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ON THE IWASAWA INVARIANTS OF
IMAGINARY ABELIAN FIELDS

TAUNO METSANKYLA

1. Introduction

Let E be an absolutely abelian number field and let p be a prime.
A Galois extension of E is called a Z, -extension if its Galois group is
isomorphic to the additive group of Z,, the ring of p-adic integers.

Fix a natural number m not divisible by p». For n = 0, denote by
F, the cyclotomic field of m q p"th roots of unity, where ¢ = p if p > 2
and ¢ =4 if p=2.1If B =F,, then the union F_ of all the fields
F, is a Z,-extension of E .More generally, if £ is a subfield of F, with
conductor m or mq , then there exists a unique Z,-extension K of #,
called the basic Z,-extension, which is contained in F_ .

Denote by A = A(E) and u = w(E) the Iwasawa invariants of K,
i.e. the Iwasawa invariants of the basic Z,-extension E_[E . It is well
known that 42 and u are non-negative integers having the following con-
nection with the class numbers h, of the intermediate fields £, of K
and E_:if [E,:E] = p and if the highest power of p dividing &,
is p™ | then, for all sufficiently large =, e(n) is of the form
An + pup* + v, where » is also an integer independent of 7 . Iwasawa
[9] has conjectured that u = 0 for every K and p; the conjecture has
been proved by B . Ferrero in the cases p = 2 and p = 3 (as yet un-
published).

In what follows we shall assume that K is imaginary, and put
A=At + A, u=put + u, where A* and u* are the Iwasawa in-
variants of the maximal real subfield of E . Thus, if p“® denotes the
highest power of p dividing the first factor of the class number of H, ,
we have a(n) = A~n + pu~p* + v~ (v~ an integer) for all large = .
While the normal approach to 4 and u is via the general theory of Z,-
extensions (see [6], [10]), there is also another way of introducing A~ and
u~, namely the use of Iwasawa’s theory of p-adic L-functions (see [7]).
This method has been applied by Iwasawa [8] in case B = F,. In the
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present note we shall first apply the same method to the case of a general
E and an arbitrary odd prime p , and show the existence of the invariants
= and u~ as sums of certain components which arise naturally from
considering the characters of K . Furthermore, using results from [11] we
shall obtain immediately a criterion for the vanishing of = . This criterion,
together with some facts proved essentially in [11], will then be applied to
give a relationship between the invariants A~ and u~ of two abelian
fields of a certain type.

2. Characters and p-adic L-functions

Throughout the following, let » be a fixed odd prime. As usual, let
Z, Q, Z,, and Q, stand for the ring of rational integers, the field of
rational numbers, the ring of p-adic integers, and the field of p-adic
numbers, respectively. Denote by |.| the p-adic valuation on a fixed
algebraic closure 2, of Q,.

Let x be a Dirichlet character. We shall always assume that y is
primitive, and denote its conductor by f, . Let U(f) denote the group of
all characters y with f |f.

Suppose that m is a natural number prime to p . For each n =0,
denote by @, the multiplicative residue class group mod m p**! , consisting
of all elements o,(a) = a + mp"™' Z, where (a,mp) = 1.1t is known
that G, = 4, x I, (direct product), where
4, = {o,a)| a7t =1 (modp"™)},

n

' = {oa)] a=1 (modmp)}

(see e.g. [5], pp. 78— 81, [8], p. 67). From this it follows that
Ump"*') = Ump) xT,,

where 7', is the group of all characters x satisfying the conditions f, | p"*!
and z(a) = 1 whenever o,(a) € 4, . Usually the elements of U(m p) and
T, are called characters of first and second kind, respectively. Note that
T, is a cyclic group of order p* .

The unit group of Z, can be written in the form V X D, where V
is the group of all (p—1)st roots of unity and D the group of principal
units. For any p-adic unit @, let w(a) denote the projection of a on V
under this decomposition. Then o can be regarded, in an obvious manner,
as a character with order p—1 and conductor p. In particular,
w e U(mp).

