THE HAUSDORFF DIMENSION OF THE BRANCH SET OF A QUASIREGULAR MAPPING

JUKKA SARVAS

1. Introduction

Let G be a domain in the n-dimensional euclidean space \mathbb{R}^n , $n \geq 2$. Consider a non-constant quasiregular mapping $f: G \to \mathbb{R}^n$. Let B_f denote the branch set of f.

By [6] $m(B_f) = m(fB_f) = 0$, where *m* is the *n*-dimensional Lebesgue measure in \mathbb{R}^n . Then also $H^n(B_f) = H^n(fB_f) = 0$, where H^{α} , $\alpha > 0$, is the α -dimensional Hausdorff outer measure in \mathbb{R}^n . On the other hand, in [3] it is shown by an example that $\dim_H B_f$ and $\dim_H fB_f$, the Hausdorff dimensions of B_f and fB_f , can be arbitrarily close to n.

In this paper we prove the following results. Let i(x, f) denote the local topological index of f at x. If f is as above, then

$$\dim_H fB_f \leq c' < n ,$$

where the constant c' depends only on n and the maximal dilatation K(f) of f. If, in addition, $i(f) = \sup \{ i(x,f) \mid x \in B_f \} < \infty$, then

$$\dim_H B_f \leq c < n ,$$

where the constant c depends only on n, K(f) and i(f). It remains an open question whether c actually depends on i(f). If it does not, then always $\dim_H B_f < n$, too.

We shall prove (1.1) and (1.2) using a similar method to Rešetnjak's in [9] and Martio's and Rickman's in [5].

For more information on $\dim_H B_f$ and $\dim_H fB_f$ see, for example, [5].

2. Notation

We use the same notation and terminology as in [6]. If $A \subseteq \mathbb{R}^n$, we write $\operatorname{cl} A$, $\operatorname{int} A$ and ∂A for the closure, the interior and the boundary

of A. If $x \in \mathbb{R}^n$ and $A \subseteq \mathbb{R}^n$, $A \neq \emptyset$, we denote dy d(x, A) the distance from x to A and by d(A) the diameter of A. If $x \in \mathbb{R}^n$ and r > 0 we write $B^n(x, r)$ for the open ball $\{ y \in \mathbb{R}^n \mid |x-y| < r \}$ and abbreviate $B^n(r) = B^n(0, r)$, $B^n = B^n(1)$. We also write $S^{n-1}(x, r) = \partial B^n(x, r)$, $S^{n-1}(r) = S^{n-1}(0, r)$ and $S^{n-1} = S^{n-1}(1)$.

We let the notation $f: G \to \mathbb{R}^n$ include the assumption that $G \subset \mathbb{R}^n$ is a domain and f is continuous. If $x \in G$ and r > 0, put

$$l(x, f, r) = \inf_{|x-y|=r} |f(x) - f(y)|, \qquad L(x, f, r) = \sup_{|x-y|=r} |f(x) - f(y)|$$

whenever $B^n(x, r) \subset G$. We let U(x, f, r) denote the x-component of $f^{-1}B^n(f(x), r)$ and write

$$\begin{split} l^*(x\,,f\,,\,r) \;\;=\;\; \inf \left\{ \; |x-y| \; | \; \; y \in \partial U(x\,,f\,,\,r) \; \right\} \;\; \text{and} \\ L^*(x\,,f\,,\,r) \;\;=\;\; \sup \left\{ \; |x-y| \; | \; \; y \in \partial U(x\,,f\,,\,r) \; \right\} \end{split}$$

whenever $\partial U(x, f, r) \neq \emptyset$. If $A \subset \mathbb{R}^n$ and $y \in \mathbb{R}^n$, put N(y, f, A) =card $(A \cap f^{-1}(y))$ and N(f, A) =sup $\{N(y, f, A) \mid y \in \mathbb{R}^n\}$. If $f: G \to \mathbb{R}^n$ is quasiregular and $x \in G$, then there exists $r_x > 0$ such that if $r \in (0, r_x)$, then U(x, f, r) is a normal neighborhood of x and N(f, U(x, f, r)) = i(x, f); see [6; 2.9, 2.12].

