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HAUSDORFF DIMENSION, ORTHOGONAL
PROJECTIONS AND INTERSECTIONS WITH PLANES

PERTTI MATTILA

1. Introduction

Let E be a plane set which is measurable with respect to the s-dimen-
sional Hausdorff measure #° with 0 < #5(H) < oo . In [10] Marstrand
proved among other things the following three theorems:

(1) If 1 <<s < 2, then the Lebesgue measure #[p(H)] is positive
for almost all orthogonal projections p : R? — R'.

(2) If 0 <s < 1, then the Hausdorff dimension of p(X) is equal to
s for almost all orthogonal projections p : R*— R'.

(3) If 1 < s < 2, then at #* almost all points « € B the following is
true: For almost all straight lines / through x, #* ' nl) < oo and
the Hausdorff dimension of £ N7 is equal s—1.

Results similar to (1) and (2) were also obtained by Kaufman [7] with
potential-theoretic methods. Kaufman was also able to show that the ex-
ceptional set of projections in (2) has /#* measure zero.

In this paper we generalize the results (1) —(3) by replacing the dimen-
sions 2 and 1 by arbitrary dimensions n and m, 0 <m <n. We use
the method of Marstrand in (1) and (3) and that of Kaufman in (2). Cer-
tainly Marstrand’s ideas could also be used to generalize (2), but Kaufman’s
method is shorter and gives a result on capacities and on the Hausdorff
measures of the exceptional set. On the other hand, Marstrand’s method
allows us to improve (1) in two respects. Firstly, the conclusion £"[p(#)] > 0
can be replaced by the stronger conclusion [N(p | E,y)d¥™y = o,
where N(p | E ,y) is the number of points in the set £ N p~y} . Sec-
ondly, the hypothesis that the Hausdorff dimension of F is greater than
m can be replaced by the weaker hypothesis C, () > 0, where U, is the
capacity corresponding to the Riesz kernel |x—y|™ . As a corollary it
follows that if the integral-geometric measure JS7(K) is finite, then
C,E) = 0.
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When we consider a set K with #5(H) > 0, two assumptions will
often be equally convenient; namely, that £ is a Suslin set or that £ is
A#s measurable with #5(F) << oo, because in both cases K contains
a compact set K with 0 < #5(K) < oo . The case where K is J#° measur-
able and #5(E) = co is entirely different. In fact, assuming the continuum
hypothesis Besicovitch [1] has constructed an #' measurable plane set ¢
such that #%@) = 1 and that the only subsets of G of zero .#? measure
are countable sets.

Several instructive examples and remarks related to the present subject
can be found in [10].

Most of the terminology and notation will be as in [5].

2. The measures ¢, and y,

Let O(n) be the orthogonal group of the Euclidean n-space R* and
let 9, be the unique Haar measure on O(n) such that 9,[0n)] = 1.
If m is an integer such that 0 <m < n, then O*(n,m) is the space of all
orthogonal projections from R* onto R”, and G(n,m) is the space of all
m-dimensional linear subspaces of R”. We shall use the O(n) invariant
measures ¢, on O*n,m) and y,, on G(n,m) (see [5, 2.7.16(6)]).
If peO*tn,m) and Veln,m), AC O¥n,m) and B C G(n,m),
then by definition

(2.1) Oypnd) = 9,{ge0m): peged},
(2.2) IamB) = d,{ge0m): g(V)eB}.

The measures 9, and y,, , arerelated by
(2.3) Yun—m(d) = O5,{p€0*n,m): kerped}

for 4 C Gn,n—m).

If 0<s<mn, welet #° be the s-dimensional Hausdorff measure
over R* as defined in [5, 2.10.2(1)]. Then #” = %" | the Lebesgue measure
in R*. We denote by 8" the unit sphere {# € R*: |x| = 1} and, when
aeR and r> 0, by B'a,r) or B(a,r) the closed ball {x e R":
le—al <r}.

Throughout the rest of the paper m and n will be integers such that
0<m<mn.

24. Lemma. There is a constant ¢, depending only on n and m
such that

HHeeS 1 p) <8} < ¢ O

forall p e O*(n,m) and 6 > 0.
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Proof. It is sufficient to consider 0 << § < 1/2, and we may assume
that p is given by

Py, ..., x,) = (¥ ,..,%2,).
Define f: B™(0,1/2) x 81 —» 81 C R” x R"™ by

f(y:z) = (?/, (1 - |y|2)1/2 z) .

