THE HAUSDORFF DIMENSION OF THE BRANCH SET OF A QUASIREGULAR MAPPING

JUKKA SARVAS

1. Introduction

Let G be a domain in the *n*-dimensional euclidean space $Rⁿ$, $n \ge 2$. Consider a non-constant quasiregular mapping $f: G \to R^n$. Let B_f denote the branch set of f .

By [6] $m(B_t) = m(fB_t) = 0$, where m is the n-dimensional Lebesgue measure in R^n . Then also $H^n(B_f)=H^n(fB_f)=0$, where H^{α} , $\alpha>0$, is the α -dimensional Hausdorff outer measure in R^* . On the other hand, in [3] it is shown by an example that $\dim_H B_t$ and $\dim_H fB_t$, the Hausdorff dimensions of B_f and fB_f , can be arbitrarily close to n .

In this paper we prove the following results. Let $i(x, f)$ denote the local topological index of f at x . If f is as above, then

(l.l) dimrfB, I c' I n,

where the constant c' depends only on n and the maximal dilatation $K(f)$ of f. If, in addition, $i(f) = \sup \{i(x,f) | x \in B_f\} < \infty$, then

$$
(1.2) \qquad \qquad \dim_H B_f \leq c \, < \, n \, ,
$$

where the constant c depends only on n, $K(f)$ and $i(f)$. It remains an open question whether c actually depends on $i(f)$. If it does not, then always $\dim_H B_f < n$, too.

We shall prove (1.1) and (1.2) using a similar method to Reseturally's in [9] and Martio's and Rickman's in [5].

For more information on $\dim_H B_f$ and $\dim_H fB_f$ see, for example, [5].

2. Notation

We use the same notation and terminology as in [6]. If $A \subseteq \mathbb{R}^n$, we write cl A, int A and ∂A for the closure, the interior and the boundary

of A. If $x \in \mathbb{R}^n$ and $A \subseteq \mathbb{R}^n$, $A \neq \emptyset$, we denote dy $d(x, A)$ the distance from x to A and by $d(A)$ the diameter of A. If $x \in R^n$ and $r>0$ we write $B^{n}(x, r)$ for the open ball $\{y \in \mathbb{R}^{n} \mid |x-y| < r \}$ and abbreviate $B^n(r) = B^n(0, r)$, $B^n = B^n(1)$. We also write $S^{n-1}(x, r) =$ $\partial B^n(x, r)$, $S^{n-1}(r) = S^{n-1}(0, r)$ and $S^{n-1} = S^{n-1}(1)$.

We let the notation $f: G \to \mathbb{R}^n$ include the assumption that $G \subset \mathbb{R}^n$ is a domain and f is continuous. If $x \in G$ and $r > 0$, put

$$
l(x, f, r) = \inf_{|x-y|=r} |f(x) - f(y)|
$$
, $L(x, f, r) = \sup_{|x-y|=r} |f(x) - f(y)|$

whenever $B^n(x, r) \subseteq G$. We let $U(x, f, r)$ denote the *x*-component of $f^{-1}B^n(f(x), r)$ and write

$$
l^*(x, f, r) = \inf \{ |x - y| | y \in \partial U(x, f, r) \} \text{ and}
$$

$$
L^*(x, f, r) = \sup \{ |x - y| | y \in \partial U(x, f, r) \}
$$

whenever $\partial U(x, f, r) \neq \emptyset$. If $A \subseteq R^n$ and $y \in R^n$, put $N(y, f, A)$ card $(A \cap f^{-1}(y))$ and $N(f, A) = \sup \{N(y, f, A) | y \in R^n\}$. If $f: G \to \mathbb{R}^n$ is quasiregular and $x \in G$, then there exists $r_x > 0$ such that if $r \in (0, r_*)$, then $U(x, f, r)$ is a normal neighborhood of x and $N(f, U(x, f, r)) = i(x, f);$ see [6; 2.9, 2.12].

Let $e_1, ..., e_n$ denote the coordinate unit vectors of R^n , Z the set of integers and N the set of positive integers.