Let $e_1, ..., e_n$ denote the coordinate unit vectors of \mathbb{R}^n , Z the set of integers and N the set of positive integers.

3. On Hausdorff dimension in \mathbb{R}^n

For $\alpha \in (0, \infty)$, the α -dimensional Hausdorff outer measure of a set $A \subset \mathbb{R}^n$ is defined as

$$H^{\alpha}(A) = \lim_{r \to 0} \left(\inf \sum d(A_i)^{\alpha} \right) \,,$$

where the infimum is taken over all countable coverings of A by sets A_i with $d(A_i) < r$. The Hausdorff dimension of $A \subseteq \mathbb{R}^n$ is defined as

$$\dim_{H} A = \inf \{ \alpha > 0 \mid H^{\alpha}(A) = 0 \}.$$

Then $0 \leq \dim_H A \leq n$. Note that if A is the union of the sets A_i , i = 1, 2, ..., then $\dim_H A = \sup_i \dim_H A_i$.

To derive an upper bound for the Hausdorff dimension of a set in \mathbb{R}^n we consider the following density quantity. For any $A \subset \mathbb{R}^n$, $A \neq \emptyset$, and $x \in A$ define

(3.1)
$$\sigma(x, A) = \liminf_{r \to 0} \left(\sup_{0 \le |x-y| < r} \frac{1}{r} d(y, A) \right), \text{ and} \\ \sigma(A) = \inf_{x \in A} \sigma(x, A).$$

Then always $0 \le \sigma(A) \le 1$. The definition of $\sigma(A)$ is motivated by the following result.

3.2. Theorem. If $A \subseteq \mathbb{R}^n$ with $\sigma(A) > 0$, then $\dim_H A \leq c < n$, where the constant c depends only on n and $\sigma(A)$.

To prove this theorem we need a lemma essentially due to Gehring and Väisälä [3, Theorem 18]. We introduce a notation. If $Q \subseteq \mathbb{R}^n$ is a closed cube of side s > 0 and $p \ge 2$ is an integer, we let $\mathscr{D}(Q, p)$ denote the collection of the cubes obtained by subdividing Q into p^n closed congruent cubes of side s/p.

3.3. Lemma. Suppose that Q_0 is a closed cube in \mathbb{R}^n , that A is a compact subset of Q_0 and p, q and i_0 are integers such that $p \geq 2$, $1 \leq q \leq p^n - 1$ and $i_0 \geq 0$. If for every integer $i > i_0$ and every $Q \in \mathscr{D}(Q_0, p^i)$ the set $Q \cap A$ can be covered with q cubes of $\mathscr{D}(Q, p)$, then

$$\dim_{_{H}} A \leq \frac{\log q}{\log p} < n$$

Proof. Let $\log q/\log p < \alpha < n$. We must prove $H^{\alpha}(A) = 0$. It is sufficient to show $H^{\alpha}(A \cap Q') = 0$, where Q' is any cube of $\mathscr{D}(Q_0, p^{i_0})$. By the assumptions of the lemma we can cover $A \cap Q'$ by q cubes of $\mathscr{D}(Q', p)$, say $Q_1, ..., Q_q$. Similarly every set $A \cap Q_i$, $1 \leq i \leq q$, we can covered by q cubes of $\mathscr{D}(Q_i, p)$, and so we get a cover of $A \cap Q'$ by q^2 cubes of $\mathscr{D}(Q', p^2)$. Continuing in this way we get after j steps a cover \mathscr{C}_j of $A \cap Q'$ by q^j cubes of $\mathscr{D}(Q', p^j)$. Then $d(Q) = d(Q')/p^j$ for every $Q \in \mathscr{C}_j$. Hence

$$\sum_{Q \in \mathscr{C}_j} d(Q)^{\alpha} = q^j \left(\frac{d(Q')}{p^j}\right)^{\alpha} = \left(\frac{q}{p^{\alpha}}\right)^j d(Q')^{\alpha},$$

where $(q \ p^{-\alpha})^j \to 0$ as $j \to \infty$, since $q \ p^{-\alpha} < 1$ by the choice of α . This implies $H^{\alpha}(A \cap Q') = 0$ by the definition of H^{α} . The lemma is proved.

