Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen l, I975, 387 -392

HAUSDORFF DIMENSION AND EXCEPTIONAL SETS OF LINEAR TRANSFORMATIONS

R. KAUFMAN and P. MATTILA

1. Introduction. Let m and n be positive integers with $m \leq n$ and let $O^*(n, m)$ be the set of all orthogonal projections of $Rⁿ$ onto R^m (see [3, 1.7.4]). A linear mapping $p: Rⁿ \to R^m$ belongs to $O[*](n, m)$ if and only if p maps the orthogonal complement of ker p isometrically onto R^m . Considered as a subset of the space of all linear mappings of $Rⁿ$ into R^m , which is denoted by Hom $(R^n$, $R^m)$ and identified with R^{nm} , $O^*(n, m)$ has positive and finite $m (2 n - m - 1)/2$ -dimensional Hausdorff measure (see [3, 3.2.28(5)]). It was proved first in [5] for $m = 1$, $n = 2$ and then in [8] for general m , n that if E is a Borel (or, more generally, Suslin) set in R^n with dim $E = s \leq m$, then dim $p(E) = s$ for $\mathscr{H}^{s+m(2n-m-3)/2}$ almost all $p \in O^*(n, m)$. Here dim means Hausdorff dimension and \mathcal{H}^t is the f-dimensional Hausdorff measure. In [6] an example of a compact plane set was given such that the corresponding exceptional set of projections has positive Hausdorff dimension. In this paper we shall show that the number $s + m (2n - m - 3)/2$ is the best possible upper bound for the Hausdorff dimension of the exceptional set. We shall also indicate how the result mentioned above can be generalized to a larger class of sets of linear transformations.

2. Preliminaries. Besides what is presented in the introduction, we shall use the following notation: The orthogonal group of $Rⁿ$ is denoted by $O(n)$. The Grassmann manifold of all m-dimensional linear subspaces of R^n is $G(n, m)$. For $V \in G(n, m)$, P_V is the orthogonal projection of R^n onto V and V^{\perp} is the orthogonal complement of V. If $f \in \text{Hom}(R^n, R^m)$, then

$$
||f|| = \max \{ |f(x)| : x \in S^{n-1} \},
$$

$$
l(f) = \min \{ |f(x)| : x \in S^{n-1} \cap (\ker f)^{\perp} \}
$$

and $r(f)$ is the rank of f.

doi:10.5186/aasfm.1975.0105

There exists a positive number c depending only on m with the following properties:

2.1. If V, $W \in G(n,m)$ and $|w - P_{\nu}(w)| \leq \delta |w|$ for $w \in W$, then $||P_v - P_w|| \leq c \delta$.

2.2. If f, $g \in \text{Hom}(R^n, R^m)$ and $r(f) = r(g)$, then

$$
l(f) |x - P_{\ker f}(x)| \le |f(x)| \text{ for } x \in R^n ,
$$

$$
l(f) ||P_{\ker f} - P_{\ker g}|| \le c ||f - g||.
$$

One can prove 2.1 by choosing an orthonormal base $\{w_1, ..., w_m\}$ for W and by constructing an orthonormal base $\{v_1, ..., v_m\}$ for V such that $|v_i - w_i| \leq c' \delta$ where c' depends only on m. The first inequality in 2.2 is an immediate consequence of the definition of $l(f)$, and the second follows from the first and 2.1.

The metric d and Hausdorff measures on $G(n, m)$ are defined via the identification used in [3, 3.2.28]. The inequalities [9, Chapter I, 12 (17), 15 (7)] and 2.1 imply that there is a positive number \bar{b} such that

$$
b^{-1} d(V, W) \leq ||P_V - P_W|| \leq b d(V, W)
$$

for V, $W \in G(n, m)$. Therefore, for the purposes of this paper, we could as well identify $V \in G(n, m)$ with P_V .

3. Proposition. Let k and n be positive integers and let M be a Borel set in Hom (R^n, R^k) . For $x \in S^{n-1}$ denote

$$
M_x = \{ f \in M : f(x) = 0 \}.
$$

Suppose that there exist real numbers $c > 0$, $C > 0$ and $v \ge 0$ and that to each $g \in O(n)$ corresponds a mapping $A_g: M \to M$ such that the following conditions are satisfied for all $f \in M$ and $g \in O(n)$:

(1) ker $f \circ g \subset \ker A_{\sigma} f$,

(2) $||f-A_{\varepsilon}f|| \leq C ||f|| ||\mathbf{1}_{R^n} - g||$, where $\mathbf{1}_{R^n}$ is the identity mapping of R^n ,

(3) $\mathcal{H}^{\nu}(M_x) \leq C$ for all $x \in S^{n-1}$,

(4) \mathscr{H}^{ν} { $h' \in M_{x}$: $||h' - h|| \leq r$ } $\geq c r^{\nu}$ for all $x \in S^{n-1}$, $h \in M_{x}$ and $0 < r < 1$.