3. On Hausdorff dimension in $Rⁿ$

For $\alpha \in (0, \infty)$, the α -dimensional Hausdorff outer measure of a set $A \subset R^n$ is defined as

$$
H^{\alpha}(A) = \lim_{r \to 0} (\inf \sum d(A_i)^{\alpha}),
$$

where the infimum is taken over all countable coverings of A by sets A_i with $d(A_i) < r$. The Hausdorff dimension of $A \subseteq R^n$ is defined as

$$
\dim_H A = \inf \{ \alpha > 0 \mid H^{\alpha}(A) = 0 \}.
$$

Then $0 \le \dim_H A \le n$. Note that if A is the union of the sets A_i , $i = 1, 2, \ldots$, then $\dim_H A = \sup_i \dim_H A_i$.

To derive an upper bound for the Hausdorff dimension of a set in $Rⁿ$ we consider the following density quantity. For any $A \subseteq R^n$, $A \neq \emptyset$, and $x \in A$ define

(3.1)
$$
\sigma(x, A) = \liminf_{r \to 0} \left(\sup_{0 \le |x - y| < r} \frac{1}{r} d(y, A) \right), \text{ and}
$$

$$
\sigma(A) = \inf_{x \in A} \sigma(x, A).
$$

Then always $0 \le \sigma(A) \le 1$. The definition of $\sigma(A)$ is motivated by the following result.

3.2. Theorem. If $A \subseteq R^n$ with $\sigma(A) > 0$, then $\dim_H A \leq c < n$, where the constant c depends only on n and $\sigma(A)$.

To prove this theorem we need a lemma essentially due to Gehring and Väisälä [3, Theorem 18]. We introduce a notation. If $Q \subseteq R^n$ is a closed cube of side $s > 0$ and $p \geq 2$ is an integer, we let $\mathscr{D}(Q, p)$ denote the collection of the cubes obtained by subdividing Q into p^* closed congruent cubes of side s/p .

3.3. Lemma. Suppose that Q_0 is a closed cube in R^n , that A is a compact subset of Q_0 and p , q and i_0 are integers such that $p \geq 2$, $1 \le q \le p^n-1$ and $i_0 \ge 0$. If for every integer $i > i_0$ and every $Q \in \mathcal{D}(Q_0, p^i)$ the set $Q \cap A$ can be covered with q cubes of $\mathcal{D}(Q, p)$, then

$$
\dim_H A \leq \frac{\log q}{\log p} < n
$$

Proof. Let $\log q / \log p < \alpha < n$. We must prove $H^{\alpha}(A) = 0$. It is sufficient to show $H^{\alpha}(A \cap Q') = 0$, where Q' is any cube of $\mathscr{D}(Q_0, p^{i_0})$. By the assumptions of the lemma we can cover $A \cap Q'$ by $q \quad \mbox{cubes of} \quad \mathscr{D}(Q^\prime \ , \, p) \ , \quad \mbox{say} \quad Q_1, \, \ldots, \, Q_q \ . \quad \mbox{Similarly} \quad \mbox{every} \ \ \mbox{set} \quad A \ \cap \ Q_i \ ,$ $1 \leq i \leq q$, we can covered by q cubes of $\mathscr{D}(Q_i, p)$, and so we get a cover of $A \cap Q'$ by q^2 cubes of $\mathcal{D}(Q', p^2)$. Continuing in this way we get after j steps a cover \mathscr{C}_i of $A \cap Q'$ by q^j cubes of $\mathscr{D}(Q', p^j)$. Then $d(Q) =$ $d(Q')/p^j$ for every $Q \in \mathscr{C}_i$. Hence

$$
\sum_{Q \,\in\, \mathscr{C}_j} d(Q)^\alpha \;\; = \;\; q^j \left(\frac{d(Q')}{p^j} \right)^\alpha \;\; = \;\; \left(\frac{q}{p^\alpha} \right)^j \, d(Q')^\alpha \;,
$$

where $(q p^{-\alpha})^j \to 0$ as $j \to \infty$, since $q p^{-\alpha} < 1$ by the choice of α . This implies $H^{\alpha}(A \cap Q') = 0$ by the definition of H^{α} . The lemma is proved.