3.4. Remark. The upper bound in the above lemma is attained by a set A defined as follows. Let Q_0 , p and q be as in the lemma. Put

$$\mathcal{A}_0 \ = \ \{ \ Q_0 \ \} \ , \qquad \mathcal{A}_i \ = \ \bigcup_{\substack{Q \in \mathcal{A}_{i-1}}} \mathcal{B}(Q) \ , \qquad i \ = \ 1, \ 2, \ \ldots \ ,$$

where $\mathscr{B}(Q)$ is a collection of q cubes of $\mathscr{D}(Q\,,\,p)$ for every $Q\in\mathscr{A}_{i-1}$. Define

$$A_i = \bigcup_{Q \in \mathscr{A}_i} Q$$
, $i = 0, 1, 2, \dots$, and $A = \bigcap_{i=0}^{\infty} A_i$.

Then A satisfies the assumptions of Lemma 3.3 with $i_0 = 0$. Hence $\dim_H A \leq \log q / \log p$. It is not difficult to see, for instance by [1, Corollary 2, p. 684], that $\dim_H A \geq \log q / \log p$.

Proof of Theorem 3.2. We may assume $A \subseteq Q_0$, where Q_0 is a closed cube of side 1. For every $j \in N$ let A_j be the set of all $x \in A$ with

$$\inf_{0 < r \leq 1/j} \left(\sup_{0 \leq |x-y| < r} rac{1}{r} \, d(y \ , A)
ight) \ < \ rac{1}{2} \, \sigma(A) \ > \ 0 \ .$$

Then A is the union of the sets A_j , j = 1, 2, Let p be the smallest odd integer greater than 1 and not less than $13 n^{1/2}/\sigma(A)$. Then p depends only on n and $\sigma(A)$.

Fix $j \in N$. Let $i_j \in N$ such that $p^{-i_j} < 1/j$. To apply Lemma 3.3 to $\operatorname{cl} A_j$ we show that the assumptions of the lemma are satisfied with p and $i_0 = i_j$ as above and $q = p^n - 1$. Choose any $i \ge i_j$ and $Q \in \mathscr{D}(Q_0, p^i)$. Then Q is a cube of side $t = p^{-i} < 1/j$. Let Q' be the cube in $\mathscr{D}(Q, p)$ which contains the center x_0 of Q. If $\operatorname{cl} A_j \cap \operatorname{int} Q' = \emptyset$, $\operatorname{cl} A_j \cap Q$ can be covered by $p^n - 1$ cubes of $\mathscr{D}(Q, p)$. Otherwise let $x \in A_j \cap Q'$. Then

$$d(x \ , \ \partial Q) \ > \ rac{p-1}{2 \ p} t \ \ge \ rac{t}{3} \ .$$

So $B^n(x, t/6) \subset Q$, and because t/6 < 1/j, then by the definition of the set A_j there exists $y \in B^n(x, t/6)$ such that $B^n(y, r) \subset R^n \setminus \text{cl } A \subset R^n \setminus \text{cl } A_j$, where $r = \sigma(A) t/12$. Then $B^n(y, r) \subset Q$, and because $p > 12 n^{1/2}/\sigma(A)$, we have $r > n^{1/2} t/p$. Therefore at least one of the cubes of $\mathscr{D}(Q, p)$ lies in $B^n(y, r) \subset R^n \setminus \text{cl } A_j$. Hence $\text{cl } A_j \cap Q$ can be covered by $p^n - 1$ cubes of $\mathscr{D}(Q, p)$ in this case, too. Lemma 3.3 implies

(3.5)
$$\dim_H A_j \leq \dim_H \operatorname{cl} A_j \leq \frac{\log (p^n - 1)}{\log p} = c < n$$
,

where c depends only on n and $\sigma(A)$.

