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THE HAUSDORFF DIMENSION OF THE BRANCH
SET OF A QUASIREGULAR MAPPING

JUKKA SARVAS

1. Introduction

Let G be a domain in the n-dimensional euclidean space R", n > 2.
Consider a non-constant quasiregular mapping f: G — R*. Let B,
denote the branch set of f.

By [6] m(B;) = m(fB;) = 0, where m is the n-dimensional Lebesgue
measure in R". Then also H"(B;) = H"(fB;) = 0, where H*, « >0, is
the o-dimensional Hausdorff outer measure in R” . On the other hand, in
[3] it is shown by an example that dim, B; and dimy fB,, the Hausdorff
dimensions of B, and fB;, can be arbitrarily close to = .

In this paper we prove the following results. Let ¢(x,f) denote the
local topological index of f at x. If f is as above, then

(1.1) dimy fB, < ¢ < n,

where the constant ¢’ depends only on » and the maximal dilatation
K(f) of f. If, in addition, i(f) = sup{i(z,f) | v €B;} < o, then
(1.2) dimy B, < ¢ < n,
where the constant ¢ depends only on n, K(f) and i(f). It remains an
open question whether ¢ actually depends on i(f). If it does not, then
always dimy B, <n, too.

We shall prove (1.1) and (1.2) using a similar method to ReSetnjak’s
in [9] and Martio’s and Rickman’s in [5].

For more information on dimy B, and dimy fB, see, for example, [5].

2. Notation

We use the same notation and terminology as in [6]. If 4 C R*, we
write cl 4, int 4 and 24 for the closure, the interior and the boundary
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of A. If veR" and AC R, 4 # O, we denote dy d(x,A) the
distance from « to 4 and by d(4) the diameter of 4 . If x € R* and
r > 0 we write B"(x,r) for the open ball {y e R*| |x—y| <r} and
abbreviate B»(r) = B*(0,r), B» = B»1). We also write S" }x,r) =
eB"x ,r), 8" Yr) =8"10,7) and S"' = 8*71(1).

We let the notation f: G — R* include the assumption that G C R»
is a domain and f is continuous. If x € ¢ and r > 0, put

Ua, f,r) = inlf If@) = f)l, L, f,7) = e If(@) — f(y)!
X—9y|=r x—y|=7r
whenever B"(x,7) C ¢ . We let U(x,f,r) denote the a-component of
f'B"(f(z) ,r) and write

Fa,f,r) = inf{|e—y|| yeoU(x,f,r)} and
L*(x,f,r) = SUP{W_?/H yeaU(x:fﬂ")}

whenever oU(x,f,r) + O.If AC R* and y e R*, put N(y,f,A) =
card (A nf'(y)) and N(f,A4) = sup{N(y,f,A)| yekR}. If
[ G — R is quasiregular and x € (¢, then there exists », > 0 such that
if re(,r), then U(x,f,r) is a normal neighborhood of =z and
N(f,U,f,r) = i(x,f); see [6; 2.9, 2.12].

Let ey, ..., e, denote the coordinate unit vectors of R*, Z the set of
integers and N the set of positive integers.

3. On Hausdorff dimension in R»

For o €(0, ), the a-dimensional Hausdorff outer measure of a set
A C R is defined as

HXA) = lim (inf S d(4,)%) ,

r—0

where the infimum is taken over all countable coverings of A4 by sets A,
with d(4,) < r. The Hausdorff dimension of 4 C R” is defined as

dimy A = inf{a>0|H*A4) =0]}.

Then 0 < dimy; 4 <n. Note that if 4 is the union of the sets 4,
v = 1,2,..., then dimy 4 = sup;dim, 4, .

To derive an upper bound for the Hausdorff dimension of a set in R
we consider the following density quantity. For any 4 C R*, 4 + O,
and x € 4 define
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olz,4) = lim inf< sup ! d(y , A)> , and
(3.1) 70 No<Zlx—yi<r T
o(4) = info(x,4).
xed
Then always 0 < o(4) < 1. The definition of o(4) is motivated by the
following result.

