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TRANSPORT OF MEASURES AND
CONTROL MEASURES

CORNELIU CONSTANTINESCU

Let R be a 5-ring and let .# be a set of real measures on % . A control
measure for . is a measure on R reflecting some properties of the set ./ .
The properties raised for discussion are the null sets and the regularity
of the measures of .# . The same problem can be formulated in a more
general frame for sets of measures taking their values in different Hausdorff
topological commutative groups. In this case it is useless to deal with sets
of measures since any such set can be replaced by one measure namely the
product of the given measures (taking its values in the product topological
group). But while for real valued measures the proper atoms are determined
by the null sets, for arbitrary topological groups this is not the case and
we have to add the proper atoms to the above two properties defining
a control measure. In general the papers dealing with control measures
assume that the measure takes its values in a locally convex space. By
composing it with the continuous linear forms on this space one gets a set
of real valued measures which is easier to handle. If this is not the case the
problem becomes by far more complicated. Such a situation appears in [2],
where it is assumed that the values of the measure lie in a locally compact
commutative group. The main idea consists in transporting the values
of a measure from R/N to R by using the fact that the two topological
groups are locally isomorphic. The aim of this paper is to generalize the
procedure of this paper to more general groups and to replace the local
isomorphism with more general mappings (Theorem 2.5). This result is
then applied to control measures (Theorem 3.2 and Corollary 3.3).

Throughout this paper we shall denote by R a d-ring (i.e. R # O and
for any sequence (A4,),.n n R we have N, yA, € R and Ay4 A4, € R)
and by R a subset of R such that the union of any finite family in § belongs
to R . Weconsider R ordered by the inclusion relation and denote by Ag = A
the set of lower directed subsets of RN\{O}. For any A € A we denole by
T(A) the filter on R generated by the filter base
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({(Be| B CA}| Ae}.

If the union of any sequence in 9 belongs to R we call R a o-ring.
Let G be a Hausdorff topological commutative group. A G-valued measure
on N isamap u of R into G such that for any disjoint sequence (4,),.n
in 9t whose union belongs to R we have
U 4,) = > wd,).
nelV nelV.

We say that u is R-regular if for any 4 e R and for any 0-neighbour-
hood U in @ there exists K € & such that K ¢ 4 and

{uB)| BeR, KcBcd} cud)+U.

We say that p is exhaustive if for any disjoint sequence (4,),.n in N
the sequence (u(4,)),.n converges to 0. We set

Nu) := {AeR| VBeR, BCAd=uB)=0}.

We say that u satisfies cce if any disjoint family in R\ N(x) is countable.
Let A(y) be the set of subsets A of R\ N(u) such that the intersection
of any countable family in A belongs to . The maximal elements of
A(p) (for the inclusion relation) will be called afoms of p. An atom A
of u is called improper if u(F(A)) converges to 0; otherwise we call A
proper. A set-atom of u is a set A € R \N(u) such that for any B e R we
have 4 N B eN(u) or A\B eN(u).

1. Preliminary results
Proposition 1.1. Let u be a measure on R and let U be a neigh-
bourhood of 0. If u # 0 then there exists A € R\N(u) such that
{wB)| BeR, Bcd, AANB¢gR(uw)} c U.

Assume the contrary. Let 4 € f\N(x). We construct inductively
a sequence (4,),.y in R such that we have for any n € N :

a) A, ¢ AU 4,,;

m<n

b) u(4,) ¢ U;
c) ANU 4, ¢ N(u) .
m=n
Assume that the sequence was constructed up to n» — 1. By ¢) and by

the assumption of the proof there exists 4, € N possessing the required
properties. The existence of the sequence (4,),.x is a contradiction. []
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Proposition 1.2. Let p be a measure on R and let U be a neigh-
bourhood of O such that for any set-atom D of u we have u(D) e U . Then
for any A € R\N(n) there exists B € R \N(u) contained in A and such
that

(wC)| CeR, C cB} cC.U.

Let A4 eR\N(u). By Proposition 1.1 there exists D e R\N(u)
contained in A such that for any C € B\ N(x) contained in D we have
u(D\C) € U . If D is a set-atom of u then, by the hypothesis, u(D)e U
and we get

{(p@)| CeR,CcD}cU.

In this case we take B:= D . If D is not a set-atom of u then there
exists B e®R contained in D such that B¢ MN(u) and DB ¢ N(u).
We get

{(u@ | CeR,C cB} c U.U

Remark. The above result was proved by K. Musiat ([2], Lemma 1) for
measures without set-atoms.

