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HAUSDORFF DIMENSION AND EXCEPTIONAL
SETS OF LINEAR TRANSFORMATIONS

R. KAUFMAN and P. MATTILA

1. Introduction. Let m and n be positive integers with m < »n and
let O*(n ,m) be the set of all orthogonal projections of R" onto R™ (see
[3, 1.7.4]). A linear mapping p: R*— R” belongs to O*(n,m) if and
only if p maps the orthogonal complement of ker p isometrically onto
R . Considered as a subset of the space of all linear mappings of R* into
R ,which is denoted by Hom (R* , R”) and identified with R*» , O*(n , m)
has positive and finite m (2% — m — 1)/2-dimensional Hausdorff measure
(see [3, 3.2.28(5)]). It was proved first in [5] for m = 1, n = 2 and then in
[8] for general m , n that if K is a Borel (or, more generally, Suslin) set
in R* with dimE =s <m, then dimp(H) =s for sstmE—m=32
almost all p € O*(n , m). Here dim means Hausdorff dimension and #*
is the ¢-dimensional Hausdorff measure. In [6] an example of a compact
plane set was given such that the corresponding exceptional set of projec-
tions has positive Hausdorff dimension. In this paper we shall show that
the number s 4+ m (2n — m — 3)/2 is the best possible upper bound for
the Hausdorff dimension of the exceptional set. We shall also indicate
how the result mentioned above can be generalized to a larger class of sets
of linear transformations.

2. Preliminaries. Besides what is presented in the introduction, we
shall use the following notation: The orthogonal group of R* is denoted by
O(n) . The Grassmann manifold of all m-dimensional linear subspaces of
R» is G(n,m).For V eG(n,m), P, is the orthogonal projection of R”
onto V and V1 is the orthogonal complement of V . If f e Hom (B*, R™) ,
then

| = max{|f@)]|: xSy,
(f) = min{ |[f@2)|: v eS8 (ker f)t}
and r(f) is the rank of f.
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There exists a positive number ¢ depending only on m with the
following properties:

21. If V, WelGn,m) and |w — P,(w)| < 6 |w| for we W , then
Py — Pyl <cd.

2.2. If f, geHom (R*, R") and r(f) = r(g), then

Uf) le = Peo )| < [f(2)] for xR,

US) Prers — Prerdll < cllf — gl .

One can prove 2.1 by choosing an orthonormal base { w,, ..., w, } for
W and by constructing an orthonormal base { v, ..., v, } for V such that
lv, — w,| < ¢ 6 where ¢ depends only on m . The first inequality in

2.2 is an immediate consequence of the definition of /(f) , and the second
follows from the first and 2.1.

The metric d and Hausdorff measures on G(n,m) are defined via
the identification used in [3, 3.2.28]. The inequalities [9, Chapter I, 12 (17),
15 (7)] and 2.1 imply that there is a positive number b such that

LAV, W) < |Py — Pyl < bd(V, W)

for V., W € G(n,m) . Therefore, for the purposes of this paper, we could
as well identify V e G(n,m) with P, .

3. Proposition. Let k and n be positive integers and let M
be a Borel set in Hom (R*, R¥) . For x €8" ' denote

M, = (feM: f) = 0}.

Suppose that there exist real numbers ¢ > 0, C >0 and v >0 and that
to each g € O(n) corresponds a mapping A,: M — M such that the follow-
ing conditions are satisfied for all feM and g€ On):
(1) kerfegcC kerd,f,
2) [If=4,fll < C fIlMgn — gll, where 1pn s the identity mapping
of R*,
3) #'(M,) < C for all xS,
4 #{HW eM,: ||h —hl||<r} = cr foral xS, heM, and
0<r<1.

If E is a Suslin set in R* and dim B = s, then dim f(¥) = s for
AT almost all fe M .