Now let L,(s; ) be the p-adic L-function for an even character
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% € U(m p"*1) . For our purposes it suffices to consider the value of L,(s; %)
at s = 0; a well-known formula ([8], p. 30) asserts that

(1 L0 %) = —(1 = (xo™)(®) Bilx ™),

where B,(y) denotes the first generalized Bernoulli number belonging to
the character y. Put y =60z with 0 e Ump) and = €T, ; then
Jo = my or myp with m, [m . Let K be a finite extension of Q, in
2, , containing the numbers 0(a) for all a € Z , and let o be the ring of
local integers in K . It follows from Iwasawa’s theory of p-adic L-functions
that

(2) L0 x) = 2fx(l + myp)™ — 1;0)

([8], p. 87), where f(x;0) is a certain power series with coefficients in
o,if 0 # g, (i.e., 0 is non-principal), and f(x; y,) is a quotient of two
such power series.

3. The invariants A~ and x~ of imaginary abelian fields

Let £ /Q be a finite imaginary abelian extension. When investigating
the invariants 2~ and u~ of the basic Z, -extension £ _/E we may assume
without loss of generality that the conductor of £ is of the form m or m p .

Let Iy, Fy,... denote the cyclotomic fields defined in the introduction.
We shall identify Gal (#,/ Q) , the Galois group of F,/ Q , with the group

G/, in the usual manner. Then

Gal(F, | Fy) = I,, Gal(F,/Q) = G, = 4,.

n

Moreover, the character group Ch (#,) belonging to the extension
F,1Q is Ump).
Put Y = Ch () and note that Y is a subgroup of U(m p) . Let

E =E CEC..CE C..

be the infinite tower of fields determining the Z,-extension E_/E . Then
we have Gal (B, |E) ~ I', and

Fn=FOE”’ E=F00En

for every n = 0. Hence Gal (¥, E,) is a subgroup of 4, and it follows
easily that
ChE,) =Y xT,.
Now let

X = XB) = {0o| 0¥, 0 £ o},



346 TAUNO METSANKVTA

where by Y~ is meant the subset of Y consisting of all odd characters.
Note that the set X is empty if and only if £ is the cyclotomic field of
3rd roots of unity. Let %, and %, denote the class numbers of £, and
its maximal real subfield, respectively. We shall prove the following lemma
on hy =h,|h!.
Lemma 1. Put
Afw) = T flx;0);
be X
then

lhy [he| = [TTAC-1)| (o =1),
lew,
where W, denotes the set of all p*th roots of unity except 1.
Proof. We start from the formula ([4], p. 12)

Ty

1
h, = annH<—27§1a x(a)) (n =0),

where @, =1 or 2, w, is the number of roots of unity in £, , and the
product is extended over all odd characters y in Y X7, . Let us fix
a generator m, of 7', . Noting that

Ty

[0 > ay@ = By

a=1

(see e.g. [8], p. 14) we then obtain

p—1
(3) [ by [ by | = {(wn/wo)eny_klel(—%Bl(Gﬂﬁ))l (n =1).

Consider a character y = fwan® with 6 e Y, 1 <k <p—1. We
have x(—1) =1, (yo)(p) =0 and f,, = m, or m,p, where my| m .
Hence, by combining (1) and (2) we find that

— Bifm) = 2f(,~1;00) (& = 7z, (1+mp)™H).

It is easy to see that {, ranges over W, as k runsthrough 1I,.. p"-1.
Thus (3) becomes
(4) [ by | = | (w,fwe) T T f(C=1:00) | (0 =1).

e Y~ L‘eWn

Now we have to distinguish between two cases, according to whether £
contains the pth roots of unity or not.

Assume first that W, CE . Then w € Y~ and the right hand side of (4)
contains the factor

| I fC=15 %) = [p[™

leW,
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([8], p- 92). On the other hand, w, = w, p*, so that the assertion of the
lemma follows.

If W, is not contained in K, we have wé¢ Y~ and w, = w,. Thus
our assertion is immediate from (4).