Proposition 1.3. Let A be an upper directed subset of R and
let J be the filter on R generated by the filter base

{({BeA| AcB} AeU}.

Then for any exhaustive measure p on R, u(F) is @ Cauchy filter.
Assume () is not a Cauchy filter. Then there exists a neighbourhood
U of 0 such that for any A4 € 9 there exists B e with 4 < B and

u(B\A4) = u(B) — uld) ¢ U.

We may construct inductively on increasing sequence (4,),.y in 2 such
that w(4,,\4,)¢ U for any n € N and this contradicts the hypothesis
that u is exhaustive. []

Proposition 1.4. Let u be an exhaustive measure on R and let
U be a neighbourhood of 0 . The set of atoms A of u for which

U ¢ p(FE)
s finite.
We may assume U closed. Let @ be a countable set of atoms of u
such that

U ¢ u(@E)
for any U € @ . By [1] Proposition 1.5 there exists a disjoint family (A%)%[eq,
in R such that Ag €A for any Aed. For any U € @ there exists
By €A such that By < Ag and u(By) ¢ U . Since u is exhaustive and
since (Bgy)g(es is a disjoint family in R it follows that @ is finite. [
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Proposition 1.5. If the one point sets of a topological commutative
group @ are Gy-sels then any exhaustive G-valued measure on R satisfies ccc.
Let p be an exhaustive G-valued measure on R and let (U,),.y be
a sequence of O-neighbourhoods in G whose intersection is {0} . Let
further (4., be a family in R\N(x) and let (B),, be a family in R
such that w(B,) # 0 and B, c A, for any ¢l . Since u is exhaustive
the set
{vel| p(B)¢U,}
is finite. From
I = Ufiel| uB)¢U,)
nelV

it follows that I is countable.[]
Proposition 1.6. Let p be a measure on R and let F be the
filter on R generated by the filter base

({BeER| BNA=0)| Ae®R).

The following assertions are equivalent :

a) u is exhaustive;

b) for any disjoint sequence (A,),.n in R and for any neighbourhood
Uof 0 there exists m € N such that

{ud)| AefR, Acd,} cU

forany n =m ;

c) u(F) converges to 0.

a=Db. If b) does not hold there exists a strictly increasing sequence
(k)penv in N and for each neN a B,eR with B, c 4,, and
w(B,) ¢ U . Since (B,),.ny is a disjoint sequence in R p is not exhaustive.

b = c. Assume u() does not converge to 0. Then there exists a
neighbourhood U of 0 such that for any 4 e 9t there exists B € % such
that BN A4 = @ and u(B)¢ U. We may construct inductively a disjoint
sequence (4,),cy in R such that wu(4,)¢ U for any n € N and this
contradicts b).

c=a. Let (4,),.y be a disjoint sequence in R . Let U be an
arbitrary neighbourhood of 0 and let ¥ be a neighbourhood of 0 such
that V + V c U . There exists 4 € R such that

{uB)| BeRh, BNA=0} c V.
Since

MUMANA) = > pdnd,

nelN
there exists m € N such that u(4 N A4,) eV for any n >m. We get

pA,) = pANA) + ud A) eV +V c U

for any n =m . Hence u is exhaustive.[]



Transport of measures and control measures 45

2. Transport of measures

Throughout this section we shall denote by G, H Hausdorff topological
commutative groups, by p a continuous semi-value on G (i.e. a map of @
into R, such that

) »(0) =
(w+y) é p@) + py);

C) p(—2) = p)
forany x,y €@ ), and by U theset {x € G| p(x) <1}.

Proposition 21. Let u be an exhaustive G-valued measure on
R such that

lim p(u(F () = 1

Jor any atom A of . Then there exists a countable subset B of RN such
that:
a) for any B e B we have

(wAd)| AeR,4 cB} c U;

b) for any A eR with AN (UBE% B) = O we have p(u(d)) = 0.

If R s a o-ring we may even assume B finite.

From the properties of p it follows that p=1(0) is a closed subgroup of
G and G/p7(0) is a Hausdorff topological commutative group. Let u be
the canonical map G — G /p~(0). Then uou is an exhaustive measure
on R. Let A be a set-atom of wopu and let

= {BeR| ANBeMN(uopu)}.

By [1] Proposition 1.2 b) A, is an atom of w o . Since N(u) C N(u o u)
it follows that 9, is an atom of u ([1], Corollary 1.4). We get

wou(d) = limuouFQA,) € u(l).