Since dim f(#) = s, if kerf = 0, we may assume that kerf # O
for fe M . Further, since

C s

M {0} = N, where N, = {feM: Uf) > 1), Ifll < j},

1
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it is sufficient to prove that dim f(H) = s for #°"" almost all fe N, for
all j . The proof of this fact is almost identical with that of Theorem 5.6(b)
in [8]. Indeed, after fixing j we only have to verify the following analogue
of the formula (1) occurring in the proof of Lemma 5.5 in [8]:

There exists a positive number ¢, such that if feN,, xesS" !,
>0 and |[f(x)] <O, then ||f — h| <c¢, 0 for some helM, .

To see this, take z € 8" ! N ker f such that [P ;(®)]|z = P, ().
Then |r—z| <250 by 2.2. Choose g €O(n) such that g(x) =2z and
e — gl = [e—2| . Then fg)) = 0, A,fe M, by (1), and
If — A, fl| < ¢, 0 with ¢, = 2520 by (2).

4. Remarks. One can often apply this proposition in the following
situation: To each pair of positive integers m , n, m < n, corresponds
a smooth submanifold M (n ,m) of some space Hom (R, R*) such that
M(n ,m), is isometric with M(n—1,m) for m <n and x €8*'. Then
the conditions (3) and (4) are satisfied with » = dim M(n—1,m) if
H'(Mn—1,m)) < oo and M(n—1,m) is ’sufficiently homogeneous”.
Such is the case if M(n,m) is O*n,m) or {P,: VelGn,m)}. In
the first case one can define 4, by A,p = pecg and in the second by
A, P, = P,y . Then all the assumptions are in force. If M(n ,m) =
Hom (R*, R™) , then (3) is false. However the proposition is true even in
this case, because all the assumptions hold with A4,f = fog for
M = {feHom (R*,R") : |f| <R} whenever 0 <R < 0.

The dimensions of the manifolds O*(n , m) , G(n , m) and Hom (R» , R™)
are m (2n —m — 1)/2, m (n—m) and mmn (see [3, 3.2.28(5)]), so that
the upper bounds for the dimensions of the exceptional sets are
s+m@2n—m—3)2, s+m(mn—m—1) and s + m (n—1), respec-
tively. We shall next show that these upper bounds may be attained. More
precisely, we shall prove

5. Theorem. If m and n are integers and s 1is a real number with
0 < s < m < n,then there exists a compact set E C R* suchthat dim B = s
and

dim{p e O*n,m): dimpH) <s} = s+ m2n —m — 3)/2,

dim{ Veln,m): dmP,( ) <s} = s+m(n—m—1),

dim { f € Hom (R* , R™) : v(f) = m, dimf(#) <s} = s+ m((n—1).

The following lemma is an immediate consequence of [3, 2.10.25]:

6. Lemma. If X and Y are melric spaces, Y 1is o-compact,

F: X — Y isLipschitzian, @ + BC Y , 0 <v << o0 and #"(F{y}) > 0
for y e B, then dim F-Y(B) > dim B + ».



390 R. KAUFMAN and P. MATTILA

Proof. We may assume that Y is compact. If ¢ > 0, it follows from
[3, 2.10.25] that for a positive number ¢

f W FAy) Anty < AP EB) .

Hence #'*"(F-1(B)) = 0 implies #*B) = 0, which means that
dim F-Y(B) > dim B + ».

7. Proof of Theorem 5. We begin with the case of G/(n,m) and assume
first that m = n—1. Let (N,) be a strictly and rapidly increasing sequence
of positive integers, e.g. N,,; > Nj, and let E be the set of all
(@, ..., x,) € B* such that

-1 <a <1, [N < N7 forl<j<n, k=1

(For a real number ¢, |/t is the distance from ¢ to the nearest integer.)
Then dim E = s. This follows from [2, Theorem 10]. The method goes
back to Jarnik [4], and a similar problem occurs in [7]. (For further in-
formation on number-theoretic methods, see [1] and its bibliography.)
For y = (1,4, ...,y,) we denote by 7', the orthogonal projection from
R* onto the orthogonal complement of y . We shall show that

dim{y: dm 7T (B) < s} = s,
which is equivalent with
dim{V eGn,n—1): dmP,(B) < s} = s.