3.2, Theorem. If A C R" with ¢(4) > 0, then dimy 4 <c¢ <n,
where the constant ¢ depends only on n and o(A4) .

To prove this theorem we need a lemma essentially due to Gehring and
Viisalda [3, Theorem 18]. We introduce a notation. If ¢ C R* is a closed
cube of side s > 0 and p = 2 is an integer, we let 2(@ , p) denote the
collection of the cubes obtained by subdividing ¢ into p* closed congruent
cubes of side s/p .

3.3. Lemma. Suppose that @, is a closed cube in R, that A s
a compact subset of Q, and p, q and i, are integers such that p > 2,
1 <q<p'—1 and iy=>0. If for every integer > 1, and every
Q eDQ,,p) the set ) N A can be covered with q cubes of D(Q , p), then

Proof. Let logqflogp < o < n. We must prove H*A) = 0.
It is sufficient to show H*(4 N Q') = 0, where )’ is any cube of
D(Qy , p*) . By the assumptions of the lemma we can cover 4 N Q" by
q cubes of 2(Q",p), say @, .., Q,. Similarly every set A4 N @,
1 <14 < q, we can covered by ¢ cubes of 2(Q),, p), and so we get a cover
of 4 n @ by ¢* cubes of 2(Q", p* . Continuing in this way we get after
J steps a cover 4, of A N Q" by ¢’ cubes of Z(¢",p’). Then d(Q) =
d(Q")/p? for every @ €%;. Hence

\ : d(Q'))“ < q >f
aer = o("2) = (L) wer,
Qez(gj @ = o (-, ) A@)
where (¢ p~*)7 — 0 as j— o0, since ¢ p~* < 1 by the choice of «. This
implies H*(A N Q') = 0 by the definition of H*. The lemma is proved.

3.4. Remark. The upper bound in the above lemma is attained by a set

A defined as follows. Let @,, p and ¢ be as in the lemma. Put

Ay = { @}, oS, = U B, 1 = 1,2, ...,
Oedli 1

where (@) is a collection of ¢ cubes of 2(Q,p) for every @ €.</, ;.
Define
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A = UQ, 7::0,1,2,..., and A:mA
i =0

Then A satisfies the assumptions of Lemma 3.3 with 4, = 0. Hence
dim, 4 < log gq/log p. It is not difficult to see, for instance by [I,
Corollary 2, p. 684], that dim, A > logg/log p .

Proof of Theorem 3.2. We may assume 4 C @, where @, is a closed
cube of side 1. For every jeN let A; be the set of all x € 4 with

inf < sup —lwd(y , A)> < la(A) > 0.
0<r<11j o<yl <r T 2

Then A is the union of thesets 4,, j = 1,2,.... Let p be the smallest
odd integer greater than 1 and not less than 13 n'*/g(4) . Then p depends
only on n and o(4) .

Fix jeN. Let i; € N such that p~% < 1/j. To apply Lemma 3.3 to
cl A; we show that the assumptions of the lemma are satisfied with p
and 4, = i; as above and q = p*—1.Choose any i > ¢; and ¢ € 2(Q,, p) .
Then ¢ is a cube of side ¢ = p™" << 1/j. Let @' be the cube in 2(Q , p)
which contains the center z, of @. If cld, "nint@ = O,cld, N
can be covered by p"—1 cubes of 2(Q,p). Otherwiselet xed, N Q.
Then

p—1 ¢
d(z, o)) > 2p I > 3

So B'(x,t/6) C @, and because t/6 << 1/j, then by the definition of the
set A, there exists y e B*(x,t/6) such that Br(y,r) C R"\cld C
R™\cl 4;, where r = o(4)t/12. Then Bi(y,r)C ¢, and because
p > 120'%/g(4), we have r > n'?i{/p. Therefore at least one of
the cubes of 2(@, p) liesin B"(y,r) C R*\clA,. Hence cl4; N @ can
be covered by p"—1 cubes of 2(@, p) in this case, too. Lemma 3.3 implies
(3.5) dimy 4, < dimyecld; < locliz—pl) =c<n,
where ¢ depends only on n and o(4).