We may assume wopu # 0. Let B’ be the set of B e R\N(uopu) such
that

{pd)| AeR, AcB}y c U

and let 2 be the set of subsets B’ of B’ such that the sets of B’' are
pairwise disjoint. By Zorn’s theorem there exists a maximal element B
of © with respect to the inclusion relation. By Proposition 1.5 wou
satisfies ccc. Hence B is countable.

Let 4 e with 4 N (Uae% B) = @ and p(u(d)) # 0. By the first
part of the proof and Proposition 1.2 there exists B € ¥’ contained in 4 .
Then B U {B}e 2 and this contradicts the maximality of 8. Hence
B fulfills b).
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Assume now that R is a o-ring of sets and let (B,),.y be a disjoint
sequence in 9 such that

B = {B,| neN}.

Since (U,,>, B,),.v is a decreasing sequence in 3 whose intersection is
empty there exists n € N such that U,,>, B, € %’ and we may replace B by

{B,| m<n} U {UB,}.0

Remark. This result was proved by K. Musiat ([2], Proposition 2) for
atomless measures defined on o-rings and satisfying ccc.

Corollary 2.2. Let G, be an open subgroup of G and let u be
a G-valued measure on R such that for any atom A of p there exists A € A
with

{uB)| BeA, Bc A} c (d,.
Then u(R) C G, .

Since @, is open and closed we may find a p such that G, = U .
Let 4 e R . By the proposition there exists a finite partition (4,),; of
A with sets of R such that u(4,) e, forany tel.Weget u(d) e, .1

Remark. This result was proved by K. Musial ([2], Proposition 3) for
atomless measures defined on o-rings and satisfying ccc.

Let M be a subset of ¢'. A map u of M into H is called an w-map
if it possesses the following property: Let R’ be a o-ring, let 2 be an
upper directed subset of R’', let § be the filter on R’ generated by the
filter base

{{BeA| A cB}| AU},

and let u be a G-valued measure on R’ such that u(R’) € M and such
that wu(%) converges to a point of M . Then the map

A > u(u(d)): X —H

is a measure and the image of § through it converges to u(lim u(f)) .
It follows immediately that if A € A and if g is a K-regular G-valued
measure on R such that w(MR) € M and such that u(F(A)) converges
to a point of M then the map

A = w(u(d): R—H

is a Q-regular measure and the image of () through it converges to
w(lim w(F(A))) . It is obvious that if v is an w-map of M into H then

u@ +y) = w@) + uly)

for any x,y €M with a2 + y € M . This condition together with the
continuity assures that w« is an w-map, but the continuity is not necessary.
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Proposition 23. Let u be a S-regular G-valued measure on
R such that

lim p(u(FA))) = 1

Jfor any atom A of u and let w be an w-map of U into H . Then there
exists a unique H-valued measure v on R such that

v(d) = u(u(4))
for any A e R with
{uB)| BeR,Bcd} c U.

Forany AeR with wd)eU and u(u(d)) # 0 we have A¢N(»).
v 18 R-regular. If u(x) = 0 implies x = 0 then N(u) = N() .
Let 9 be the set of 4 e R such that

{uB)| BeR, Bcd} c U.
Then the map
B — wuuB): {BeA| BcA} - H

isa {Ke®| K c 4} regular measure for any A4 €A . Let 2 be the
set of finite disjoint subsets of A . Let B’, B” € 2 such that

U B = U B".
ne®y R’

Then u(B’NB”")e U forany (B',B”) € B x B” and we get
2 ww®B) = > 2 uuB NB)

B’e%' B’e%' B”E?B”
= 3 3 wpBNBY) = > uwuB).
B"e %" B'e %' B e%"

Let 4 efR. By Proposition 2.1 there exists B €2 such that
A=U Bes B . By the above considerations the element of H

> u(u(B))
Be §B

depends only on A . We shall denote it by v(d). It is obvious that
v(4) = u(u(4)) for any A eA. Let (4,),. be a countable disjoint
family in %t whose union belongs to R and let B € 2 such that

UB = UA,.