Then f is Lipschitzian and maps B™0,0) x 8™ ' onto {z eS8 :
Ip(x)] <6} for 0 < 6 < 1/2. Denoting the Lipschitz constant of f by
K and using [5, 3.2.23], we find that

A x e S p)| <6} <= KL ATIBO0, 8) x S
= K" @MBM0, 8)] AN S = K a(m) AN (S ) o

2.5. Lemma. There is a constant c, depending only on n and m
such that

AP €0, m): [p@)] <06} < ¢ 0" o[

for all x e R* and 6> 0.

Proof. Since p(x) = |o| p(x/|z|) for « # 0, we may assume that
xeS . Fix ¢ eO0%n,m) and define @ :0(n)— 8" by &) = g(»)
for g eO(n). Applying statement (3) in [5, 3.2.47] with r =n—1,
r+u = n(n—1)/2 and observing that #”** is then a constant multiple
of 9, because of [5, 3.2.28(5)], we find a constant ¢ depending only on
n such that

3,0 (H)] = cH"(H)
for E C 8. Hence by (2.1) and Lemma 2.4,

On,dp €0%n,m): |pr)] <0}

= 9,{ge0mn): [(qgeg) ()| <0}

= 9, (@ {yeS " lgy)| <9})
)

q
= cH" HyeS ' qy)| <0} < cey 0.

The corresponding inequality for the measure follows from
Lemma 2.5 and (2.3):
2.6. Lemma. There is a constant cg depending only on n and m

such that

Vn,m

Tt VEGMm ,m): dist (x, V) <o} < ¢ @[

forall x e R* and 6 > 0.
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3. Integral inequalities

In this section we assume that
(3.1) M is a separable metric space,
(3.2) F: R*x M — R' is a non-negative Borel function such that
F(x,a) < |x| for all (x,a)e R x M,
(3.3) « and b are positive numbers and ¢ is a Borel regular measure over
M such that

@{(IEM: Fle,a) <6} < bo* ||

for all x e R* and 6 > 0.

The separability of M makes the subsequent applications of Fubini’s
theorem legitimate. The results of this section will be applied with
M = 0*n,m), F: (xv,p)r|p)] and M =-_Gn,m), F: (x,V)
+>dist (x, V). Lemmas 2.5 and 2.6 guarantee that ) and y,,
satisfy the condition (3.3) with o = m and o = n—m , respectively. In
Sections 5 and 6 we shall replace ¢ by other measures over O*(n , m)
and G(n,m) .

3.4. If u measures a set X (i.e. u is an (outer) measure over X),
u(X) < oo, a and t are real numbers, @ >0 and f: X —{x: 0 <
x < a} is p measurable, then

a

fftd” . /r‘d,u{xeX:f(x)gT},

0

where the right hand side is a Riemann-Stieltjes integral. In the cases
where ¢ > 0 or inff(X) > 0, this follows immediately from the fact that
[xftdu lies between the sums Poorttu{a: i <fl@) <r,} and
Pt aplae:r, <fl®) <r;,} whenever 0=r,<r <..<r,=a.
In the general case one can approximate by functions f, = sup (f, 1/n),
n = 1,2,...
35, Lemma. If 0<t<<a and x € R", then

f Fla,adga < o[,

where ¢ = b [l + t(x—1t)71].
Proof. Apply 3.4, integrate by parts, and use (3.2) and (3.3) to deduce

1#]

‘/\F(x,a)”tdtpa/ = /r“tdzp{a: Flx,a) <r}

0
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7]

< |z @{a: F(x,a) g[x[}+tfr_’“1q;{a: Fx,a) <r}d¥

0

21

<ble|™ + bt ]xi"“/r“_’_l dr = bl + t(ax — )7 2|,

9

3.6. Lemma. If u isa Borel regular measure over R, u(R") << oo,

xe R and 6 > 0, then

fu{ yeR: Fle—y,a) <d}dpa < bé“f le—y|™ duy .

Proof. Observing that {(y,a)e R x M: Fle—y,a) <0}
Borel set and applying Fubini’s theorem and (3.3), we obtain

fy{yeR": Fle—y,a) <06 }doa
— [wtacdt: Py 0 <oy < b5 [ ey duy.