If E is a Suslin set in R^n and, dim $E=s$, then $\dim f(E)=s$ for \mathcal{H}^{s+r} almost all $f \in M$.

Since dim $f(E) = s$, if ker $f = \emptyset$, we may assume that kerf $\neq \emptyset$ for $f \in M$. Further, since

$$
M \setminus \{0\} \ = \ \cup_{j=1}^{\infty} \ N_j \ , \ \ \text{where} \ \ N_j \ = \ \{ \ f \in M : \ l(f) \ > \ 1/j \ , \ \|f\| \ < \ j \ \} \ ,
$$

it is sufficient to prove that dim $f(E) = s$ for $\mathcal{H}^{s+\nu}$ almost all $f \in N$, for all j. The proof of this fact is almost identical with that of Theorem 5.6(b) in [8]. Indeed, after fixing j we only have to verify the following analogue of the formula (1) occurring in the proof of Lemma 5.5 in $[8]$:

There exists a positive number c_1 such that if $f \in N_i$, $x \in S^{n-1}$, $\delta>0$ and $|f(x)|\leq \delta$, then $||f-h||\leq c_1\delta$ for some $h\in M_*$.

To see this, take $z \in S^{n-1} \cap \text{ker } f$ such that $|P_{\text{ker } f}(x)| z = P_{\text{ker } f}(x)$. Then $|x-z| \leq 2 j \delta$ by 2.2. Choose $g \in O(n)$ such that $g(x) = z$ and $||\mathbf{1}_{p^n} - g|| = |x-z|$. Then $f(g(x)) = 0$, $A_s f \in M_s$ by (1), and $||\mathbf{1}_{R^n} - g|| = |x-z|$. Then $f(g(x)) = 0$, $A_g f \in M_x$ by (1), $||f - A_ef|| \leq c_1 \delta$ with $c_1 = 2j^2 C$ by (2).

4. Remarks. One can often apply this proposition in the following situation: To each pair of positive integers $m, n, m \leq n$, corresponds a smooth submanifold $M(n, m)$ of some space Hom $(Rⁿ, R^k)$ such that $M(n, m)$, is isometric with $M(n-1, m)$ for $m < n$ and $x \in S^{n-1}$. Then the conditions (3) and (4) are satisfied with $\nu = \dim M(n-1, m)$ if $\mathscr{H}(\mathcal{M}(n-1,m))$ < ∞ and $\mathcal{M}(n-1, m)$ is "sufficiently homogeneous". Such is the case if $M(n, m)$ is $O^*(n, m)$ or $\{P_v: V \in G(n, m)\}\$. In the first case one can define A_g by $A_g p = p \circ g$ and in the second by $A_{r}P_{V}=P_{g^{-1}(V)}$. Then all the assumptions are in force. If $M(n,m)=$ Hom $(Rⁿ$, $\overline{R^m}$, then (3) is false. However the proposition is true even in this case, because all the assumptions hold with $A_g f = f \circ g$ for $M = \{f \in \text{Hom}(R^n, R^m) : ||f|| < R \}$ whenever $0 < R < \infty$.

The dimensions of the manifolds $O^*(n, m)$, $G(n, m)$ and Hom (R^n, R^m) are $m(2n - m - 1)/2$, $m(n-m)$ and $m n$ (see [3, 3.2.28(5)]), so that the upper bounds for the dimensions of the exceptional sets are $s + m(2n - m - 3)/2$, $s + m(n - m - 1)$ and $s + m(n-1)$, respectively. We shall next show that these upper bounds may be attained. More precisely, we shall prove

5. Theorem. If m and n are integers and s is a real number with $0 < s \leq m < n$, then there exists a compact set $E \subseteq Rⁿ$ such that $\dim E = s$ and,

dim { $p \in O^*(n, m)$: dim $p(E) < s$ } = $s + m (2n - m - 3)/2$, dim { $V \in G(n, m)$: dim $P_V(E) < s$ } = $s + m(n - m - 1)$, dim { $f \in$ Hom (R^n, R^m) : $r(f) = m$, dim $f(E) < s$ } = $s + m(n-1)$. The following lemma is an immediate consequence of [3, 2.10.25]:

6. Lemma. If X and Y are metric spaces, Y is σ -compact, $F: X \to Y$ is Lipschitzian, $\emptyset \neq B \subseteq Y$, $0 \leq v < \infty$ and $\mathscr{H}^v(F^{-1}{y}) > 0$ for $y \in B$, then dim $F^{-1}(B) \geq \dim B + \nu$.