Since A is the union of the sets A_j , j = 1, 2, ..., (3.5) yields $\dim_H A \leq c$, and the proof is completed.

3.6. Remark. The converse of Theorem 3.2. is not true. In fact, if $I = \{ t e_1 \mid -1 \le t \le 1 \}$ and for every $i \in N$

$$B_i \;=\; \left\{ rac{1}{i} \, p_1 \, e_1 + rac{1}{i^2} \sum_{k=2}^n p_k \, e_k \;|\;\; p_k \in Z \;, \;\;\; -\mathrm{i} \,\leq p_k \,\leq i \;, \;\; k \;\;=\;\; 1, \, 2, \, ..., \, n
ight\} \,,$$

then $A = I \cup \bigcup_{i=1}^{\infty} B_i$ is a compact set with $\sigma(A) = 0$ and $\dim_H A = 1$.

3.7 *Remark.* Theorem 3.2 fails to hold if in the definition (3.1) of $\sigma(x, A)$ we replace \liminf by \limsup . To show this define for every $A \subset \mathbb{R}^n$, $A \neq \emptyset$,

$$\eta(x, A) = \limsup_{r \to 0} \left(\sup_{0 \le |x-y| < r} \frac{1}{r} d(y, A) \right)$$
$$= \limsup_{y \to x} \frac{d(y, A)}{|x-y|}, \quad x \in A,$$

and

$$\eta(A) = \inf_{x \in A} \eta(x, A) .$$

Then $0 \leq \eta(A) \leq 1$. We construct a set $A \subset \mathbb{R}^n$ with $\eta(A) = 1$ and $\dim_H A = n$. In fact, A will be locally so 'thin' that for every $x \in A$ and any $\varepsilon \in (0, 1)$ there exist arbitrarily small balls $B^n(x, r)$ such that

$$(3.8) A \cap B^n(x, r) \subseteq B^n(x, \varepsilon r) .$$

To define A we need the following notation. If Q is a closed cube in \mathbb{R}^n and $i \geq 0$ is an integer, then $Q^{(i)}$ denotes the cube in $\mathcal{D}(Q, 3^i)$ which contains the center of Q. Now, let Q_0 be a closed cube in \mathbb{R}^n . Put $\mathscr{A}_0 = \{Q_0\}$ and

$$\mathscr{A}_i = \bigcup_{\substack{Q' \in \mathscr{A}_{i-1}}} \{ \ Q^{(i)} \mid \ Q \in \mathscr{D}(Q' \ , \ 3^{i^*}) \ \} \ , \qquad i \ = \ 1, \ 2, \ \dots \ .$$

Then define

$$A_i = \bigcup_{Q \in \mathscr{A}_i} Q$$
, $i = 1, 2, \dots$, and $A = \bigcap_{i=1}^{\infty} A_i$.

Clearly A has the property (3.8). On the other hand, every \mathscr{A}_i consists of $N_i = 3^{nM_i}$ congruent cubes of diameter $\delta_i = 3^{-(M_i+m_i)} d(Q_0)$, where

$$M_i = \sum_{j=0}^i j^2$$
 and $m_i = \sum_{j=0}^i j$, $i = 1, 2, ...$

Then

$$\sum_{i=1}^{\infty} \left(\frac{\delta_{i-1}}{\delta_i} \right)^n (N_i \ \delta_i^{\alpha})^{-1} = d(Q_0)^{-\alpha} \sum_{i=1}^{\infty} 3^{-[(n-\alpha)M_i - \alpha m_i - n(i^2 + i)]} < \infty$$

for every $\alpha \in (0, n)$, which implies $\dim_H A = n$ by [2, Theorem 5, p. 55].

4. The Hausdorff dimension of B_f

4.1. Lemma. [5, 3.2]. Suppose that $f_i: G \to R^n$, $i \in N$, are open and discrete mappings, $f: G \to R^n$ is open and discrete or a constant mapping and $f_i \to f$ uniformly in compact subsets of G. If $x_i \to x \in G$ with $x_i \in B_{f_i}$, then $x \in B_f$.