3.7. If p measures R, x e R*, a € M and r > 0, we define
piu,x,a) = liminf 6 *u{yeBx,r): Floe—y,a) <0},
810

Y, x,a) = limyi(u,x,a).
710

is

a

The set {(y,x,a): yeBx,r), Fl@—y,a) <d} is a Borel set in
R* x R* x M . Therefore u{yeBx,r): Fle—y,a) <d} is a Borel
function with respect to (x, a) according to Fubini’s theorem, and it follows

by standard methods (cf. [4, 3.4]) that both ? and y* are Borel functions

with respect to (x, a) .

3.8. Lemma. If u isa Borel reqular measure over R", u(R") < oo,

xeR and r > 0, then

[ote.w arage < v [ lamyrduy.

B(x,r)

This follows directly from Fatou’s lemma and Lemma 3.6.

4. Projections into lower dimensional space

Here we adopt the notation of the previous section with M = O*(n,m) ,

F:(x,p)—|p@), « =m and ¢ =9, . Then
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Iiminf o™ u{y e B(x,r): |plx—y)| <o }.
810

Y, x,p)

For any function f, N(f,y) is the number of points (possibly 0 or
o0) in the set fy}. If 4 is a Borel set of R”, then the function
yr=>N(p | 4,y) is ¥ measurable for all p € O*(n,m) (see [5,2.10.10])
and the function (y,p)+—>N(p|4,y) is &£ x 9, measurable (see
[5, 2.10.16]). Actually, it can be seen as in 6.1 that these functions are
measurable whenever A4 is a Suslin set, but we shall not make use of this
fact here.

If u measures a set X and 4 C X, then uL A is the restriction
measure defined by (u L 4) (B) = w(d n B) for BC X .

41. Lemma. If u tsa Borel regular measure over R*, K is a Borel
set of R* with p(E) < oo, p € 0¥(n,m) and h > 0, then

el ymulE,z,p) <h} < 2’”m””2ka(p | B, y) dLmy .
Proof. 1t is sufficient to prove that
waeel: y(ulLE,xo,p)<h} < 2”‘mm/2h/A’(p | B, y)dLmy .

To simplify the notation, we assume that p is given by

Py, o x,) = (v, ...,2,).

Let r» and d be positive numbers such that d < r/n. We identify
R" = R”™ x R™” and express R"" as

el
R = Ul Q'i’

where ;s are closed cubes parallel to the coordinate axis with
mutually disjoint interiors and with sidelength d. We may assume that
IN(p | E,y)d¥my < oo . Then we can choose the cubes @, such that
P(plE N (R™ x ¢Q,)]) = 0, because L"[p(H n V)] can be positive
only for countably many disjoint (n—1)-dimensional affine subspaces V
of R».

If xeR", 6 >0 and g > 0, we denote

Ix,0,0) = {yeR: |-yl < 0,

t=1,.,m, |[g,—y,| < po,1 = m+1l,..,n}.

Let

f) = liminf 6~ ulE N I(x,0,d)] for xeR",
810
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E, = En{xzeR"x Q,: fx) <h} for v = 1,2, ...

1

By standard arguments [4, 3.4] one can see that f is a Borel function. Let
e>0 and fix 7. By [5, 2.2.2] there is a closed set F,C K, such that

w(E) < (1 4 &) u(l) .

Next we select closed cubes P, C R™ parallel to the coordinate axis such
that

pE) C P, S #nP) < £rpF)] + e

j=1 i=1

Then F,C U2, P, x @, and

ulFy) <

INZE

ulF; 0 (P x Q)]

i=1

We shall show that
(1) ulF; N (P x Q)] < 2"hP™P)) for j = 1,2,....

Suppose that (1) is false for some j. Then dividing P; repeatedly into
27 congruent subcubes, we get a decreasing sequence (R,) of subcubes of

P ; such that

(2) diam (R,) = 27*diam (P),
(3) plF; N (R, x @)] > 2mh £™(R,) .

