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NIELSEN EXTENSIONS OF RIEMANN SURFACES*

LIPMAN BERS

Let S be a Riemann surface of finite type (p,n,m), that is, a sphere
with p handles, n punctures and m holes. We assume that m > 0 and

6p—-—6+2n+3m > 0

(so that S is not a simply or doubly connected plane domain). Nielsen
assigned to S a subdomain S, c S which is a deformation retract of S
and again a Riemann surface of type (p,n,m); we call S, the Nielsen
kernel of § . It turns out that every S is the Nielsen kernel of a Riemann
surface S, , called the Nielsen extension of § . The purpose of this note is
to record some simple but useful properties of the Nielsen extension.

We represent S as U/G' where U denotes the upper half-plane and
G a torsion-free Fuchsian group of the second kind. (The fact that @ is
determined only up to a conjugation in the real Mébius group will cause no
difficulties.) There is an infinite set B of open intervals I on the extended
real axis R U {c0} such that G acts properly discontinuously on 0 =
UULUJ, where L denotes the lower half-plane and J the union of all
I € #, and on no larger open subset of C U {c0}. The quotient $¢ = /¢
is the (Schottky) double of S, and the conjugation z+>z induces a
canonical anti-conformal involution j of S?. Note that there is a canonical
embedding S — 8% .

For each I e€f, the stabilizer G(I) of I in G is generated by
a hyperbolic element whose axis A(I) is the non-Euclidean line joining
the endpoints of I . The quotient I/G(I) is homeomorphic to a circle and
is identified with an (ideal) boundary curve of S . Each of the m ideal
boundary curves of S can be so obtained.

We denote by D(I) the non-Euclidean half-plane bounded by I and
A(I) and by N the complement in U of the union of the closures of all
D(I), I ep.N is called the Nielsen region of @ . It is convex in the non-
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Euclidean sense (being the intersection of non-Euclidean half-planes) and
open (because, for I,, I, ep and I, % I,, D(I;) N D(I;) = O). Hence
N is a simply connected domain, invariant under ¢ . The Riemann surface
S, = N/G is the Nielsen kernel of S ; it comes equipped with a canonical
embedding into S.

Noting that for every I €f and every ge G, g(D(I)) = D(I') for
some I’ € f, we conclude that the image of every D(I) under the natural
mapping U — U/G = S is D(I)/G(I). This is a Riemann surface of type
(0,0,2), that is, homeomorphic to an annulus. Its two (ideal) boundary
curves are: the boundary curve C = I/G(I) and C' = A(I)/G(I). C" is
the geodesic, in the Poincaré metric of §, which is freely homotopic to C'.
We call D(I)/G(I) the funnel adjacent to €' .The complement of the closure
of S, in S is a disjoint union of such funnels. This remark characterizes
the Nielsen kernel S, of S§.

Lemma 1. Let C be a boundary curve of S, C' the geodesic freely
homotopic to C, L the length of C', and M the module of the funnel adjacent
to C". Then

LM = =a2.
Proof. We may assume, without loss of generality, that C' = I/G(I)
where I €f is the positive real axis. Then G/(I) is generated by a Mobius
transformation ¢(z) = a2, for some a > 1, A(I) is the positive imaginary

axis, D(I) is the first quadrant @, and the length L of €' = A(I)/G()
is the non-Euclidean distance between ¢ and a7, so that

(1) L = loga.
The function
(2) C(Z) — e—-zm‘logz/loga

(where logz denotes the principal branch) is holomorphic in € and
satisfies &'(z) £ 0, C(og(z) = {(az) = ((2). Also, (@) is the annulus
1 < |¢] <o where

(3) 0 = enz/logn .
Hence the funnel, @/G(I), is conformal to this annulus, and the module
is
M = logo = a*/loga = a2 L.
If S is a Riemann surface of finite type, we call the restriction to S of
the Poincaré metric on 8¢, the intrinsic metric on S . Note that the

boundary curves of S are geodesics of finite length in the intrinsic metric.
Indeed, such a curve C', considered as a Jordan curve on 8%, is freely
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homotopic to a unique geodesic C, . If C, were distinct from C, j(C,)
would be another geodesic freely homotopic to C'.

