r *V)

< lim inf j *1"+- -n) 2*-u [diam (Bn,; A r,V)1"+*' ,
h+q i:l

and the first assertion follows.
If s ( h*ffi, we conclude for all k : I,2,... that

y,,*{VeG(n,nz): [\B(r,r)f nr,V + g)
@

3 Zy*,-{V eG(n,m): Bu3 A r,V + 0)
d:1

1 cr 2H ,*; (diam B4,)**
ö:t

( a(s)-l 4'cu2** r*n k%+s-n (af,'fD'rB(r ,r)l + k-L) .

Letting k ---> a gives the second assertion.
6.6. Theorem. If t>n-m and, E i,saSusl,insetof R" with

0</f,'(D)<-cn,then

dim'E r\r*V : s+rm-n
and,

afs+n-n(E nr,V) < o

for /f'xy,,^almost all (r,Y) eDxG(n,m).
Proof. Use Riemann-Stieltjes integration to deduce from Lemma 6.5

(as in [0, Lemma r9]) that
r.*
| 3tr"+*-"18 n x"V) dyn,* VJ/

1 c rm-, #'(E) + " I nm-n-r /f,'lT n B(r , p)] d,91p

0

for r e.B" and r > 0. The right hand side is finite, whenever the upper
density @*s(J& L D , n) is finite. This happens for äf,s almost all
r eE 15, 2.10.r9(5)1, whence

y,,^{ V eG(n,rm) : ifs+*-'(E n r*V) : m } : 0

for 2f' almost all r e E . The assertions follow now from Lemmas 6.4,
6.1 and X'ubini's theorem.

6.7. Remark. ft seems to be ån open question whether Theorem
6.6 holds for I : n-rn . See remarks in ll0, 7.3 and 8.fl and [5. 3.3.11].

6.8. Theorem. If t <n-nL, r eHn, E C R* and, t('(E) { @,
then
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(A{r}) (\ r*V : g

for y,,- al,most al,l, V e G(n , m) .

This follows firectly from Lemma 6.5.

fn the last, two theorems, we give some information about the Hausdorff
measures of exceptional sets. To compare with Theorems 6.6 and. 6.8, note
that dim G(n,m) : m(n-m,) : n-*+(m-l) (n-m).

6.9. Theorem. If 0<t<s anil E isaBuslinsetof R" with
tr"(B) q a, then

#t(E nrnV) < a

fo, *"xJf," almost all, (*,V)eExG(n,m), where

a : s-tt(m-l) (n-m) .

6.f0. Theorem. If s>0, reR" anil, f isaBusl'insetof R"
with af'(E)<o, then

dim { 7 eG(n, za) : (.O\{r\) n r.V + Al < s+(rn-t) (n-m) .

Proofs. When G(n,m) is identifiedwith a subsetof OzA.Ä' as in
15, 3.2.28(4)1, the norm I I on O'A*R" [5, r.r0.5] induces a metric
il, on G(n,m). Let p> u: (rn-l)(n-m) andlet g beaBorelregular
me&sure over G(n,zz) such that EIB(V,ö)l < öp for all V eG(n,m)
and ö ) 0 . Then a proof similar to that of Lemma 5.5 shows that there
is a constant b depending only on n , m and p such that

E{VeG(n,m): dist(r,Z) < ö} <65fl-'1s1'-F

forall freRn and ö>0. Infact,&ssume bhat r€B'-', öqI,and
denote

Aa: {VeG(n,zra) : dist(r,V) < ä},

B: {VeG(n,m):reV\.
LetVe..4,and.choosegeo(n)suchthatg(V)eBandll/_1n"ll<
2 ö . If 7 is associated with a simple lunit, m-vector ( 15, l.6.Il, then
g(7) is associated with A,,,g(q. Using 15,3.2.28(4) and 1.7.51, one finds
that d'tv 'g(Y)t =o'otr 

rl:13, ,;,'":'= ,Tr:
Moreover, B is isometric with G(n-l,rn-l). The rest of the argument
reads as in 5.5.

The proof of Lemma 6.5 now holds with y,,* replaced by V and
n-m replaced by p-a. The ecxeptional sets in Theorems 6.9 and 6.10

are Suslin sets by Lemma 6.1. One can complete the proof of Theorem 6.9
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choosing p : u, arguing as in 6.6 and using Theorem 5.4. Theorem 6.10
follows with p ) s * p arbitrary, and with the help of the above mentioned
generalization of Lemma 6.5 and Theorem 5.4.
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