Since the compact non-empty sets F, n (R, x @;) form a decreasing
sequence, there is a point xe Ny, F, N (R, x Q). Let 6, be the
sidelength of R, . Then

F.n(B, x@) C Enlx,d,,d),
and it follows from (3) that
(4) lim inf 6, ulE N I(x, 0, ,d)] = 2"h.

k>0
For any 0 < 6 < J; there is k such that ¢, < <29, because of
(2). Then (4) yields f(x) > & . But this contradicts with the fact that
x € B, . Hence (1) holds, and we get

WE) < (14 9 p(F) < (1+ )3l 0 (P % Q)]

J

< (1 +¢) 2mh§ LmP) < (1 + &) 2"k (L"[p(F)] + &)

j=1

< (1 4 &) 2mh (L"[pE,)] + ¢) .
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Letting & | 0, we have
wl) < 27h 2"[pE)].

Summing with respect to ¢ and recalling that #”[p(E, n E,)] = 0 for
1 # 1, we obtain

pz B f@) <h) < 3 plk)

< 2h 3 oipE)) < b [ N B ) azny.
i=1

Since d < r/n, we have
I(x,0,d) C {yeB,n: [p—y) < m'd}
for sufficiently small 6 > 0. Hence

pla € Byl B o p) < ) < 2w [ N B y)d2ny.

Letting 7 | 0 completes the proof.
For the definition of the integralgeometric measure 7" see [5, 2.10.5].
42, Theorem. Let u be a Borel regular measure over R" and E
a u measurable subset of R* with 0 < u(E) < o . If

/ le—y|™" duy < o
E
for w almost all © € B, then

&
fN(plE,z/)dff’”y = 0

for 9%, almost all p € O*(n,m), and IV (H) = .

Proof. Since E contains a closed set of positive x4 measure [5, 2.2.2 — 3],
it is sufficient to prove the theorem in the case where K is closed. Let P
be the set of those p € O*(n,m) for which [N(p|H , y)d¥"y < .
Then it follows from Lemma 4.1 that p € P implies y"(u LE ,2,p) > 0
for u almost all v e £, whence [py"(uLE,x,p)dur > 0. On the
other hand, under the present assumptions Lemma 3.8 combined with
Fatou’s lemma shows that [y”(u L E,2,p)dd),p = 0 for u almost
all x € £ . Thus by Fubini’s theorem,

[ [l e dur g - [ [vuin e maszpie - 0.
E E

Hence 9, (P) = 0. This proves the first assertion. The second assertion,
JV(E) = oo, follows from the first and [5, 2.10.15].
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4.3. Capacity. The inner capacity C,, 0 <<s <<n, is defined as follows:
If K is a compact subset of R”, then

O(K) = sup u(R"),

where the supremum is taken over all (non-negative) Radon meas-
ures u such that the support of u, sptu, is contained in K and
Jle—y| ™ duy < 1 for all x esptpu. For arbitrary E C R", we set

C(E) = sup{C(K): KC E, K is compact } .
The corresponding outer capacity COF is defined for & C R by
C¥*E) = inf{C(G): EC G, G isopen }.

Then CH*E) = C|(¥) for all Suslin sets K of E” (see [9, Theorem 2.8,
p. 156]).

If u is a Radon measure and [ |x—y| " duy < 1 forall z esptpu,
it follows easily (see [9, Theorem 1.5, p. 66]) that [ |[x—y| duy < 2° for
all @ € R*. Hence C(E) > 0 if and only if there exists a Radon measure
u such that sptu C B, 0 < u(f) < oo and [|r—y|"duy < 1 for all
x € R*. Thus we obtain from Theorem 4.2:

44. Theorem. If E C R* is measurable with respect to every
Radon measure and if C (E) >0, then [*N(p|E,y)d¥"y = oo for
9%, almost all p € O*(n ,m) .

If B C R", we denote by dim £ the Hausdorff dimension of £ i.e.
dim £ = inf{s: #5E) = 0} . It is well-known that

dimE = inf{s: O¥E) = 0} = sup{s: C¥&H) >0}

(see e.g. [6, Section 2] or [9, Theorem 3.13, p. 196 and Theorem 3.14, p.
200]). Consequently,

(4.5) dimE = inf{s: O(F) = 0} = sup{s: CO(H) >0},

if B is a Suslin set. Therefore

46. Theorem. If E is a Suslin set of R* and dim B > m , then
[*Np | E,y)dL"y = oo for 9, almost all p € O*(n,m).

This theorem could also be deduced directly from Theorem 4.2, because
for s>m the wuse of Riemann-Stieltjes integration shows that
Jplx—y|™"dA#Ay < oo whenever the upper density O*(#sLE,x)
is finite.