Proof. We may assume that Y is compact. If t $[3, 2.10.25]$ that for a positive number c

$$
\int\limits_B^{\ast} \mathscr{H}^{\nu}(F^{-1}\lbrace y\rbrace) d\mathscr{H}^t y \leq c\mathscr{H}^{t+\nu}(F^{-1}(B)).
$$

Hence $\mathscr{H}^{t+p}(F^{-1}(B)) = 0$ implies $\mathscr{H}^{t}(B) = 0$, which means that $\dim F^{-1}(B) \geq \dim B + v$

7. Proof of Theorem 5. We begin with the case of $G(n, m)$ and assume first that $m = n-1$. Let (N_n) be a strictly and rapidly increasing sequence of positive integers, e.g. $N_{k+1} > N_k^k$, and let E be the set of all $(x_1, ..., x_n) \in R^n$ such that

$$
-1 \ \leq \ x_j \ \leq \ 1 \ , \qquad \| N_k \, x_j \| \ \leq \ N_k^{1 - n/s} \qquad \hbox{for} \ \ 1 \leq j \leq n \ , \ \, k \geq 1.
$$

(For a real number t , $||t||$ is the distance from t to the nearest integer.) Then dim $E = s$. This follows from [2, Theorem 10]. The method goes back to Jarnik $[4]$, and a similar problem occurs in $[7]$. (For further information on number-theoretic methods, see [1] and its bibliography.) For $y = (1, y_2, ..., y_n)$ we denote by T_y the orthogonal projection from $Rⁿ$ onto the orthogonal complement of y . We shall show that

$$
\dim \{ y:\, \dim \, T_y(E)\; <\; s\; \} \;\geq\; s\;,
$$

which is equivalent with

$$
\dim\,\{\,\,V\in G(n\,\,,\,n-1):\,\,\dim\,P_{\,V}(E)\,\,<\,\,s\,\,\}\,\,\geq\,\,s\,.
$$

Fix $\delta > 0$ and let A_{δ} be the set of all $y = (1, y_2, ..., y_n)$ such that for arbitrarily large k there is an integer H for which $k < H < N_k^{1-\delta}$ and $\|H y_i\| < H N_i^{-n/s}$ for $2 \le j \le n$. Using [4, Satz 4] or [7], one finds that dim $A_{\delta} \geq s (1-\delta)$. Since $s (1-\delta) \rightarrow s$ as $\delta \rightarrow 0$, it is sufficient to show that dim $T_v(E) < s$ for $y \in A_\delta$.

Let $y \in A_{\delta}$ and let k and H be as above. Choose integers $b_2, ..., b_n$ such that $|H y_i - b_i| < H N_k^{-n/s}$ for $2 \le j \le n$ and denote $y^* =$ $(1, b_2 H^{-1}, ..., b_n H^{-1})$. Then $|y-y^*| < n N_k^{-n/s}$, whence $||T_y - T_{y^*}|| <$ $O(1) N_k^{-n/s}$. ($O(1)$ stands for a constant independent of k.) Let $v =$ $(v_1, ..., v_n)$ with each v_i an integer and $|v_i| \leq N_k$. We write $v_1 = q_1 H + r_1$, where q_1 and r_1 are the uniquely determined integers such that $0 \leq r_1 < H$. Then

$$
v = (q_1 H, q_1 b_2, \ldots, q_1 b_n) + (r_1, v_2 - q_1 b_2, \ldots, v_n - q_1 b_n).
$$

The first member on the right is parallel to y^* , while the second takes at most $H(3 N_k)^{n-1} = O(1) H N_k^{n-1}$ values, when v varies. Hence also

 $T_{\gamma*}(N_k^{-1}v)$ assumes at most $O(1)$ H N_k^{n-1} values, and, by the definition of E, $T_{\nu^*}(E)$ can be covered by that many balls of radius less than $O(1) N_k^{-n/s}$. Inasmuch as $||T_v - T_{v^*}|| < O(1) N_k^{-n/s}$, the same is true for $T_v(E)$. For $(n-\delta)$ s/ $n < \alpha < s$, H N_k^{n-1} $(N_k^{-n/s})^{\alpha} < N_k^{n-\delta - n\alpha/s}$ tends to zero as $k \to \infty$; hence $\mathscr{H}^{\alpha}(T_v(E)) = 0$. Therefore dim $T_v(E) < s$, as required..