4.2. Lemma. If $f: G \to \mathbb{R}^n$ is K-quasiregular, $B_f \neq \emptyset$ and $\sup \{ i(x, f) \mid x \in B_f \} \leq j$, then $\sigma(B_f) \geq s > 0$, where the constant s depends only on n, K and j.

Proof. Assume that the lemma is false for some $K \in [1, \infty)$ and $j \in [2, \infty)$. Then there exists a sequence of K-quasiregular mappings $f_i: G_i \to \mathbb{R}^n$ with

$$(4.3) x_i \in B_{f_i}, \ i(x_i, f_i) \leq j \quad \text{for every} \quad i \in N \ , \ \text{ and}$$

(4.4)
$$\lim_{i \to \infty} \sigma(x_i , B_{f_i}) = 0.$$

By [6, 4.5] there exists C > 0 such that the linear dilatation $H(x_i, f_i) < C$ for every $i \in N$. Set $\alpha_i = \sigma(x_i, B_{f_i}) + 1/3i$, $i \in N$. Then $\lim \alpha_i = 0$ and we may assume $0 < \alpha_i < 1/2$, $i \in N$. Furthermore, using similarity mappings we may also assume that for every $i \in N$

(4.5)
$$x_i = f(x_i) = 0 \text{ and } B^n \subset G_i,$$

$$(4.6) N(f_i, B^n) = i(0, f_i) \le j,$$

(4.7)
$$L(0, f_i, 1) = 1 \text{ and } \frac{L(0, f_i, 1)}{l(0, f_i, 1)} < C,$$

(4.8)
$$\sup_{0 \le |y| < 1} d(y, B_{f_i}) < \alpha_i < 1/2.$$

In particular, (4.8) implies

(4.9)
$$B^n(y, \alpha_i) \cap B_{f_i} \neq \emptyset \text{ for every } y \in B^n.$$

By [7, 3.17] the restrictions $f_i|B^n$, $i \in N$, form a normal family of *K*-quasiregular mappings and by [9, p. 664] we may assume that $\{f_i\}$ converges uniformly in compact subsets of B^n to a *K*-quasiregular mapping $g: B^n \to R^n$.

We will show that $g: B^n \to R^n$ is not constant. It suffices to show that inf { $d(f_i \text{ cl } B^n(1/2)) \mid i \in N$ } > 0. Fix $i \in N$. Put $l_i = l(0, f_i, 1)$ and $t_i = L(0, f_i, 1/2)$. Then $d(f_i \text{ cl } B^n(1/2)) \geq t_i$. We may assume $t_i < l_i$, since otherwise (4.7) implies $t_i \geq l_i \geq 1/C > 0$. Let Γ be the path family joining $S^{n-1}(1/2)$ to S^{n-1} in B^n , and let Γ'_i be the path family joining $S^{n-1}(t_i)$ to $S^{n-1}(l_i)$ in $B^n(l_i)$. Then $M(\Gamma'_i) \ge M(f_i\Gamma)$ and by the outer dilatation inequality [6, 3.2] and by (4.6)

$$\omega_{n-1} (\log 2)^{1-n} = M(\Gamma) \leq K N(f_i, B^n) M(f_i \Gamma) \leq j K M(\Gamma'_i) = j K \omega_{n-1} (\log (l_i/t_i))^{1-n} .$$

By (4.7) $l_i > 1/C$, and we get

$$d(f_i \operatorname{cl} B^n(1/2)) \geq t_i \geq (2^{(jK)^{1/(n-1)}} C)^{-1} > 0$$

This holds for all $i \in N$, and thus $g: B^n \to R^n$ is not a constant mapping.

To complete the proof choose any $z \in B^n(1/2)$. By (4.9) there exists $z_i \in B^n(z, \alpha_i) \cap B_{f_i} \subset B^n$ for every $i \in N$. Then $\lim_{i\to\infty} z_i = z$ because $\lim_{i\to\infty} \alpha_i = 0$. Hence $z \in B_g$ by Lemma 4.1. But this implies $B^n(1/2) \subset B_g$, which is impossible, since $g: B^n \to R^n$ is a nonconstant quasiregular mapping. The lemma is proved.