In case K is a Borel set, the conclusion in 4.4 and 4.6 implies that
JME) = oo . But since £} is Borel regular [5, 2.10.1], we have more
generally

47. Theorem. If EC R and SV(E) <o, then C, (H) =0
and dim E <m ,
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5. Projections into higher dimensional space

In the first three lemmas of this section, we assume that 0 < « < m
b >0 and ¢ is a Borel regular measure over O*(n ,m) such that

p{p €0*(n,m): |p@)| <0} < bo™[x[*

for all x e B» and 6 > 0.
If 0<s<m and u is a Radon measure over R”, we denote the
s-energy of u by I (u) i.e.

1 = [ [ eyl duy dpe

Then for compact sets K C R",
O(E) = inf 1),

where the infimum is taken over all Radon measures u such that
sptp C K and w(K) = 1 (see [9, p. 139]).
51. Lemma. If 0<s<a and K 1is a compact set of R", then

f Clp(E) dgp < ¢ O LK),

where ¢ = b[l + s(x—s)7].

Proof. The integrand is measurable; in fact, the function p — C [p(K)]
is upper semicontinuous in O*(n ,m) . To see this, let p € O*(n ,m) and
¢ > 0. Then there is an open set ¢ D p(K) such that C(G) <
C[p(K)] + e. When ¢ is sufficiently close to p, then ¢(K)C ¢,
whence C[q(K)] < CJ(F) < OJpK)] + ¢.

Let u be a Radon measure such that sptu C K and u(K) =1.
If peO*n,m), then the measure p,pu, defined by p,u(d) =
ulp™(4)] for 4 C R, is a Radon measure over R™ [5, 2.2.17],
sptpyu C p(K) and pyu[p(K)] = 1. By [5, 2.4.18(1)], we have

I(pyp) = ff px—y) [ duy dpx .

Fubini’s theorem and Lemma 3.5 yield

f Lipym) dop = f f f D —y)|~ dpp duy dpz < o I,(u),

from which the lemma follows.

52. Lemma. If 0<<s<<a, ECR and C(K)=> 0, then there
is @ Borel set P C O*(n , m) , independent of ¢ , such that ¢(P) = 0 and
ClpE)] >0 for all peO*n,m)\L .
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Proof. Choose a compact set K C K such that C(K) > 0. Then
the set
P = {peOfn,m): C[pK)] = 0}

has the required properties by Lemma 5.1 and its proof.

53. Lemma. If E is a Suslin set of B* and dim B < o, then
there is a Borel set P C O*(n ,m) , independent of ¢ , such that @(P) = 0
and dim p(E) = dim B for all p € O*(n ,m)\P .

This follows from (4.5) and 5.2 if we choose P = U2, P, where
P, is the Borel set of Lemma 5.2 corresponding to s = dim & — 1/j.

By Lemma 2.5, the above results hold with o =m and ¢ = 9, .
We now proceed to obtain more exact information about the Hausdorff
measures of the exceptional sets of Lemmas 5.2 and 5.3. Recall from [5,
3.2.28] that O*(n,m) is an m (2n — m — 1)/2 dimensional submanifold

of class oo of the euclidean space Hom (R, B”) with
0 < A" =U2[0%(n ,m)] < oo .

We use the norm |f|| = sup{|f(x)]: [x|] =1} on Hom (R»,R™).
Then B(f,r) = {g e Hom (R*, R"): ||[f—g|| <r} for feHom (R", k™)
and r > 0.

We shall apply the following theorem, which is due to O. Frostman. A
proof is given in [2, pp. 7—8].

54. Theorem. Let E be a Suslin set of R* and s = 0. Then
HS(E) > 0 if and only if there exists a Borel regular measure ¢ such that
0 < @l) <o and @[Bx,r)] < r forall xeR* and r > 0.