Lemma 2. The restriction of the Poincaré metric on S to the Nielsen
kernel S, coincides with the intrinsic metric on S, .

Proof. We consider S, as embedded in S% = (8,)%. Let ds denote the
restriction to S, of the Poincaré metric on S . The canonical involution
j transplants ds to j(S,); the metric ds is now a conformal metric, with
constant Glaussian curvature equal to (—1), defined on S¢ except on the
boundary curves C’ of S, , that is on the geodesics on S freely homotopic
to the boundary curves €' of S . Consider a point P on one of such
curves (', and a sufficiently small neighborhood 4 of P which is divided
by an arc « = 4 N ¢’ into two disjoint sudbomains 4; and 4, = j(4,) .
Since €' is a geodesic on § and since j leaves (' pointwise fixed, there
is a homeomorphism y of A onto a neighborhood u(4) of ¢ e U such
that | 4 — « takes the metric ds into the Poincaré metric |dz|/y on
U . Now v is conformal on 4 — «, and hence also on 4. We conclude
that on S there is a conformal metric ds, of Gaussian curvature (—1),
with ds | S, U j(S,) = ds.

To show that ds is the Poincaré metric on Sf we must verify that it is
complete. This so since Sj is of type (2p +m — 1,2n,0), hence
compact except for 27 punctures, and near each puncture dS coincides
with ds, that is, with a complete metric.

Theorem 1. S isthe Nielsen kernel of a uniquely determined Riemann
surface S, (called the Nielsen extension of S).

Proof. In view of Lemmas 1 and 2 and the relations (1), (2), (3) in the
proof of Lemma 2, the Nielsen extension §; of 8, if such an extension
exists, must be constructed as follows. For each of the m boundary curves
C of S,let L, denote its length in the intrinsic metric of S . Set

Oc = e”ltc

and let F, denote the annulus 1 < |{| << oo . Define a Riemannian metric
ds, on F, by transplanting to /. the Poincaré metric |dz| /y in U
by means of the mapping

C(z) — e—zni logz/L¢

of the first quadrant ¢ onto Z,, and note that the circle || = g, is
a geodesic in this metrie, of length L. . Now attach F. to §, by means
of an isometry between C', endowed with the intrinsic metric of S, and the
circle |¢| = o, , endowed with the metric ds; .

In order to show that the Riemann surface §; so constructed is indeed
the Nielsen extension of §, it sufficies to show that the restriction of the
Poincaré metric on S; to S is the intrinsic metric on S and the restriction
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to an F, is the metric ds; . The required argument is so similar to the proof
of Lemma 2 that it may be omitted.

Lemma 3. Represent the double S* of S as U|I' where I' is a
torsion-free Fuchsian group. Let A be a component of the preimage of S < S
under the natural mapping U — U|I' = 8%, and let I'y be the stabilizer of
A in I'. Then U|I'y = 8, is the Nielsen extension of S .

Proof. Let f be the restriction of the natural mapping U — U/I" = §*
to 4. Then f is holomorphic and locally one-to-one and f(4) = S . Also
f(z1) = f(z5) if and only if there is a y € I' with 2z, = p(z,); such a y
must belong to I, since every element of p permutes the components
of the inverse image of S . We conclude that f: 4 — S is a universal
covering with covering group I'; . Furthermore, f transplants the metric
|dz| [y on U into the intrinsic metric of S .

Now represent the Nielsen extension §; of S as U/G, G a torsion-
free Fuchsian group, and let N be the Nielsen region of ¢. One sees as
before that the restriction % of the natural mapping U — U/G to N is
a universal covering N - S, with covering group G, which transplants
the metric |dz|/y into the restriction of the Poincaré metric of §; to
S, that is, by Lemma 2, into the intrinsic metric on S.

It follows that there exists a homeomorphism ¢ of 4 onto N such
that f=hogp and ¢ ;¢! = G. This ¢ is an isometry in the metric
|dz| | y , hence the restriction to 4 of a real Mobius transformation. Since
G is determined but for a conjugation in the real Mdbius group, we may
assume that ¢ = id. Then 4 = N, I, = (', and the assertions of the
lemma follow.