3.4. Remark. The upper bound in the above lemma is attained by a set A defined as follows. Let Q_0 , p and q be as in the lemma. Put

$$
\mathscr{A}_0 \ = \ \left\{\ Q_0\ \right\}, \qquad \mathscr{A}_i \ = \ \bigcup_{Q \, \in \, \mathscr{A}_{i-1}} \mathscr{B}(Q) \ , \qquad i \ = \ 1, \, 2, \, \ldots \, ,
$$

where $\mathscr{B}(Q)$ is a collection of q cubes of $\mathscr{D}(Q, p)$ for every $Q \in \mathscr{A}_{i-1}$. $\mathop{\mathrm{Define}}\nolimits$

$$
A_i = \bigcup_{Q \in \mathscr{A}_i} Q, \quad i = 0, 1, 2, \dots, \quad \text{and} \quad A = \bigcap_{i=0}^\infty A_i.
$$

Then A satisfies the assumptions of Lemma 3.3 with $i_0 = 0$. Hence $\dim_H A \leq \log q/\log p$. It is not difficult to see, for instance by [1, Corollary 2, p. 684], that $\dim_H A \geq \log q/\log p$.

Proof of Theorem 3.2. We may assume $A \subseteq Q_0$, where Q_0 is a closed cube of side 1. For every $j \in N$ let A_j be the set of all $x \in A$ with

$$
\inf_{0 < r \leq 1/j} \left(\sup_{0 \leq |x-y| < r} \frac{1}{r} \, d(y \, , \, A) \right) \; < \; \frac{1}{2} \, \sigma(A) \; > \; 0 \; .
$$

Then A is the union of the sets A_i , $j = 1, 2, ...$ Let p be the smallest odd integer greater than 1 and not less than 13 $n^{1/2}/\sigma(A)$. Then p depends only on n and $\sigma(A)$.

Fix $j \in N$. Let $i_i \in N$ such that $p^{-i} \lt l/j$. To apply Lemma 3.3 to cl A_i we show that the assumptions of the lemma are satisfied with p and $i_0 = i_j$ as above and $q = p^{n-1}$. Choose any $i \geq i_j$ and $Q \in \mathcal{D}(Q_0, p^i)$. Then Q is a cube of side $t = p^{-i} < 1/j$. Let Q' be the cube in $\mathcal{D}(Q, p)$ which contains the center x_0 of Q. If $\operatorname{cl} A_i \cap \operatorname{int} Q' = \emptyset$, $\operatorname{cl} A_i \cap Q$ can be covered by $p^{n}-1$ cubes of $\mathscr{D}(Q, p)$. Otherwise let $x \in A_i \cap Q'$. Then

$$
d(x \, , \, \partial Q) \; > \; \frac{p-1}{2 \, p} \, t \; \geq \; \frac{t}{3} \; .
$$

So $B^n(x, t/6) \subset Q$, and because $t/6 < 1/j$, then by the definition of the set A_i there exists $y \in B^n(x, t/6)$ such that $B^n(y, r) \subset R^n \setminus \text{cl } A \subset$ $R^n \setminus \mathrm{cl}[A_i]$, where $r = \sigma(A) t/12$. Then $B^n(y, r) \subset Q$, and because $p > 12 n^{1/2} / \sigma(A)$, we have $r > n^{1/2} t/p$. Therefore at least one of the cubes of $\mathscr{D}(Q, p)$ lies in $B^n(y, r) \subseteq R^n \setminus \text{cl } A_i$. Hence $\text{cl } A_i \cap Q$ can be covered by $p^{n}-1$ cubes of $\mathcal{D}(Q, p)$ in this case, too. Lemma 3.3 implies

(3.5)
$$
\dim_H A_j \leq \dim_H cl A_j \leq \frac{\log (p^n-1)}{\log p} = c < n,
$$

where c depends only on n and $\sigma(A)$.

Since A is the union of the sets A_i , $j = 1, 2, ..., (3.5)$ yields $\dim_H A \leq c$, and the proof is completed.