Remark 1. If JA(C-1)] <1 for some (e W,, then [4(0)] <1 and
so |[A((—1)] <1 for every ¢ € W, . Consequently, it follows from Lemma
1 that

(i) p divides A,/ h; (n = 1) if and only if p divides hy /by ;

(i) if p divides h, [k, (n =1), then p* divides h,/hy .

In particular, if m = 1 (i.e., £ is a subfield of the cyclotomic field of
pth roots of unity), then an obvious modification of the proof of Lemma 1
leads to the formula

by = | I A(C-1)| (nz=0),

tew, U1}
so that we obtain the following simpler results:
(i) p |k, ifand only if p | Ay ;
@) if p |k, , then p"*'| A, .

n

Another proof for (i') and (ii’) has been given by Adachi [1].

Now suppose that the field K associated with the power series f(x; 0)
is the extension of Q, generated by all numbers 6(a), where 6 € X(X)
and a €Z . Let e denote the ramification index of K | QP, let =@ be
a fixed prime element of the ring o, and let p = 7o .

Lemma 2. For 0 € X(H), define non-negative integers 2, = Ay(H)
and  py = py(E) by

0

f@;0) = a" > aab (% €0),

k=0

o, = 0 (modyp) for 0 <k < 2,,

o, = 0 (modp) for k= 12,.
Then the numbers

Am =20y, po= et
0eX be X
are the invariants A~(E), w(E) of the extension E_ | K .
Proof. We have
A@) = I f(x;0) = a% B,
beX
where

B@) = 2 p@* (B €0)

0

M
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with f, =0 (modyp) for 0 <k < A~ and f, 20 (modyp) for £ = A~.
Let ¢ be the least non-negative integer such that e - < (p—1)p'.
Assuming that » > ¢ and ¢ e W, — W,_, we then find that |7| < [{—1/"
and so, furthermore,

A=D1 = [=* B(¢=1)| = [p"||{-1]".
This together with Lemma 1 yields
ol = 1p"",  aln) = et pr oy (n>1),

where »~ is an integer independent of = .

Remark 2. Suppose that F C E’', where E’ is abelian with conductor
m’ or m'p, m’ being prime to p. Then X(¥) C X(£’). Therefore, if
0 € X(B) then A,(F) = 2,(E') and e u,(E) = e u,(E'), where ¢ is the
ramification index of the extension K’/ Q, determined by X(&').

It should be noted that the numbers 2,(F,), uo(#,) have been in-
troduced and investigated by the author in [11]. (Cf. [11], Remark (ii) of
Section 4.)

4. On the vanishing of A~ and u—

As an immediate consequence of Remark 1 we may state that the
condition

(5) = =0

is equivalent to (p,hy/hy;) = 1, and if m =1, (5) is equivalent to
(p,hy) = 1.Thelatter statement is also implied by the following stronger
result, proved essentially in [11] (Lemma 2): for 0 = o* e X(¥),
Ao(E) = po(E) = 0 if and only if the wth Bernoulli number B, is prime
to p. Indeed, if m = 1 then (p,h;) =1 is equivalent to the fact that
the numbers B, are prime to p whenever w* € X(#) (see [2], [1]).

We shall now give a general criterion for the vanishing of u,(#). For
n =0, let y,(a) be the projection of o,(a) on I’ under the direct de-
composition @, = 4, x I',, so that y (a) runs through the elements of
I, ,say ¢, (k=0,.,p"—1),as o,(a) runs through G, . For 0 € X(X),
put

m[,n+l pr—1
Eu = - (2 mpn+1)_l Z a 9((1/) wﬁl(a’) ’yn(a)VI = z Snk gnk .
a=1 k=0
(a,mp) =1

We know that &, belongs to the group algebra o[I’], i.e. the numbers
S, = 8,,0; E) belong to o, and that &, ,+ £, under the morphism
o[ I, 1] = o[l,], induced by o, ,(a)—o,(a) ([8], pp. 72—76). Let R
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denote the inverse limit of the po[/] with respect to these morphisms.
Then & = lim &, is a well-defined element of R and closely connected with
the power series f(x;0) €o[[x]] . Indeed, & is the image of f(x; ) under
the unique isomorphism 7 :o[[x]] — R, determined by the condition
7(1+2) = lim y,(1+m p). This enables us to formulate the following
lemma (see [11], Lemma 5).