Be R el
Then
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WU A) = > u@B) = 2 > uwBn A)

el Be% BE?B el
el Bem el

Hence v is a measure.
Let A be an H-valued measure on 9% such that

MA) = u(u(4))
forany A €A . Let A € R andlet B € 2 such that

A = UB,.
BeH
We get
MA) = SAB) = SuB) = SuB) = »4).
Bey BeR} BeH
This proves the unicity of ».
Let A e N(») with u(4) e U and let B € 2 such that

A = UB.
Befy
Then

for any B € 8. Hence
u(u(4)) = 0.
In order to show that » is Q-regular let 4 e R and let ¥V be a 0-
neighbourhood in H . Let B €2 such that

A = UB,
Be§

let n be the cardinal of B, andlet W be a 0-neighbourhood in H such
that » W c V. For any B e B there exists K; e & contained in B
such that

v(C) € »(B) + W
for any C e R with K, ¢ C < B. We set

K := UKy;e®.

Be
Let CeR with K ¢ C € A. Then
wC) = 2 »(CNB)e > WB)+ W) c »d)+ V.
BeSH BeSy

Hence » is f-regular.
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It is obvious that N(u) € N(»). Assume u(x) = 0 implies x = 0
and let 4 e N(r). Let B € 2 such that
A = UB.
BeSy
Let Ce®t, C ¢ A. Then for any B € B we have
wwBNC) = yBNC) =0

and therefore u(B N C) = 0. We get u(C) = 0. Hence 4 € N(u) .U

Remark. This Proposition is a generalization of a theorem of Herer ([2],
Theorem 4).

Proposition 2.4. Let @ be a set of maximal elements of A such
that: a) we have Ngey A = G for any infinite subset ¥ of @ ; b) for any
Aed and for any A €U there exists K e A N § with K € A; c) for
any W € @ the intersection of any countable family in U belongs to A .
Let further (Ag)grea be a family in R such that Ag € AU for any A,
Wed, AxA,let (@g)q[ea be a family in G, and let p bea §\Ugry A-
regular G-valued measure on R\Ugrp A*. There exists a unique G-valued
measure v on R equal to u on R\Ugo A and equal to g at Ag for
any A ed. v is RK-regular.

Let < be a linear order relation on @ . For any (4,%,) € ® X @

we set:
D(A) = {Aed| AU},

DA, A) = (Aecdd)] A <Ay},
WA) 1= pAN U Ag)+ 3 (og — pldg N (AN U Ag));
Yed(4) e (4) A'ed(4,9()

by a) @(A4) is finite and therefore »(A4) is well defined. Let (B,),., be
a countable disjoint family in R whose union B belongs to 9 . Since
the elements of @& are maximal elements of A we deduce by c) that
(D(B,)),; is a disjoint family whose union is @(B) . We have

¥B) = pBN U Ag) + 2 (wg — pAg N (BN U Ag)

e o(B) e (B) A'ea(BIY)
= SuBN U dg)+> 3 (g — pAg N (BN U Ag)).
sel e D(B) el 9ea(B) A'er(B.IN)

Let el . Then

BN U A4y = (BN U Ag)UU U (B, N (Ag \ U Ag))
oA o) Y AN oA
Yew(B) Ye2(B) cI9(e(B)) Y ex(B U (B,9))

1 By [1], Proposition 1.3, 9\ U?Ietb A is a J-ring.
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and therefore

uw(BN U Ay
We2(B)

= p(B,\n U A;l[)+ X X o wB.nNn (AQI\ U
Q['ecp(Bl)uq:(B,S)[)

WNe2(B)
We have for any U e

(Ag[ AN (B‘ AN U
W'er(z,9)

= (AQI AN (B\

Jel %{E@(Bl)
D(B)

U dy)Uu U

W'ea(BY) 2EIN{4}

and therefore

A'er(5,9)

= M(AQI AN (B AN

We get
v(B) = Xu(B,\

U AQI’ \

Ag{’)) .

U

Agr))

9 eo(291) 9o (z,91)

(B, N (AQI N U
'er(n,9

A e (B,) Y e (

W'ea(B) AN\ {1}

U A?{)

el QIE(I,(BL)

- 22X

T u(B N (AN

el Ael Q[e@(B;‘) 9,[

+ X X
el 9,[54’(

- X X
el QIE'I’(
+ 2 X
el QIE,[,(

(wgp — pl(dge\ (B,

B‘)

u(Agr N B, N (

B) 9{'@(3,9{)

0)

Ag))

W'er(B9)

'e@(B‘)Um(B,QI)

N , U AQ[')))
W'er(2.90)

U AS)II AN U

B) 2eIN {1}

A'er(B,9)

el

+ X

e )