To be able to combine the above theorem with the lemmas of this section,
we prove the following

55. Lemma. If ¢ is a Borel regular measure over O*(n ,m) with
plO*(n,m)] < o0, t >v=m(2n —m — 3)/2 and

¢[O*(n,m) N B(p,0)] < o
for all p e O%(n,m) and 6 > 0, then
p{p €0*n,m): [p)] <0} < b [

for all x e R and o > 0, where b is a constant depending only on n ,
m and 1.
Proof. We may assume that x eS8 ' and 6 < 1. Put
0]

As = {peO*n,m): |p(r)

IA

B = {(peO*n,m): plx)y = 0}.

Let p e Ay. Then there is a« € S* ' N kerp such that |[x—a| < 29.
Choose g € O(n) so that g(x) = a and |lg — 1| = |[r—a|. One can
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find such a g by writing R* =V @ V!, where {x,a} C V eGn, 2)
and V' is the orthogonal complement of V', letting f be a rotation in
V for which f(x) = @ and taking g = f@® 1,1. Then |p — pog| < 26
and pog e B. This shows that

(1) As C {peO*n,m): dist(p,B) < 24}.

For p € O*(n ,m), we denote by p* the adjoint of p [5, 1.7.4] and
let O(m,m) = {p*: peO*(n,m)} be the set of all orthogonal
injections R”-—>R*. If peB, the image im p* is contained in
{yeR: y-x=0}. Choosing a linear isometry f: {yeR': y-x =
0} — R, we can define an isometry F: B—>O(n—1,m) by F(p) =
feop*. Thus it follows from [5, 3.2.28(5)] that 0 << #”(B) < oo and that
B is a v-dimensional manifold of class oo . Hence the upper density
O¥(#” L B, p) is positive for all p € B. Moreover, #’[B n B(p,r)| is
independent of p for all » > 0. Consequently, there is a positive number
¢ depending only on » and m such that

H'[B N Blp,r) = cr
forall p e B and 0 <7 < 1. From (1) it follows that
H'B N Bp,30d)] = cd

for ped;. We define a Borel function f: 4,xB — R' setting
fp,q) = 1, if pebB(g,306), and f(p,q) = 0 otherwise. Then by
Fubini’s theorem,

c o @(dy) fﬂ”[BmB(p 30)]dep = /ffp q) dA"q dpp

- f f £, q) dgp dq = f old, ~ B(q.38)]d#"q < 35 #(B)

B Ag B

and ¢(4,) < b with b = 3¢ ' #*(B). This completes the proof.

Combining 5.2 5.5, we can state the results of this section as follows:

56, Theorem. Let EC R".

a) If 0<s<m and O(E)>0, then CJ[pE)] >0 for 9%,
almost all p € O*(n ,m) . More precisely, the Hausdorff dimension of the
exceptional set is at most s + m(2n — m — 3)/2.

(b) If E s a Suslin set and s = dim B < m , then dim p(¥) = dim B
for 9%, more precisely A T"E I almost all p € O*(n ,m) .

5.7. Remarks. (1) If V e G(n,m), let P, be the orthogonal projec-
tion from R* onto V . By similar methods as above, one can prove that

dim{VelGn,m): C[P,(E)] = 0} <s+m(n —m — 1)
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with the assumptions of 5.6(a), and
AN e Gn ,m) : dim Pyp(E) < dimE} = 0

with the assumptions of 5.6(b).

(2) In [8] Kaufman has given an example of a compact plane set D
such that dim D < 1 and that the set of those p € 0%*(2,1) for which
dim p(D) < dim D is of positive Hausdorff dimension. Later it has been
shown (unpublished) first by Kaufman in the case n = 2 and then by
Kaufman and the present author in co-operation in the general case that
s+m(2n—m—3)/2 is the best possible upper bound for the Hausdorff
dimension of the exceptional set of Theorem 5.6.

(3) It follows from [9, Theorem 2.9, p. 158] that CX*[p(#)] < C}(&)
for all £ C R* and p € O*(n ,m) .

6. Intersections with planes

Here we use the methods of Marstrand [10, Section 6] to examine the
intersections of an s-dimensional set with m-dimensional affine subspaces
of Rv. If xR and A C R*, we denote by 7,4 the x-translate
{yeR: y—xed} of 4.

61. Lemma. If E is a Suslin set of R" and t =0, then the
Sfunction

(v, VY= HUE N1, V)

is @ Suslin function in R" XG(n , m) , i.e. the inverse image of {v: v > u}
ts @ Suslin set in R XG(n , m) for all w = 0.