3.6. Remark. The converse of Theorem 3.2. is not true. In fact, if $I = \{ t e_1 | -1 \le t \le 1 \}$ and for every $i \in N$

$$
B_i = \left\{ \frac{1}{i} p_1 e_1 + \frac{1}{i^2} \sum_{k=2}^n p_k e_k \mid p_k \in Z, -i \leq p_k \leq i, k = 1, 2, ..., n \right\},\,
$$

then $A = I \cup \bigcup_{i=1}^{\infty} B_i$ is a compact set with $\sigma(A) = 0$ and $\dim_H A = 1$.

3.7 Remark. Theorem 3.2 fails to hold if in the definition (3.1) of $\sigma(x, A)$ we replace liminf by lim sup. To show this define for every $A \subseteq R^n$, $A \neq \emptyset$,

$$
\eta(x, A) = \limsup_{r \to 0} \left(\sup_{0 \le |x - y| < r} \frac{1}{r} d(y, A) \right)
$$
\n
$$
= \limsup_{y \to x} \frac{d(y, A)}{|x - y|}, \quad x \in A,
$$

and

$$
\eta(A) = \inf_{x \in A} \eta(x, A) .
$$

Then $0 \leq \eta(A) \leq 1$. We construct a set $A \subseteq R^n$ with $\eta(A) = 1$ and $\dim_H A = n$. In fact, A will be locally so 'thin' that for every $x \in A$ and any $\varepsilon \in (0, 1)$ there exist arbitrarily small balls $Bⁿ(x, r)$ such that

$$
(3.8) \t\t A \cap Bn(x, r) \t Bn(x, \varepsilon r).
$$

To define A we need the following notation. If Q is a closed cube in R^n and $i \geq 0$ is an integer, then $Q^{(i)}$ denotes the cube in $\mathscr{D}(Q, 3^i)$ which contains the center of Q . Now, let Q_0 be a closed cube in R^n . Put $\mathscr{A}_0 = \{ Q_0 \}$ and

$$
\mathscr{A}_i \;=\; \bigcup_{Q'\,\in\, \mathscr{A}_{i-1}} \{ \;Q^{(i)} \;|\; \; Q \,\in \mathscr{D}(Q'\;,\, 3^{i^2}) \; \}\;,\qquad i \;=\; 1,\,2,\,\ldots\,.
$$

Then define

$$
A_i = \bigcup_{Q \in \mathscr{A}_i} Q, \quad i = 1, 2, \dots, \quad \text{and} \quad A = \bigcap_{i=1}^{\infty} A_i.
$$

Clearly A has the property (3.8). On the other hand, every \mathcal{A}_i consists of $N_i = 3^{nM_i}$ congruent cubes of diameter $\delta_i = 3^{-(M_i + m_i)} d(Q_0)$, where

$$
M_i = \sum_{j=0}^i j^2 \quad \text{and} \quad m_i = \sum_{j=0}^i j, \quad i = 1, 2, \dots.
$$

Then

$$
\sum_{i=1}^{\infty} \left(\frac{\delta_{i-1}}{\delta_i}\right)^n (N_i \ \delta_i^{\alpha})^{-1} = d(Q_0)^{-\alpha} \sum_{i=1}^{\infty} 3^{-[(n-\alpha)M_i - \alpha m_i - n(i^2 + i)]} < \infty
$$

for every $\alpha \in (0, n)$, which implies $\dim_H A = n$ by [2, Theorem 5, $p. 55$].

4. The Hausdorff dimension of B_t

4.1. Lemma. [5, 3.2]. Suppose that $f_i: G \to R^n$, $i \in N$, are open and discrete mappings, $f: G \to R^n$ is open and discrete or a constant mapping and $f_i \to f$ uniformly in compact subsets of G. If $x_i \to x \in G$ with $x_i \in B_f$, then $x \in B_f$.

4.2. Lemma. If $f: G \to R^n$ is K-quasiregular, $B_f \neq \emptyset$ and $\sup\{i(x,f) \mid x \in B_f\} \leq j$, then $\sigma(B_f) \geq s > 0$, where the constant s depends only on n , K and j .