Since A is the union of the sets A4,, j =1,2,..
dim, A < ¢, and the proof is completed.

3.6. Remark. The converse of Theorem 3.2. is not true. In fact, if
I = {te| —1 <t <1} and for every i e N

., (3.5) yields

1 1 »
'Bi = {7./plel+?:—2 pkek| pkEZ, _1—<—pk SZ’ /C = 1>27--'yn}’
k=2

then 4 = I U U?, B, is a compact set with ¢(4) = 0and dimy 4 = 1.
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3.7 Remark. Theorem 3.2 fails to hold if in the definition (3.1) of
o(x, A) we replace lim inf by limsup. To show this define for every
ACR, A +0,

1
lim sup < sup  —d(y, A)>

77(70 ) A) = »
=0 N |r—y <7
dly , A
= lim sup W ), red,
Yz |x—yi

and
nd) = infgy@,4).
xed
Then 0 < n(4) <1. We construct a set 4 C R* with 7(4) =1 and
dim, A = n . In fact, 4 will be locally so ’thin’ that for every x € 4 and
any ¢ e (0,1) there exist arbitrarily small balls B*(x,7) such that

(3.8) AN B x,r) C BHx,er).

To define A we need the following notation. If @ is a closed cube in
R* and i > 0 isan integer, then Q" denotes the cube in (@ , 3') which
contains the center of Q. Now, let €, be a closed cube in R*.
Put o7, = {Q,} and

o, = U (@] QeaQ ,3)}, i=12...
et i1
Then define
4, = U @, 1 = 1,2,..., and A = N4
Qe ; i=1

Clearly A has the property (3.8). On the other hand, every ., consists
of N, = 3" congruent cubes of diameter o, = 3~ d(Q,), where

My = 35 and m= 35, = L2

Then

i§1< 51‘1> (N, 0971 = d(Qy,)™

©
Z 3—[(n—a)Mi—ami—-n(i“+i)] <
=1

for every « e (0,n), which implies dimg; A4 =n by [2, Theorem 5,
p. 55].
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4. The Hausdorff dimension of B,

41. Lemma. [5, 3.2]. Suppose that f,: G—R*, i € N, are open
and discrete mappings, f: G — R* s open and discrete or a constant map-
ping and f;— f uniformly in compact subsets of G . If wx,—x € G with
x; € B, , then v €B;.

42, Lemma. If f:G—Rr is K-quasiregular, B, + @ and
sup {t(x,f) | v €B,} < j, then o(B;) = s> 0, where the constant s
depends only on n, K and j .

Proof. Assume that the lemma is false for some K e€[l1, o) and

j€[2,00). Then there exists a sequence of K-quasiregular mappings
fi+ G,— R* with

(4.3) w, B, iz, f;) < j forevery ieN, and

(4.4) limo(x;, B;) = 0.

By [6, 4.5] there exists ' > 0 such that the linear dilatation H(x,,f;) < C
for every i eN. Set o, = o(x;,B;) +1/3i, i e N. Then lima, = 0

and we may assume 0 << o; << 1/2, i € N . Furthermore, using similarity
mappings we may also assume that for every ¢ e N

(4.5) x; = fle) = 0 and B C @,
(4.6) Zv(f'p ,Br) = (0 :fz) <J,
L0, f, 1)
(4.7) L(O,fi,l)zlandm<0,
(4.8) sup d(y,B;) < o < 1/2.
0<lIyl<<1

In particular, (4.8) implies
(4.9) By, ) n B, # O forevery yeB".

By [7, 3.17] the restrictions f;|B*, 7 € N, form a normal family of K-
quasiregular mappings and by [9, p. 664] we may assume that {f,} con-
verges uniformly in compact subsets of B” to a K-quasiregular mapping
g: B"— R".