We next assume that $m < n-1$ and proceed by induction on n. So assume that there exists a compact set $E \subseteq R^{n-1}$ with dim $E = s$ such that letting

$$
A = \{ V \in G(n-1, m) : \dim P_V(E) < s \},
$$

we have dim $A = s + m(n - m - 2)$. We identify R^{n-1} with $\{(x_1, ..., x_n) \in \mathbb{R}^n : x_n = 0\}$. Let G be the set of all $V \in G(n,m)$ such that $(x_1, ..., x_n) \in S^{n-1} \cap V$ implies $|x_n| < 1/2$ and define $P: R^n \to R^{n-1}$ by $P(x_1, ..., x_n) = (x_1, ..., x_{n-1})$ and $F: G \to G(n-1, m)$ by $F(V)$. $P(V)$. Then F is Lipschitzian (this can be seen with the help of 2.1) and $F^{-1}(V)$ is isometric with an open subset of $G(m+1, m)$ for $V \in G(n-1)$, m). Thus $\mathscr{H}^m(F^{-1}{V})>0$ for $V \in G(n-1,m)$, and Lemma 6 implies that dim $F^{-1}(A) \geq \dim A + m = s + m(n - m - 1)$. Since $\dim P_{\nu}(E) < s$ for $V \in F^{-1}(A)$, we have shown that the set

$$
A_1 = \{ V \in G(n, m) : \dim P_V(E) < s \}
$$

is of dimension $s + m(n - m - 1)$.

To treat the case of $O^*(n,m)$, assume that E and A_1 are as above and denote

$$
A_2 = \{ p \in O^*(n, m) : \dim p(E) < s \}.
$$

Define $F: O^*(n, m) \to G(n, m)$ letting $F(p)$ be the orthogonal complement of ker p. Then F is Lipschitzian by 2.2 and $F^{-1}(V)$ is isometric with $O(m)$, whence $\mathscr{H}^{m(m-1)/2}(F^{-1}{V}) > 0$, for $V \in G(n,m)$. Moreover $A_2 \supset F^{-1}(A_1)$. Using Lemma 6 we infer dim $A_2 \supset \dim F^{-1}(A_1) \supset$ $\dim A_1 + m(m-1)/2 = s + m(2n - m - 3)/2$. Thus $\dim A_2 =$ $s + m(2n-m-3)/2$.

Finally we consider Hom (R^n, R^m) and set

$$
A_3 = \{ f \in \text{Hom}(R^n, R^m) : r(f) = m, \dim f(E) < s \}.
$$

Let B be the set of all $f \in \text{Hom}(R^n, R^m)$ such that $l(f) > 1$ and $f = L \circ P_V$ for some $V \in G(n, m)$ and some non-singular linear mapping $L: V \to R^m$. Then V is uniquely determined by f; in fact $V = (\ker f)^{\perp}$. We define $F: B \to G(n,m)$ setting $F(f) = V$ for $f = L \circ P_v$. Then f is Lipschitzian by 2.2 and $F^{-1}(V)$ is isometric with an open subset of Hom (R^m, R^m) for $V \in G(n, m)$, whence $\mathscr{H}^{m^2}(F^{-1}\lbrace V \rbrace) > 0$. Clearly Therefore dim $A_3 \geq \dim F^{-1}(A_1) \geq \dim A_1 + m^2 =$ $A_3 \supset F^{-1}(A_1)$. $s + m(n-1)$ and dim $A_3 = s + m(n-1)$.

References

- [1] BAKER, A., and W. M. SCHMIDT: Diophantine approximation and Hausdorff dimension. - Proc. London Math. Soc. (3) 21, 1970, 1-11.
- EGGLESTON, H. G.: Sets of fractional dimension which occur in some problems $\lceil 2 \rceil$ of number theory. - Proc. London Math. Soc. (2) 54, 1952, $42-93$.
- FEDERER, H.: Geometric Measure Theory. Springer-Verlag, Berlin-Heidel- $\lceil 3 \rceil$ berg-New York, 1969.
- JARNIK, V.: Über die simultanen diophantischen Approximationen. Math. $\lceil 4 \rceil$ Z. 33, 1931, 505-543.
- KAUFMAN, R.: On Hausdorff dimension of projections. Mathematika 15, $\lceil 5 \rceil$ $1968, 153 - 155.$
- An exceptional set for Hausdorff dimension. Mathematika 16, 1969, $\lceil 6 \rceil$ \longrightarrow $57 - 58.$
- Probability, Hausdorff dimension and fractional distribution. - $[7]$ \longrightarrow Mathematika 17, 1970, 63-67.
- MATTILA, P.: Hausdorff dimension, orthogonal projections and intersections $[8]$ with planes. - Ann. Acad. Sci. Fenn. Ser. A I 1, 1975, 227-244.
- WHITNEY, H.: Geometric Integration Theory. Princeton University Press, $\lceil 9 \rceil$ Princeton, N. J., 1957.

University of Illinois Department of Mathematics Urbana, Illinois 61801 **USA**

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 25 August 1975