Proof. Assume that the lemma is false for some $K \in [1, \infty)$ and $j \in [2, \infty)$. Then there exists a sequence of K-quasiregular mappings $f_i: G_i \to R^n$ with

$$
(4.3) \t x_i \in B_{f_i}, \t i(x_i, f_i) \leq j \t for every \t i \in N, \t and
$$

$$
\lim_{i \to \infty} \sigma(x_i, B_{f_i}) = 0.
$$

By [6, 4.5] there exists $C > 0$ such that the linear dilatation $H(x_i, f_i) < C$ for every $i \in N$. Set $\alpha_i = \sigma(x_i, B_{f_i}) + 1/3i$, $i \in N$. Then $\lim \alpha_i = 0$ and we may assume $0 < \alpha_i < 1/2$, $i \in N$. Furthermore, using similarity mappings we may also assume that for every $i \in N$

(4.5)
$$
x_i = f(x_i) = 0
$$
 and $B^n \subset G_i$,

(4.6)
$$
N(f_i, B^n) = i(0, f_i) \leq j,
$$

(4.7)
$$
L(0, f_i, 1) = 1 \text{ and } \frac{L(0, f_i, 1)}{l(0, f_i, 1)} < C,
$$

(4.8)
$$
\sup_{0 \le |y| < 1} d(y, B_{f_i}) < \alpha_i < 1/2.
$$

In particular, (4.8) implies

(4.9)
$$
B^{n}(y, \alpha_i) \cap B_{f_i} \neq \emptyset \text{ for every } y \in B^{n}.
$$

By [7, 3.17] the restrictions $f_i|B^n$, $i \in N$, form a normal family of Kquasiregular mappings and by [9, p. 664] we may assume that $\{f_i\}$ converges uniformly in compact subsets of $Bⁿ$ to a K-quasiregular mapping $g: B^n \rightarrow R^n$.

We will show that $g: B^n \to R^n$ is not constant. It suffices to show that $\inf \{ d(f_i \text{ el } B^n(1/2)) | i \in N \} > 0$. Fix $i \in N$. Put $l_i = l(0, f_i, 1)$ and $t_i = L(0, f_i, 1/2)$. Then $d(f_i \text{ cl } Bⁿ(1/2)) \geq t_i$. We may assume $t_i < l_i$, since otherwise (4.7) implies $t_i \ge l_i \ge 1/\mathbb{C} > 0$. Let Γ be the path family joining $S^{n-1}(1/2)$ to S^{n-1} in B^n , and let Γ'_i be the path

family joining $S^{n-1}(t_i)$ to $S^{n-1}(l_i)$ in $B^n(l_i)$. Then $M(\Gamma'_i) \geq M(f_i \Gamma)$ and by the outer dilatation inequality $[6, 3.2]$ and by (4.6)

$$
\omega_{n-1} (\log 2)^{1-n} = M(\Gamma) \leq K N(f_i, B^n) M(f_i \Gamma)
$$

$$
\leq j K M(\Gamma'_i) = j K \omega_{n-1} (\log (l_i / t_i))^{1-n}.
$$

By (4.7) $l_i > 1/\text{C}$, and we get

$$
d(f_i \operatorname{cl} B^n(1/2)) \geq t_i \geq (2^{(jK)^{1/(n-1)}} C)^{-1} > 0.
$$

This holds for all $i \in N$, and thus $g: B^n \to R^n$ is not a constant mapping.

To complete the proof choose any $z \in Bⁿ(1/2)$. By (4.9) there exists $z_i \in B^n(z, \alpha_i) \cap B_{f_i} \subseteq B^n$ for every $i \in N$. Then $\lim_{i \to \infty} z_i = z$ because $\lim_{i\to\infty} \alpha_i = 0$. Hence $z \in B_{g}$ by Lemma 4.1. But this implies $B^{n}(1/2) \subseteq B_{g}$, which is impossible, since $g: B^{n} \to R^{n}$ is a nonconstant quasiregular mapping. The lemma is proved.