We will show that ¢: B*— R* is not constant. It suffices to show that
inf{d(f;cl B/(1/2)) | ieN} > 0. Fix ¢eN. Put [, = [(0,f,1)
and t; = L(0,f;,1/2). Then d(f; cl B*1/2)) > t,. We may assume
t; < I;, since otherwise (4.7) implies ¢ >/, > 1/C > 0. Let I' be the
path family joining S§"7'(1/2) to S"7' in B", and let I", be the path
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family joining S"7'(t) to S"7'(,) in B*(). Then M(I'}) = M(f.I') and
by the outer dilatation inequality [6, 3.2] and by (4.6)

0,1 (log2)'™" = M(I') = K N(f;, B") M(f,I)
< jKM(I) = j Ko, (log ()"
By (4.7) I, > 1/C, and we get
d(f, el B"(1)2)) = t, = @R Vo1 = g

This holds for all 7 € N, and thus g: B*— R” is not a constant mapping.

To complete the proof choose any =z e B*(1/2). By (4.9) there
exists z; € B*(z, o) N B, C B* for every ieN. Then lim; ,z =z
because lim;,, «; = 0. Hence z e B, by Lemma 4.1. But this implies
B*(1/2) C B,, which is impossible, since ¢: B"-— R" is a nonconstant
quasiregular mapping. The lemma is proved.

Theorem 3.2 and Lemma 4.2 together imply:

410. Theorem. If f: G—R" is K-quasireqular and i(f) =
sup{i(x,f) | xeB;} < oo, then dimy B, <c¢ < n, where the constant
¢ depends only on n, K and i(f) .

4.11. Remark. 1t is conjectured that if f: ¢ — R» is K-quasiregular,
there exists a constant & > 2 depending only on # and K such that the
set {weB;| i(r,f) =k} is discrete. If this conjecture holds, then
Theorem 4.10 yields dimy B, <d < n, where d depends only on =
and K .

5. The Hausdorff dimension of /B,

51. Lemma. [4, 6.8]. Suppose that f: G — R* is a non-constant
quasiregular mapping and F is a compact set in B, such that H*(fF) > 0.

Then
K\
F= infi, f) :

xeF

52. Lemma. Let f: G-— R be K-quasireqular, xeG and
i, f) <m . Then there exist constants ¢, c* € (0, 1) depending only on n,
K and m, and r,> 0 so that of r e (0,7, and I = I*x,f,r), then

(1) Ulx, f,r) is a normal neighborhood of x and

() Ux,f,cr)C BY(x,c*lF).

Proof. By [6, 4.5] the linear dilatation H(x,f) € (0, co) has an upper
bound H < co in terms of n, K and m. Put ¢ = (1/2) (H + 1)~ *.
By [6, 2.9] we can choose r, > 0 such thatif 0 <r <r,, then U(x,f,r)
is a normal neighborhood of x and
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" LT
(5.3) e, f,0F) = 0+ 1 = 2c¢r,

where /¥ = [*@,f,r). Let r € (0,r,] and [ be asabove. Let ¢ € (0, 1)
such that L*@,f,cr) = tl¥. Let I' be the path family joining
clU,f,cr) to 8" Ya, ) in B"(x,If). Then by the outer dilatation
inequality [6, 3.2] and (5.3)

(5.4) M(I') < N(f, B, 1) Ko(f) M(fI') < m Ko, (log2)~

Because cl Uz, f,cr) is connected and d(S" " ,¥),cl U, f,cr) =
(1—¢) ¥ , then by [10, 11.9]

(5.5) M(I') = =, (l—tl> > 0,
where #,: (0, 00) — (0, 00) is a decreasing function and x,(r) — o0 as
r— 0. By (5.4) and (5.5) t <c¢*e(0,1), where ¢* depends only on =,
K and m . The lemma is proved.

5.6. Lemma. Suppose f: G— R is K-quasiregular, x € B, and
r >0 such that U = Ulx,f,r) is a normal neighborhood of x . Then
of(tU N By) = s > 0, where s is a constant depending only on n,
K and i(x,f).

Proof. Assume that the lemma is false. Then for some K =1 and
m > 2 there exists a sequence of K-quasiregular mappings h,: G, — R”
with z; € @; and ¢, > 0 such that

@) i h) = m

(ii) U, = Ulz,h;,9,) is a normal neighborhood of =z,

(iii)  for every 7 € N there is y; € h,U; so that

lim; ., o(y; . h(U; 0 B;)) = 0.