- &

el Ael
Ne2(B )

w(B, N A?[ n( U

Y er(B)U(B,Y)

Ag)[’ AN U A

Weom) — Wer(z,9N)

2eIN{} Qe (B ) 9

;U Ag))
( efp(B,Q[)

o))
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We have for any ¢ el
u Bn (AQI N U AQ[')
Ye®(B\B) A'er(9()
Ye®(B) Y caB)UD(BY)
Uu(( U Bn A?In ( U AE’I'\ U A%[')),
Nea(B) A'er(B,9() A'ea(B,91)
and therefore
b Z wB N (AQI \ U AQ['))
2eIN {1} e () Q[’eds(B,g[)
el Qe (B,) 9 'eo(B)UD(B,Y)
+ X wB N AQ[ n ( U Agr\ U Ag[')) .
Yeo(B) A'ee(B.Y) A'er(8.9)
We get
v(B) = Zv(B)

el
ie. » is a measure. It is obvious that the restriction of » to R\Ugrp A
is equal to x and that v(A%{) = Ty for any U € @ . Let 4 be a G-valued
measure on R possessing these two last properties of » and let 4 e R .
Then
4 = (AN U Ady)U U (AN (dg U Agy))
e b (4) Ye o) W'er(4,9()
and therefore
MA) = pAN U Adg)+ X AAN (dg\ U dy)).
Yed(4) Yed(4) A'ew(4,90)
We have for any A € d(4)

A?I = (AQI NP2 N U Ai)lf)) u@4n (AQ[ N ] A?I'))
g['em(,q,sg];) A'e2(4,9)
and therefore
Ty = ‘“(AQ{ NIV N U A%')) + 24N (AQI N U A?I'))
<o (4,9() Aeo(4.9()
and we get
AMA) = pAN U A?[)
e @(4)
Yed(4) A 'er(4.9()
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This proves the uniqueness of ».
Let A e and let ¥V be a 0-neighbourhood in G . By b) there exists
for any A ed(4) a Ko e ® N contained in A. Since u is

N Ugreo A -regular there exists a K € & contained in A\ Ugreaw) Ky
such that wu(B)eV for any B € R\Ugrep A contained in

4N U KQI)\K.
e d(4)

We get #»(B) eV for any B e contained in A\(K U Ugreara) Kgp) -
This shows that » is ®-regular. []

Theorem 25. Let u be a R-regular G-valued measure on R and
let w be an w-map of U into H . Then there exists a Q-regular H-valued
measure v on N such that: a) v(A) = u(u(d)) for any A e R with

{uB)| BeR, Bcd} c U,

b) any proper atom of v is a proper atom of p.If H + {0} then for any
0-neighbourhood V in G there exists a v with the above properties and such
that: c) any atom A of u is a proper atom of v if for any A € there
exists BeW with B € A and u(B)¢ V. If moreover w(x) = 0 implies
x = 0 we may choose v such that besides the above properties the following
ones hold: d) N(u) = N»); e) if for any atom U of u for which
U eu(F)) the filter w(F Q) is convergent then the proper atoms of u
and v coincide.

Let W be a 0-neighbourhood in H such that if H {0} then
H — (W 4+ W) # @. By replacing V with a smaller one we may assume
V-V c U. We denote by & the set of atoms A of u such that for
any A4 € there exists Bed with B c A4 and u(B)¢ V. By [1]
Proposition 1.3 d) any A € @ is a maximal element of A . TLet 4 €N,
let

D) := {(Aed| AU},

and let u, be the restriction of y to { BeR | B € A4}. Then u, is
an exhaustive measure and for any 9 € @(4) theset {BeA | B c 4}
is an atom of u, . By Proposition 1.4 &(A4) is finite. Hence for any infinite
subset ¥ of @ we have Ngrew A = O . By [1] Proposition 1.6 there exists

a family (d’gr)gcp in R such that A9 e A\A" for any A, A €,

A # WA . By [1] Proposition 2.5 for any ¥ € @ and for any A4 €9 there
exists Ke® NYA with K € 4.

Let A € @ . By [1] Proposition 2.2 u(F(A)) is a Cauchy filter. Hence
there exists A4 € such that

QI n
,u(AQ[\A) eV



Transport of measures and control measures 53

forany 4 €A with 4 c A%”[ . By [1] Proposition 1.3 ¢) and d)

Ry 1= {AQ”[\A | A e}
is a o-ring. The restriction of u to R, is a measure such that u(R,) c V.
We deduce that the map
A u(ud): Ry—H
is a measure. Let us denote by  the filter on %, génerated by the filter
{({BeR,| A cBy| Ae®h,}.