Theorem 3.2 and Lemma 4.2 together imply:

4.10. Theorem. If $f: G \to \mathbb{R}^n$ is K-quasiregular and $i(f) = \sup \{ i(x, f) \mid x \in B_f \} < \infty$, then $\dim_H B_f \le c < n$, where the constant c depends only on n, K and i(f).

4.11. Remark. It is conjectured that if $f: G \to \mathbb{R}^n$ is K-quasiregular, there exists a constant $k \geq 2$ depending only on n and K such that the set $\{x \in B_f \mid i(x, f) \geq k\}$ is discrete. If this conjecture holds, then Theorem 4.10 yields $\dim_H B_f \leq d < n$, where d depends only on n and K.

5. The Hausdorff dimension of fB_f

5.1. Lemma. [4, 6.8]. Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping and F is a compact set in B_f such that $H^{\alpha}(fF) > 0$. Then

$$lpha < n \left(rac{K_I(f)}{\displaystyle\inf_{x \, \in \, F} i(x \, , f)}
ight)^{1/(n-1)}$$

5.2. Lemma. Let $f: G \to \mathbb{R}^n$ be K-quasiregular, $x \in G$ and $i(x, f) \leq m$. Then there exist constants $c, c^* \in (0, 1)$ depending only on n, K and m, and $r_x > 0$ so that if $r \in (0, r_x]$ and $l_x^* = l^*(x, f, r)$, then

(i) U(x, f, r) is a normal neighborhood of x and

(ii) $U(x, f, c, r) \subset B^n(x, c^* l_x^*)$.

Proof. By [6, 4.5] the linear dilatation $H(x, f) \in (0, \infty)$ has an upper bound $H < \infty$ in terms of n, K and m. Put $c = (1/2) (H + 1)^{-1}$. By [6, 2.9] we can choose $r_x > 0$ such that if $0 < r \le r_x$, then U(x, f, r)is a normal neighborhood of x and

(5.3)
$$l(x, f, l_x^*) \geq \frac{L(x, f, l_x^*)}{H+1} = 2 c r,$$

where $l_x^* = l^*(x, f, r)$. Let $r \in (0, r_x]$ and l_x^* be as above. Let $t \in (0, 1)$ such that $L^*(x, f, cr) = t l_x^*$. Let Γ be the path family joining cl U(x, f, cr) to $S^{n-1}(x, l_x^*)$ in $B^n(x, l_x^*)$. Then by the outer dilatation inequality [6, 3.2] and (5.3)

(5.4)
$$M(\Gamma) \leq N(f, B^n(x, l_x^*)) K_0(f) M(f\Gamma) \leq m K \omega_{n-1} (\log 2)^{1-n}$$

Because cl U(x, f, cr) is connected and $d(S^{n-1}(x, l_x^*), cl U(x, f, cr)) = (1-t) l_x^*$, then by [10, 11.9]

(5.5)
$$M(\Gamma) \geq \varkappa_n \left(\frac{1-t}{t}\right) > 0$$

where $\varkappa_n : (0, \infty) \to (0, \infty)$ is a decreasing function and $\varkappa_n(r) \to \infty$ as $r \to 0$. By (5.4) and (5.5) $t \leq c^* \in (0, 1)$, where c^* depends only on n, K and m. The lemma is proved.

5.6. Lemma. Suppose $f: G \to \mathbb{R}^n$ is K-quasiregular, $x \in B_f$ and r > 0 such that U = U(x, f, r) is a normal neighborhood of x. Then $\sigma(f(U \cap B_f)) \geq s' > 0$, where s' is a constant depending only on n, K and i(x, f).