Put f, = h|U,, i e N. We may assume

1
(5.7) oy » fiBy) < n for every ¢ e N .

Because N(f,,U;) = i(z,f;) = m, then

m > p = limsupcard (f;'(y,)) = 1.
By passing to a subsequence, if necessary, we may assume p card (f;(y,))
for every i € N . Furthermore, i(x,f) <m if xef;'(y,) and ieN.
Fix ieN and consider the mapping f;: U, —>R” Put 7, =
min{r, | z ef; (y;)} > 0, where », > 0 is as in Lemma 5.2. By (5.7)

we can choose 7, € (0, 7;) such that
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1

1
(5.8) Sup{;d(y,fiBi)! 0 < ly—ul < r,-} < 5

Then U(x,f;,r,) is a normal neighborhood for every x ef;'(y,) and

(59) f{‘lB"(yi ’ r{) = v U(Z' ’f;‘ ’ Ti) N

xefi ™ (v;)

Put ¥ = I*@,f,,r), 2 €f(y). By Lemma 5.2 and the choice of 7,

(5.10) filtBy,,cr) C U Brx,c*IF),

vefiT(v))
where constants c¢,c* €(0,1) depend only on n, K and m. Let
T,: B(y;,r) —B" be the mapping z~ (1/r;)(z—y;). For every
@ €f7(y,) define the mapping g7 : B*— B* by ¢i(z) = T,of(x + I*z),
zeB . Say fil'y) = {x,...,2,}. Set

A, = B"2ke , 1), k=12 ..,p, and 4 = v 4,,
k=1
where e, is the first coordinate unit vector of R”. Finally, define
g;: A—B" by ¢.(2) = gi*(z — 2ke;) if z€d,, 1 <k <p. Then
g; is K-quasiregular in each A4, . Furthermore, by the definition of g¢,
and (5.10)

Brc) N g.B

&

= Ty(B"(y;,cr) N .ﬂBfi) )

»
(5.11) g7 'BMc) C U clB2ke,,c*)

k=1

and, in particular, (5.8) implies for y € B” and 7 e N
(5.12) By, 1/i) ng;B, # O whenever B'(y,1/i) C B(c).

Now, consider the sequence g;: 4 —B", i €N . Since { ¢g;/4,| 1 e N }
is a normal family for every & = 1,..,p by [7, 3.17], {¢,| t e N} is
also a normal family, and there is a subsequence, denoted again by {g¢,},
which converges uniformly in compact subsets of 4 to a mapping
g: A—B". By [9, p. 664] ¢g is K-quasiregular in every A4, .

Consider any w € B*(c). By (5.12) we can choose

w; € B'(w, 1/1) N g; B,, C B*(c)

for every ¢ eN, 1/i <c — |w|, and for each such w; we choose
wi €B, N g7 (w;) . Then by (5.11) and by passing to a subsequence, if
necessary, we may assume w — w* € 4,. Because every w} € B, and

g;— g uniformly in compact subsets of 4,, w* eB, by Lemma 4.1.
Thus g(w*) = lim, _ ¢w?) = lim,_ , w, = w.

1 i—>00 M1
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So w egB,. It implies B*(c) C gB,. This is a contradiction, since
m(gB,) = 0 by [6, 2.27]. The lemma is proved.
513. Theorem. If f: G— R" is K-quasiregular, then

dimy (fB;) < ¢ < n,

where the constant ¢’ depends only on n and K .

Proof. We may suppose that f: G— R* is non-constant. Let
mg = Kn'™' and define F = {xeB | i(x,f) =myg}. Then F is
closed in ¢ and by Lemma 5.1 it is easy to see that
K >1/<n~1>

dim, 1 < n <7;z‘
K

= 1l <n.

On the other hand, by Lemma 5.2 and Lemma 5.6 the set BN\F =
{weB,| i(x,f) <mg} can be covered by countably many normal
neighborhoods U such that dim, (f(U n B))) <c¢" < n, where the
constant ¢” depends only on n, K and my . This proves the theorem.
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