Lemma 3. A necessary and sufficient condition for w, (H)> 0 is that

(6) S0 E) = 0 (modyp)

for all m =20 and all kel, ={0,..,p"—1}.

From this it is seen that u—(F) > 0 if and only if there is at least one
6 € X(H) such that the infinite system of congruences (6) is satisfied.

Remark 3. 1f 0 € X(E), then A,(E) = p,(£) = 0 is equivalent to the
condition S (0 ; ) # 0 (modyp). This is proved in [11] under the as-
sumption that the conductors of 6§ and 6 w=! are equal to m p . However,
this restriction is unnecessary, since an inspection of the above isomorphism
7 shows that, in any case,

f(050) = S0 B).
Remark 4. A sufficient condition for u,(#)> 0 is that
Snk(e ) = SnO(O ; E) (mod P)

forall » =1 and all k€1, , as can be verified in the following way. By
considering the morphism o[/, ;] —0[/],] mentioned above one finds
that

Snk = ZS11+1,}L’
h

the sum being extended over those h e, , for which ¢, ¢, .
Obviously, the number of such A is p, so that

S, = Z:Snﬂ,o = pS,;1 = 0 (modyp) n=0,kel).

For the rest of this section we assume that m = 1 and p > 3. Denote
by P the cyclotomic field of pth roots of unity; then

XP) = {o*| u=24 .,p—3}

and K is a subfield of P .

We shall introduce some further notation. Let s = (p—1)/2, let r
be a primitive root mod p**! for all » >0, and let r,(:) be the least
positive residue of 7 (mod p”*'). Denote by o the primitive (p—1)st
root of unity satisfying

w(@) = o«  for a=r" (modp).
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For rational integers A and wu , put

R, ( z (@p" + h)a (n =0).

Then we have the following supplement to Lemma 3.
Lemma 4. If ECP and o*eX(l), then

— 29" S (w; B) = R(k,u)o!* P  (n=0, kel),),
provided the elements g,, of I', are suitably ordered.

n

For the proof, see [11], proof of Lemma 8.
It will be useful to notice that R, (h,u) satisfies the conditions

(M) Rh,u) = 23 r(ip + el — 2 (1 - a7

(h,u)a/“ Y = R(g,u) for h = jp»+ g (mod(p—1)p").

5. An example: the invariants of a quadratic field

Let E = Q((—3)"%)) and p> 3. Then X(X) contains only one
element, namely 6w , where 0(a) = (a/3) (the Legendre symbol). Hence,
in this case o = Z,. Moreover,

W(E) = XQ) = 0, wr(E) = Q) = 0

(6], p. 225) and so A(H) = A(B) = A, (E), wl) = pu (B) = p,(E) .
We shall first employ Lemma 3 to prove that u(#) = 0.
Now

Snk = - (6pn+1)_1 Z a ((1/3) s

where the summation is extended over the values of a satisfying the con-
ditions 1 <a < 3p"™', (a,3p) =1, v (@ '=g,. Let ¢, () and
¢,2(%) be positive integers less than 3 p"*! such that

euli) = (i) = 7 (mod p™*1),
c,1(t) = 1, c(i) = —1 (mod 3).
Then 4, can be written in the form
= {o,a) ]| a =c, (") or a =cu(p"), 1 = 0,..,p—2}.

After a suitable rearrangement of the elements ¢,, of I, we therefore get

Sy = — (8" Z[cmp + k) — c (i p* + k)] .



On the Iwasawa invariants of imaginary abelian fields 351

Furthermore, ¢, (tp* + k) — c,o(ip* + k) = + b, p""', where each b,
isequal to 1 or 2 and, asis easy to see, b, = b, . Hence

s—1 s—1

1=0 1=0

Now, if x> 0 then Lemma 3 shows that all the numbers S, vanish.
But this would imply that f(x ;6 w) = 0, which is impossible by Lemma 1.
Consequently, u = 0.