Theorem 3.2 and Lemma 4.2 together imply:

4.10. Theorem. If $f: G \to R^n$ is K-quasiregular and $i(f)$ = $\sup\{i(x,f) \mid x \in B_f\} < \infty$, then $\dim_H B_f \leq c < n$, where the constant c depends only on n , K and $i(f)$.

4.11. Remark. It is conjectured that if $f: G \to \mathbb{R}^n$ is K-quasiregular, there exists a constant $k \geq 2$ depending only on n and K such that the set $\{x \in B_f \mid i(x, f) \geq k\}$ is discrete. If this conjecture holds, then Theorem 4.10 yields $\dim_H B_f \leq d < n$, where d depends only on n and K .

5. The Hausdorff dimension of fB_f

5.1. Lemma. [4, 6.8]. Suppose that $f: G \to R^n$ is a non-constant quasiregular mapping and F is a compact set in B_t such that $H^{\alpha}(fF) > 0$. Then

$$
\alpha < n \left(\frac{K_I(f)}{\inf\limits_{x \in F} i(x \, , f)} \right)^{1/(n-1)}
$$

5.2. Lemma. Let $f: G \to R^n$ be K-quasiregular, $x \in G$ and $i(x, f) \leq m$. Then there exist constants c, $c^* \in (0, 1)$ depending only on n, K and m, and $r_x>0$ so that if $r \in (0, r_x]$ and $l_x^* = l^*(x, f, r)$, then

(i) $U(x, f, r)$ is a normal neighborhood of x and
(ii) $U(x, f, c r) \subset B^n(x, c^* l^*_x)$.

Proof. By [6, 4.5] the linear dilatation $H(x, f) \in (0, \infty)$ has an upper bound $H < \infty$ in terms of n, K and m. Put $c = (1/2)(H + 1)^{-1}$. By [6, 2.9] we can choose $r_x > 0$ such that if $0 < r \leq r_x$, then $U(x, f, r)$ is a normal neighborhood of x and

(5.3)
$$
l(x, f, l_x^*) \geq \frac{L(x, f, l_x^*)}{H + 1} = 2 c r,
$$

where $l^*_x = l^*(x, f, r)$. Let $r \in (0, r_x]$ and l^*_x be as above. Let $t \in (0, 1)$ such that $L^*(x, f, c r) = t l_x^*$. Let Γ be the path family joining el $U(x, f, c r)$ to $S^{n-1}(x, l^*_x)$ in $B^n(x, l^*_x)$. Then by the outer dilatation inequality $[6, 3.2]$ and (5.3)

$$
(5.4) \quad M(\Gamma) \leq N(f, B^n(x, l^*)) K_0(f) M(f) \leq m K \omega_{n-1} (\log 2)^{1-n}
$$

Because cl $U(x, f, c r)$ is connected and $d(S^{n-1}(x, l_x^*))$, cl $U(x, f, c r)$ = $(1-t) l_x^*$, then by [10, 11.9]

$$
(5.5) \t\t\t M(\Gamma) \geq \varkappa_n \left(\frac{1-t}{t} \right) > 0
$$

where $\varkappa_n: (0, \infty) \to (0, \infty)$ is a decreasing function and $\varkappa_n(r) \to \infty$ as $r \to 0$. By (5.4) and (5.5) $t \leq c^* \in (0, 1)$, where c^* depends only on n, K and m . The lemma is proved.

5.6. Lemma. Suppose $f: G \to R^n$ is K-quasiregular, $x \in B_f$ and $r > 0$ such that $U = U(x, f, r)$ is a normal neighborhood of x. Then $\sigma(f(U \cap B_i)) \geq s' > 0$, where s' is a constant depending only on n, K and $i(x, f)$.