Proof. We shall apply the following statement, which is a special case
of a result of Dellacherie [3, Chapitre VI, Corollaire 21]:

If 4 is a Suslin set in R'xR'xGn,m) and A@,V) =
{yeR: (y,x,V)ed} for (x,V)eR'xGn,m), then the function
(@, V) A A, V)] is a Suslin function in R*xG(n,m).

We choose

A

Il

{y. o, V):yeEnzlV}
= [ExR'xGmn,m)|n{ly,x,V): e—yeV;.

Then A is a Suslin set as an intersection of a Suslin set and a closed set,
A@,V) = En 7V, and the lemma follows.

We adopt the notation of Section 3 with M = G/(n,m) and F(x, V) =
dist (x, V) for (v, V) e R*xG(n,m). Then if u measures R", v e R",
VelGn,m) and r > 0, we have
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M u, e, V) liminf 6" u{y e Bx ,r): dist(w—y, V) < 6}.

840

The following lemma can be proved by the same method as Lemma 16
in [10]. We omit the details.

6.2. Lemma. Suppose that E is an A measurable subset of R*
with 0 < HH) < w0, t>0 and VelGn,m). If #AE N1,V) =
0 for all a € R*, then

lim sup r "y "(A#°LE 2, V) =
7,0
for A almost all x € K .
63. Lemma. If 0<u<s, ECR' and H°(H) < oo, then

lim sup r“““f lw—y| ™ dAHy < s(s—u)*

7|0
ENB(x,7)

Jor A almost all x € R* .
Proof. Let x € R* and r > 0. Applying 3.4 and integrating by parts,

we have
r

f g ARy = ff" AAE A B, 0)]

ENB(x,7) 0
4

<r“AH[E N Bx,r)] +u / oA [E N B(x,0)]d¥ .
0
The assertion follows from the fact that the upper density @*s(#s L K , x)
is at most one for s almost all x € R* [5, 2.10.19(5)].
64. Lemma. If E is an H#° measurable subset of R" with
0 < Hs(H) < o, then

dim N,V = s+m—n
for Hsxvy, . almost all (x,V)eExGn,m).

Proof. 1t is sufficient to prove this for an arbitrary compact subset
F of E and s+m—n > 0. Let 0 <t < s+m—n. Denoting

fle, V) = limsupr "y} "(A LF v, V)
»10

for (x, V) e R"xG(n,m), we infer with the help of Lemmas 3.8, 6.3 and
the obvious generalization of [10, Lemma 10] that [f(x, V)dy, ,V = 0
for s almost all x € F, whence

(1) [ [rixap,, - o

r
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Applying Lemma 6.2 to the set
E, = {xeF : AFnV) =0}

for Ve@(n,m), we find that f(z, V) = oo for #° almost all xe k.
Hence (1) implies that #s(#,) = 0 for p,, almost all V eG(n,m).
The set { (x,V): x € By} is #°xy,, measurable by Lemma 6.1, and
Fubini’s theorem can be used to show that #*xy, {((x,V): v ek} = 0.
The lemma follows by the arbitrariness of /.

6.5. Lemma. Suppose that r and s are positive numbers, x € R",
EC R" and #5(E) < o .If s >n—m, then

[ B B 0 V) V= o HUNBE )

where ¢ is a constant depending only on n, m and s. If s <n—m, then
[ENB@x)] NtV = 0

for vy, ., almost all 'V eG(n,m).
Proof. For every positive integer k&, choose balls B,,C R*,
1 = 1,2,..., such that

ENB@,r) C UB,; C B\B(x,r2),

i=1
2‘3’1“(8) 47 (diam B, ) < A[E\B(x,r)] + k',
diam B, ;, < k', ¢ = 1,2, ...
Since B,; C R"\B(x,r/2), we obtain from Lemma 2.6 that
VaudVEGm,m): By, NtV # 0} < cg2" " (diam By )" ™.