Theorem 2. A quasiconformal homeomorphism of S onto another
Riemann surface can be extended, canomically, and without increasing the
dilatation, to a quasiconformal homeomorphism of the Nielsen extension of S
onto that of ¢(S) .

Proof. Since ¢ is quasiconformal, it admits a homeomorphic extension
to the boundary curves of S and hence can be canonically extended to
a homeomorphism of 8% onto @(S)* which respects the canonical in-
volutions. We denote the extended homeomorphism again by ¢. Its
dilatation is the same as before the extension.

Represent 8¢ and ¢(S)* as U/I' and U/I", respectively, I' and
I" being torsion-free Fuchsian groups. Then ¢ : 8% — ¢(S)* can be lifted,
using the natural mappings U — U/I' and U — U/I", to a homeo-
morphism w of U onto U, which has the same dilatation as ¢ and
satisfies w I'w=! = I". Choose a component A of the preimage of S
under U — U/I'", and let I'; be the stabilizer of 4 in I'. Then w(4)
is a component of the preimage of ¢(8) under the mapping U — U/I”
and I') = w Iy w is the stabilizer of w(4) in I';. Clearly, w induces
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the mapping ¢ of S = A/I'; onto @(8) = w(4)/I;. But w also induces
a homeomorphism, with the same dilatation, of U/I'; onto U/I;. In
view of Lemma 3 this is a homeomorphism v , extending ¢, of the Nielsen
extension of S onto that of ¢(S).

It is easy to verify that  does not depend on the choices (of I, I,
w and 4 ) made during the above construction.

Lemma 4. Let C be a boundary curve of S, Cy the boundary curve
of the Nielsen extension S, of S freely homotopic to C . Let L be the length
of C in the Poincaré metric of S,, L, the length of C, in the Poincaré
melric of the Nielsen extension S, of S,. Then

L, < L.

Proof. Let ds; denote the Poincaré metric on S;, ds, the Poincaré
metric on S, . Since S, C S,, and §; # S,, we have ds, << ds, . On the
other hand, C; is the unique geodesic, in its homotopy class, with respect
to the metric ds,. Hence

L1=fd32</ds2<fdsl=L.
Gy c c

Let S; be the Nielsen extension of § and let S, ; be the Nielsen
extension of S,, &k =1,2,.... In view of the canonical embeddings -
S, — 8,1 we can define the Riemann surface S, = S; U S, U ... which
we call the infinite Nielsen extension of S . It is, of course, homeomorphic
to S, but, as the next theorem shows, if S is of type (p,n,m), then S,
is of type (p ,n + m, 0). Thus the construction of S, gives us a canonical
way of “filling in the holes” in S .

Theorem 3. The infinite Nielsen extension S, of S has no ideal
boundary curves.

Proof. Let C, be a boundary curve of S . Then C; divides §, into
two components, one of which, call it X , is conformally equivalent to
a doubly connected domain. We must show that the module M, of X is
infinite.

Let C, be the boundary curve of S; (the Nielsen extension of §)
freely homotopic to C,, and let C,, , be the boundary curve of &S,
(the Nielsen extension of S, ) freely homotopic to C,, k = 1,2, .... Also
let F, be the funnel bounded by C, and C,,, and M, the module of
F, . Finally let L, be the length of C, in the Poincaré metric of S, , .
Then X = F, U F, U .., F, and F, ; have no inner points in common,
and each F, separates the boundary continua of X . By Grétzsch’s
inequality,
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M, > My+ M, + ..
that is, in view of Lemma 1,
M, = 22 (Ly' + Lyt + ).

Since, by Lemma 4, L, > L, > ..., we have that M = + o0, as asserted.

Remark. Let S, be the Nielsen kernel of S, §,_; that of §,,
for k=0, -1, -2, ... It would be interesting to investigate the set
SonNsS_;NS,N...

We conclude with an immediate corollary of Theorem 2.

Theorem 4. A quasiconformal homeomorphism of S onto another
Riemann surface can be extended, camonically and without increasing the
dilatation, to a quasiconformal homeomorphism of the infinite Nielsen extension
of S onto that of ¢(S) .

Applications of Theorems 2, 3, 4 will be found in a forthcoming paper
on a theorem by Thurston.
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