Proof. Assume that the lemma is false. Then for some $K \geq 1$ and $m \geq 2$ there exists a sequence of K-quasiregular mappings $h_i: G_i \to R^n$ with $z_i \in G_i$ and $\delta_i > 0$ such that

- (i) $i(z_i, h_i) = m$
- $U_i = U(z_i, h_i, \delta_i)$ is a normal neighborhood of z_i , (ii)
- for every $i \in N$ there is $y_i \in h_i U_i$ so that (iii) $\lim_{i\to\infty} \sigma(y_i\,,\,h_i(U_i\cap B_{h_i})) = 0.$

Put $f_i = h_i | U_i$, $i \in N$. We may assume

(5.7)
$$
\sigma(y_i, f_i B_{f_i}) < \frac{1}{i} \text{ for every } i \in N.
$$

Because $N(f_i, U_i) = i(z_i, f_i) = m$, then

$$
m \geq p = \limsup_{i \to \infty} \text{card} \left(f_i^{-1}(y_i) \right) \geq 1 \, .
$$

By passing to a subsequence, if necessary, we may assume $p = \text{card}(f_i^{-1}(y_i))$ for every $i \in N$. Furthermore, $i(x, f_i) \leq m$ if $x \in f_i^{-1}(y_i)$ and $i \in N$.

Fix $i \in N$ and consider the mapping $f_i: U_i \to R^n$. Put $r'_i =$ $\min\{r_x \mid x \in f_i^{-1}(y_i)\} > 0$, where $r_x > 0$ is as in Lemma 5.2. By (5.7) we can choose $r_i \in (0, r'_i)$ such that

(5.8)
$$
\sup \left\{ \frac{1}{r_i} d(y, f_i B_{f_i}) \mid 0 \le |y - y_i| < r_i \right\} < \frac{1}{i}.
$$

Then $U(x, f_i, r_i)$ is a normal neighborhood for every $x \in f_i^{-1}(y_i)$ and

(5.9)
$$
f_i^{-1}B^n(y_i, r_i) = \bigcup_{x \in f_i^{-1}(y_i)} U(x, f_i, r_i).
$$

Put $l_x^* = l^*(x, f_i, r_i)$, $x \in f_i^{-1}(y_i)$. By Lemma 5.2 and the choice of r_i (5.10) $f_i^{-1}B^n(y_i, c r_i) \subseteq \bigcup_{x \in f_i^{-1}(y_i)} B^n(x, c^* l_x^*)$

where constants $c, c^* \in (0, 1)$ depend only on n, K and m. Let $T_i: B^n(y_i, r_i) \to B^n$ be the mapping $z \mapsto (1/r_i)(z-y_i)$. For every $x \in f_i^{-1}(y_i)$ define the mapping $g_i^* : B^n \to B^n$ by $g_i^*(z) = T_i \circ f_i(x + l_i^* z)$, $z \in B^n$. Say $f_i^{-1}(y_i) = \{x_1, ..., x_n\}$. Set

$$
A_k = B^n(2 k e_1, 1), \quad k = 1, 2, ..., p, \quad \text{and} \quad A = \bigcup_{k=1}^p A_k,
$$

where e_1 is the first coordinate unit vector of $Rⁿ$. Finally, define $g_i: A \to \overline{B^n}$ by $g_i(z) = g_i^{*k}(z - 2 k e_1)$ if $z \in A_k$, $1 \leq k \leq p$. Then g_i is K-quasiregular in each A_k . Furthermore, by the definition of g_i and (5.10)

(5.11)
$$
B^{n}(c) \cap g_{i}B_{g_{i}} = T_{i}(B^{n}(y_{i}, c r_{i}) \cap f_{i}B_{f_{i}})
$$

$$
g_{i}^{-1}B^{n}(c) \subset \bigcup_{k=1}^{p} cl B^{n}(2 k e_{1}, c^{*})
$$

and, in particular, (5.8) implies for $y \in Bⁿ$ and $i \in N$

 (5.12) $B^{n}(y,1/i) \cap g_{i}B_{g_{i}} \neq \emptyset$ whenever $B^{n}(y,1/i) \subset B^{n}(c)$.

Now, consider the sequence $g_i: A \to B^n$, $i \in N$. Since $\{ g_i | A_k | i \in N \}$ is a normal family for every $k = 1, ..., p$ by [7, 3.17], $\{g_i \mid i \in N\}$ is also a normal family, and there is a subsequence, denoted again by $\{g_i\},$ which converges uniformly in compact subsets of A to a mapping $g: A \to B^*$. By [9, p. 664] g is K-quasiregular in every A_k .