If s >n—m, we get
[ 1diam (B, w VT V< e 2 (dam B

Here we agree that diam © = 0. The integrand is continuous, and there-
fore measurable. We sum over ¢ and use Fatou’s lemma to infer

f lim inf 3 [diam (B, ; n 7, V)["*" " dy, ,, V

k>0 i=1
Coa(s) T ey 2T A BN B(x )] .
But
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AT ENB@, )] 7Y)

< liminf 3 a(s+m—n) 2" [diam (B, ; N 7, V)",

ks i=1

and the first assertion follows.
If s <n—m, we conclude for all £ = 1,2, ... that

Yol VEGm ,m): [ENB@,n] NV +# O}

IA

D Vumi VEGm ,m): By, ",V # 0}
i<

o

< 63 2n—m rm—n Z (dlam Bk’i)nvm
=1

< a(s) T oy 2 T (A IEN B, )] + kY .

Letting k- co gives the second assertion.
6.6. Theorem. If s>n—m and E is a Suslin set of R" with
0 < H5(H) < oo, then

dimE N1,V = s+m—n
and

HHMNE AT V) < oo

Jor Hsxy, . almost all (x,V)eExGn,m).
Proof. Use Riemann-Stieltjes integration to deduce from Lemma 6.5
(as in [10, Lemma 19]) that

E ]
f HANE A V) dy,, V

r

< cr" " HNE) + o f 0" "V AHE A B, 0)] dL%
0

for x € B* and r > 0. The right hand side is finite, whenever the upper
density @*(#sL E,x) is finite. This happens for #s almost all
x ekl [5,2.10.19(5)], whence

Yol VEGm ,m): " "ENn1V) = 0} =0

for #s almost all x € £ . The assertions follow now from Lemmas 6.4,
6.1 and Fubini’s theorem.
6.7. Remark. It seems to be an open question whether Theorem
6.6 holds for s = n—m . See remarks in [10, 7.3 and 8.1] and [5. 3.3.11].
68. Theorem. If s<n—-m, xR, EC R and #5E)< w0,
then
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ENfe) N,V = 0

Jor vy, ., almost all 'V eG(n,m).

This follows directly from Lemma 6.5.

In the last two theorems, we give some information about the Hausdorff
measures of exceptional sets. To compare with Theorems 6.6 and 6.8, note
that dim G(n,m) = m(n—m) = n—m+(m—1) (n—m).

6.9. Theorem. If 0<t<s and K is a Suslin set of R* with
HS(E) < o, then

HE N 1,V) < ©

for AHxAH* almost all (x,V)eExGn,m), where
o = s—t+(m—1)(n—m).

6.10. Theorem. If s>0, vxeR* and K 1is a Suslin set of R*
with A3(B) < oo, then

dim{V eGn,m): (I {a}) n 1,V # 0} < s+(m—1)(n—m).

Proofs. When G(n ,m) is identified with a subset of &,/ ,R” as in
[5, 3.2.28(4)], the norm || on O, A ,B* [5, 1.10.5] induces a metric
d on Gn,m). Let f>» = (m—1)(n—m) andlet ¢ be a Borel regular
measure over G(n,m) such that ¢[B(V,d)] < 6 for all V eG(n,m)
and 6 > 0. Then a proof similar to that of Lemma 5.5 shows that there
is a constant b depending only on %, m and S such that

p{VeGm,m): distx,V) < o} < b |a?

for all x e R* and 6 > 0. In fact, assume that x eS*!, 6 < 1, and
denote

As; = {VeGmn,m): dist(x,V) < 6},
B = {VelGn,m:axeV}.

Let V e Ay and choose ¢ € O(n) such that ¢(V) eB and |lg — 1, <
2¢§. If V is associated with a simple unit m-vector { [5, 1.6.1], then
g(V) is associated with A ,¢({). Using [5, 3.2.28(4) and 1.7.5], one finds
that d[V,g(V)] < |£ — AN ,9(0)] < 2m . Hence

A, C{V:dist(V,B) < 2md}.

Moreover, B is isometric with G(n—1,m—1). The rest of the argument
reads as in 5.5.

The proof of Lemma 6.5 now holds with 7y, replaced by ¢ and
n—m replaced by f—». The ecxeptional sets in Theorems 6.9 and 6.10
are Suslin sets by Lemma 6.1. One can complete the proof of Theorem 6.9
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choosing f = a, arguing as in 6.6 and using Theorem 5.4. Theorem 6.10
follows with § > s+ arbitrary, and with the help of the above mentioned
generalization of Lemma 6.5 and Theorem 5.4.
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