Proof. Assume that the lemma is false. Then for some $K \ge 1$ and $m \ge 2$ there exists a sequence of K-quasiregular mappings $h_i: G_i \to R^n$ with $z_i \in G_i$ and $\delta_i > 0$ such that

- (i) $i(z_i, h_i) = m$
- (ii) $U_i = U(z_i, h_i, \delta_i)$ is a normal neighborhood of z_i ,
- (iii) for every $i \in N$ there is $y_i \in h_i U_i$ so that $\lim_{i \to \infty} \sigma(y_i, h_i(U_i \cap B_{h_i})) = 0$.

Put $f_i = h_i | U_i$, $i \in N$. We may assume

(5.7)
$$\sigma(y_i, f_i B_{f_i}) < \frac{1}{i} \quad \text{for every} \quad i \in N \; .$$

Because $N(f_i, U_i) = i(z_i, f_i) = m$, then

$$m \geq p = \limsup_{i \to \infty} \operatorname{card} \left(f_i^{-1}(y_i) \right) \geq 1$$
.

By passing to a subsequence, if necessary, we may assume $p = \text{card} (f_i^{-1}(y_i))$ for every $i \in N$. Furthermore, $i(x, f_i) \leq m$ if $x \in f_i^{-1}(y_i)$ and $i \in N$.

Fix $i \in N$ and consider the mapping $f_i: U_i \to R^n$. Put $r'_i = \min\{r_x \mid x \in f_i^{-1}(y_i)\} > 0$, where $r_x > 0$ is as in Lemma 5.2. By (5.7) we can choose $r_i \in (0, r'_i)$ such that

$$(5.8) \qquad \qquad \sup\left\{\frac{1}{r_i}\,d(y\,\,,f_iB_{f_i})\mid \,\,0 \,\,\leq \,\,|y-y_i| \,\,< \,\,r_i\right\} \,\,< \,\,\frac{1}{i}\,\,.$$

Then $U(x, f_i, r_i)$ is a normal neighborhood for every $x \in f_i^{-1}(y_i)$ and

(5.9)
$$f_i^{-1}B^n(y_i, r_i) = \bigcup_{x \in f_i^{-1}(y_i)} U(x, f_i, r_i) .$$

Put $l_x^* = l^*(x, f_i, r_i)$, $x \in f_i^{-1}(y_i)$. By Lemma 5.2 and the choice of r_i (5.10) $f_i^{-1}B^n(y_i, c r_i) \subset \bigcup_{\substack{x \in f_i^{-1}(y_i)}} B^n(x, c^* l_x^*)$,

where constants $c, c^* \in (0, 1)$ depend only on n, K and m. Let $T_i: B^n(y_i, r_i) \to B^n$ be the mapping $z \mapsto (1/r_i) (z - y_i)$. For every $x \in f_i^{-1}(y_i)$ define the mapping $g_i^x: B^n \to B^n$ by $g_i^x(z) = T_i \circ f_i(x + l_x^* z)$, $z \in B^n$. Say $f_i^{-1}(y_i) = \{x_1, ..., x_b\}$. Set

$$A_k = B^n(2 \ k \ e_1 \ , \ 1) \ , \qquad k = 1, \ 2, \ ..., \ p \ , \qquad {
m and} \qquad A = \bigcup_{k=1}^p A_k \ ,$$

where e_1 is the first coordinate unit vector of \mathbb{R}^n . Finally, define $g_i: A \to \mathbb{B}^n$ by $g_i(z) = g_i^{x_k}(z - 2 k e_1)$ if $z \in A_k$, $1 \le k \le p$. Then g_i is K-quasiregular in each A_k . Furthermore, by the definition of g_i and (5.10)

(5.11)
$$B^{n}(c) \cap g_{i}B_{g_{i}} = T_{i}(B^{n}(y_{i}, c r_{i}) \cap f_{i}B_{f_{i}})$$
$$g_{i}^{-1}B^{n}(c) \subset \bigcup_{k=1}^{p} cl B^{n}(2 k e_{1}, c^{*})$$

and, in particular, (5.8) implies for $y \in B^n$ and $i \in N$

 $(5.12) \qquad B^n(y, 1/i) \cap g_i B_{g_i} \neq \emptyset \text{ whenever } B^n(y, 1/i) \subset B^n(c) .$

Now, consider the sequence $g_i: A \to B^n$, $i \in N$. Since $\{g_i | A_k \mid i \in N\}$ is a normal family for every k = 1, ..., p by [7, 3.17], $\{g_i \mid i \in N\}$ is also a normal family, and there is a subsequence, denoted again by $\{g_i\}$, which converges uniformly in compact subsets of A to a mapping $g: A \to B^n$. By [9, p. 664] g is K-quasiregular in every A_k .