Consider any $w \in Bⁿ(c)$. By (5.12) we can choose

$$
w_i \in B^n(w \, , \, 1/i) \, \cap \, g_i \, B_{g_i} \, \subseteq \, B^n(c)
$$

for every $i \in N$, $1/i < c - |w|$, and for each such w_i we choose $w_i^* \in B_{\varepsilon} \cap g_i^{-1}(w_i)$. Then by (5.11) and by passing to a subsequence, if necessary, we may assume $w_i^* \to w^* \in A_k$. Because every $w_i^* \in B_{g_i}$ and $g_i \rightarrow g$ uniformly in compact subsets of A_k , $w^* \in B_g$ by Lemma 4.1. Thus $g(w^*) = \lim_{i \to \infty} g_i(w_i^*) = \lim_{i \to \infty} w_i = w$.

So $w \in gB$. It implies $B^n(c) \subset gB_g$. This is a contradiction, since $m(qB_s) = 0$ by [6, 2.27]. The lemma is proved.

5.13. Theorem. If $f: G \to R^n$ is K-quasiregular, then

$$
\dim_H (f B_t) \leq c' \, < \, n \, ,
$$

where the constant c' depends only on n and K .

Proof. We may suppose that $f: G \to R^n$ is non-constant. Let $m_K = K n^{n-1}$ and define $F = \{x \in B_f | i(x, f) \ge m_K \}$. Then F is closed in G and by Lemma 5.1 it is easy to see that

$$
\dim_H F \,\; \leq \,\, n \left(\frac{K}{m_K} \right)^{1/(n-1)} \,\; = \;\; 1 \, < \, n \,\, .
$$

On the other hand, by Lemma 5.2 and Lemma 5.6 the set $B_f \setminus F =$ $\{x \in B_f \mid i(x, f) < m_K\}$ can be covered by countably many normal neighborhoods U such that $\dim_H(f(U \cap B_j)) \leq c'' < n$, where the constant c'' depends only on n , K and m_K . This proves the theorem.

References

- [1] BEARDON, A. F.: On the Hausdorff dimension of general Cantor sets. Proc. Cambridge Philos. Soc. 61, 1965, 679-694.
- EGGLESTON, H. G.: Sets of fractional dimensions which occur in some problems $\lceil 2 \rceil$ of number theory. - Proc. London Math. Soc. (2) 54, 1951, 42 - 93.
- GEHRING, F. W., and J. VÄISÄLÄ: Hausdorff dimension and quasiconformal $[3]$ mappings. - J. London Math. Soc. (2) 6, 1973, 504 - 512.
- MARTIO, O.: A capacity inequality for quasiregular mappings. Ann. Acad. $[4]$ Sci. Fenn. Ser. A I 474, 1970, 1-17.
- MARTIO, O, and S. RICKMAN: Measure properties of the branch set and its $\lceil 5 \rceil$ image of quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I 541, $1973, 1 - 15.$
- MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Definitions for quasiregular map- $\lceil 6 \rceil$ pings. - Ann. Acad. Sci. Fenn. Ser. A I 448, 1969, 1-40.
- Distortion and singularities of quasiregular mappings. Ann. Acad. \longrightarrow $\! ^{[7]}$ Sci. Fenn. Ser. A I 465, 1970, $1-12$.
- RESETNJAK, JU. G.: Отображения с ограниченным искажением как экстремали $\lceil 8 \rceil$ интегралов типа дирихле. - Sibirsk. Mat. Ž. 9, 1968, 652 - 666. Translation: Mappings with bounded deformation as extremals of Dirichlet type integrals. - Siberian Math. J. 9, 1968, 487-498.
- О множестве точек ветвления отображений с ограниченным искажением. $\lceil 9 \rceil - \nu$ – - Sibirsk. Mat. \check{Z} . 11, 1970, 1333 – 1339. Translation: On the set of of branch points of mappings with bounded distortion. - Siberian Math. J. 11, 1970, 982 - 986.
- [10] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 23 May 1975