We are also able to determine those primes p for which 1 = 0. In
fact, using (2) and (1) we may calculate f(0;60w) as follows:

f0500) = FL,(0;600) = —§(1 = (p/3) Byf) = (1 — (p/3))/6.

From this we infer that 2 = 0 if and only if p = 2 (mod 3) .
We note that the Iwasawa invariants of imaginary quadratic fields
have been examined by Gold in several papers (e.g. [3]) .

6. A relationship between the invariants of certain fields

Let »p > 3 and let / be a prime, /=1 (mod p) . From now on, we
shall assume that F is the abelian field with conductor /p , which is of
degree p over P .

Put ¢ = ({-1)/p and denote by u a generating character mod /.
Then

Ch(B) = {y"0"| 0 <v<p-1,0=u<p-2}
and so
XE) = {y"0" | 0 Zv<p-1, 2 <u <p-3, 2|u)}.

It follows from [11] (Lemma 10) that if y = 3" 0" € X(H) — X(P), then

Sy B) =

9 s—1 .
Y S i B = i+ k- 4 (mod )
1=0

n=0, kel)), where d, is defined by /= r,/(d,) (modp"*!). This
result expresses a certain connection between the u—-invariants of E and
P . In fact, we may formulate the following theorem, the first part of which
is essentially proved in [11].

Theorem. (i) If py(P)>0 for some 6 = e X(P), then
u(E) > 0 for all y = " o* € X(K) .

(i) Suppose that 1 =1 (modp? . If p(E)> 0 for some y =
Y o e X(B) — X(P), then uy(P)>0 for 0 = .
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Proof. For the proof of (i), see [11], proof of Theorem 3. We shall now
prove (ii). Using Lemma 3 we get that

Su(y” w5 B) = 0 (modp)
whenever n > 0 and k € I, . This implies, by (9), that

z Zp +k i(u—1) EZ Zp —f‘k—d)lu 1) (modpn+2)

for all these n and k. In view of (7) and (8) it then follows that
(10) R.(h,u) = R,(h—d,,u) (modp"?)
forall » = 0and all heZ .
Since /=1 (modp), we have r,(d,) =1 (modp) and so d, is
divisible by p—1 (n = 0). On the other hand, / # 1 (mod p?) so that

d, is not divisible by p for m» = 1. Let us fix some n =1 and some
kel,. Let z satisfy the congruence d,z =k (mod p*). Then

k = kp"+d,z (mod (p—1)p")
and therefore, by (8),
R, (k,u) oV = R/(d,z,u).
Combined with (10) this yields
R (k,u)e** Y = R (0,u) (modp"*?).
We now apply Lemma 4 to rewrite the last congruence as
Spulw s P) = S0 : P) (mod p).

Because this holds for all » =1 and ke, , our assertion follows from
the result stated in Remark 4.

Corollary. (i) If p=(P)> 0, then pu(K) > 1.

(ii) Provided that [ =1 (modp?), if w (P)=0 then pu (K) =20
and A~(E) = (p—1) (p—3)/2

Proof. For (i), it is enough to apply part (i) of the theorem to

p(B) = p(P) + e Z u,(F)-
1eX(E

To establish (i), let w=(P) = 0. Then the result w (#) = 0 is im-
mediate from part (i) of the theorem. Moreover, since d, = 0 (mod p—1)
it follows from (9) that Sy(y; B) = 0 (mod p) forevery y € X(#) — X(P).
But u,(H) = 0 and so the result of Remark 3 tells us that 1,(%) > 0.
Accordingly, A~(#) is greater than or equal to the number of elements of
X(E) — X(P), as was to be proved.

n
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The above result that u=(P) = 0 implies u(H) = 0 follows also
from a more general result proved by Iwasawa ([9], p. 10) by another
method.

As pointed out in [11], it follows from part (i) of the theorem that
p~(P) > 0 implies the existence of Z,-extensions F_/F, with arbitrarily
large p~ . Similarly, if u=(P) = 0, part (ii) gives us Z,-extensions F_[F,
with arbitrarily large A-. It also gives, for every regular prime p , in-
finitively many basic Z,-extensions E [E with u= =0, A= > 0.
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