Consider any $w \in B^n(c)$. By (5.12) we can choose

$$w_i \in B^n(w, 1/i) \cap g_i B_{g_i} \subseteq B^n(c)$$

for every $i \in N$, 1/i < c - |w|, and for each such w_i we choose $w_i^* \in B_{g_i} \cap g_i^{-1}(w_i)$. Then by (5.11) and by passing to a subsequence, if necessary, we may assume $w_i^* \to w^* \in A_k$. Because every $w_i^* \in B_{g_i}$ and $g_i \to g$ uniformly in compact subsets of A_k , $w^* \in B_g$ by Lemma 4.1. Thus $g(w^*) = \lim_{i \to \infty} g_i(w_i^*) = \lim_{i \to \infty} w_i = w$.

So $w \in gB_g$. It implies $B^n(c) \subset gB_g$. This is a contradiction, since $m(gB_g) = 0$ by [6, 2.27]. The lemma is proved.

5.13. Theorem. If $f: G \to \mathbb{R}^n$ is K-quasiregular, then

$$\dim_H (fB_f) \; \leq \; c' \; < \; n \; ,$$

where the constant c' depends only on n and K.

Proof. We may suppose that $f: G \to \mathbb{R}^n$ is non-constant. Let $m_K = K n^{n-1}$ and define $F = \{x \in B_f \mid i(x, f) \ge m_K\}$. Then F is closed in G and by Lemma 5.1 it is easy to see that

$$\dim_H F \le n \left(rac{K}{m_K}
ight)^{1/(n-1)} = 1 < n \; .$$

On the other hand, by Lemma 5.2 and Lemma 5.6 the set $B_f \setminus F = \{x \in B_f \mid i(x, f) < m_K\}$ can be covered by countably many normal neighborhoods U such that $\dim_H (f(U \cap B_f)) \leq c'' < n$, where the constant c'' depends only on n, K and m_K . This proves the theorem.

References

- [1] BEARDON, A. F.: On the Hausdorff dimension of general Cantor sets. Proc. Cambridge Philos. Soc. 61, 1965, 679-694.
- [2] EGGLESTON, H. G.: Sets of fractional dimensions which occur in some problems of number theory. - Proc. London Math. Soc. (2) 54, 1951, 42-93.
- [3] GEHRING, F. W., and J. VÄISÄLÄ: Hausdorff dimension and quasiconformal mappings. - J. London Math. Soc. (2) 6, 1973, 504-512.
- [4] MARTIO, O.: A capacity inequality for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I 474, 1970, 1-17.
- [5] MARTIO, O, and S. RICKMAN: Measure properties of the branch set and its image of quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I 541, 1973, 1-15.
- [6] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Definitions for quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I 448, 1969, 1-40.
- [7] -»- Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I 465, 1970, 1-12.
- [8] RESETNJAK, JU. G.: Отображения с ограниченным искажением как экстремали интегралов типа дирихле. - Sibirsk. Mat. Ž. 9, 1968, 652-666. Translation: Mappings with bounded deformation as extremals of Dirichlet type integrals. - Siberian Math. J. 9, 1968, 487-498.
- [9] -»- О множестве точек ветвления отображений с ограниченным искажением.
 Sibirsk. Mat. Ž. 11, 1970, 1333-1339. Translation: On the set of of branch points of mappings with bounded distortion. Siberian Math. J. 11, 1970, 982-986.
- [10] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 23 May 1975