Fix 6> 0 and let A; be the set of all v = (1, %,, ..., y,) such that
for arbitrarily large k there is an integer H for which k < H < N}™°
and ||H y|| < HN;"* for 2 <j <n. Using [4, Satz 4] or [7], one
finds that dim 4; > s (1 —0) . Since s (1—0) —s as 0 — 0, it is sufficient
to show that dim 7 (¥) <s for y e d,.

Let y €4, and let & and H be as above. Choose integers b,, ..., b,
such that |Hy, — b| < HN;"* for 2 <j <mn and denote y* =
(L,byH, ...,b, HY). Then |y—y* < nDN;"*, whence ||T, — T, <
O() N;"* . (0O(1) stands for a constant independent of £.) Let v =
(vy, s v,)  Wwith each o, an integer and |y <N,. We write
v, = q, H + r,, where ¢; and 7, are the uniquely determined integers
such that 0 < < H . Then

v = (@ H,q.bp,....,010,) + (17,92 —q1 b5, ...,v, —q1b,) .

The first member on the right is parallel to y* , while the second takes at
most H (3 N,)"! = O(1) HN}™' values, when v varies. Hence also
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T,(N;'v) assumes at most O(1) H N;~' values, and, by the definition
of B, T,.(E) can be covered by that many balls of radius less than
O(1) N;** . Inasmuch as |7, — T, < O(1) N;"*, the same is true
for T (E) . For (n—0)s/n <o <s, HNy ' (N")* < N~ tends to
zero as k — oo ; hence #*(T,(H)) = 0 . Therefore dim T (H) < s, as
required.

We next assume that m < n—1 and proceed by induction on = .
So assume that there exists a compact set B C R*' with dim B = s
such that letting

A = {VelGn-1,m): dimP,H) < s},

we have dimAd = s+ m@n —m — 2). We identify R* ! with
{ (g, ..,2,) eR": 2, = 0}.Let G be the set of all V € G(n,m) such
that (2, ...,2,) €8" 1 AV implies |z, < 1/2 and define P: R* — R*!
by P(xy, ..., x,) = (¥, ..,2, ) and F: ¢ - Gn—-1,m) by F(V) =
P(V). Then F is Lipschitzian (this can be seen with the help of 2.1) and
F-V} is isometric with an open subset of G(m+1,m) for V eGn—-1,
m). Thus #"(FYV})>0 for VelGn-1,m), and Lemma 6
implies that dim F-Y(4) > dimd4 +m = s+ m(n —m — 1). Since
dim P, (E) < s for V e F-1(4), we have shown that the set

A, = {VeGn,m): dimP,(H) < s}

is of dimension s + m (n — m — 1) .
To treat the case of O*(n ,m), assume that £ and A; are as above
and denote

Ay, = {peO*n,m): dimpH) < s}.

Define F :O0*(n,m)— G(n,m) letting F(p) be the orthogonal comple-
ment of kerp. Then F is Lipschitzian by 2.2 and F-V} is isometric
with O(m) , whence #""~V(F-4V}) > 0,for V e G(n,m). Moreover
A, O F1(4,). Using Lemma 6 we infer dim 4, > dim FY4,;) >
dim A4, + m(m—-1)/2 = s+ m(2n —m — 3)/2. Thus dim 4, =
s+m(2n —m — 3)/2.

Finally we consider Hom (R» , B”) and set

Ay = {feHom (B*,R"): r(f) = m, dimf(H) < s}.

Let B be the set of all feHom (R*,R”) such that I(f)> 1 and
f=LoP, for some Veln,m) and some non-singular linear mapping
L: V — R» . Then V isuniquely determined by f; infact V = (ker f)*.
We define F: B— G(n,m) setting F(f) =V for f= LoP,.Then f
is Lipschitzian by 2.2 and F-YV} is isometric with an open subset of
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Hom (R” , R") for V eG(n,m), whence #"(F{V})> 0. Clearly
Ay DO FYA,). Therefore dim A; > dim F(4;) > dim 4, + m* =
s+ m(n—1) and dimA4; = s+ m(n — 1).
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