By Proposition 1.3 its image through the above map is a Cauchy filter.

Hence there exists A% € such that A% () A% n AQI and such that

w(u(dg) — p(d) € W
for any A e with 4 c Ag .
Let (wg[)ger be an arbitrary family in H (resp. in H\N(W + W)
if H # {0}). We set

RN = JLUA, & = & U A.
Q[e(l) Q[e(b

By Proposition 2.3 there exists a §'-regular H-valued measure 1 on
N’ such that

for any 4 e R’ with
{uB)| BeR', Bc A}y cU.

By Proposition 2.4 there exists a f-regular H-valued measure » on %
equal to 4 on R’ and equal to g at Ag for any A ed.

a) Let 4 e R with
{uB)| BeR, Bc A} cU.
Then A4 € R’ and therefore
v(d) = Md4) = u(u(4)) .

b) Let now A be a proper atom of ». By a) (u) < MN(v) and
therefore 9 is an atom of u ([1], Corollary 1.4). Assume that pu((2))
converges to 0. Let A be a set of A such that

(uB)| BeA, Bc A} c U.

Since u is an w-map it follows by a) that »(F(A)) converges to 0 and
this is a contradiction.
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c) Let Aed, let AW with 4 CAQI’ and let BefR with
B c A;)I\A .Then AUBe and AUB C A?I and therefore

y(Ag}\A) eV, p(AQ”[\(A UB) e V,

uwB) e V-V cU.
We get by a)

for any 4 e with 4 C Ag( . Hence
zyr = 94) = Wdg) —(d) = ulu(dy) — u(4)) € W,
v(A) ¢ W
for any A € with 4 < Ag . It follows that 9 is a proper atom of ».

Assume now that u(x) = 0 implies = = 0.

d) By a) Nu) € NE). Let 4 eN(). Then 4 e R’ and therefore
A € N(4) . By Proposition 2.3 4 € N(u) .

e) Let 9 be an atom of u not belonging to @ . Then there exists
A €A such that

(uB)| BeA,Bc A} c V.
It follows A e’. For any BeA with B c A we get ANBeR',
(u(0)| CeR, C c ANB} c U,
»(A\B) = MA\B) = u(u(A\B)),
w(B) = u(u(B)).

By the hypothesis p(F(A)) converges to an element x € U . Since u is
an w-map »(§(A)) converges to wu(x). Since wu(x) = 0 implies x = 0,
A is a proper atom of u if and only if it is a proper atom of ».[]

3. Control measures

Throughout this section we shall denote by $ a class of Hausdorff
topological commutative groups (resp. Hausdorff topological ordered com-
mutative groups) closed with respect to the product operation and containing an
H s {0} and by & the class of Hausdorff topological commutative groups
G such that for any R-regular G-valued measure u on R there exist an
He9H and a R-regular H-valued measure (resp. a positive R-reqular H-
valued measure) v on R such that N(u) = N() .
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As variants we may require in addition some of the next conditions:

a) the proper atoms of p and v coincide ;

b) Re) = {4 e | »(d) = 0};

c) if u is exhaustive then v is exhaustive.

By Theorem 2.5 any discrete topological commutative group belongs
to & .If p satisfies cce then a) is authomatically fulfilled ([1], Proposition
1.2 ¢)).

Proposition 3.1. The product of any family in & belongs to & .

Let (G.). be a family in & and let x be a R-regular II; G,-valued
measure on RN . For any (el we denote by u, the projection
I,, G, G, ; then w,opu is a f-regular measure. Hence there exist
for any ¢e€l an H,e$ and a R-regular H -valued measure (resp.
a positive R-regular H,-valued measure) » on % such that

N(w) = N).
We denote by » the map
A v(A)ey: R—I1H,.
el

Then » is a R-regular I, H,-valued measure (resp. a positive §-regular
IT,_; H,-valued measure) on R such that

N(p) = NE).

If variant a) holds then we may choose the measures », (¢ €l) such
that the proper atoms of u, and %, coincide. We deduce that the proper
atoms of p and » coincide.

If variant b) holds then

NE) = {AeR|rd) =0}
for any ¢ €I and therefore
NEP) = {AeR]| »(4)=0}.

If variant c¢) holds and if px is exhaustive then for any cel, » is
exhaustive and therefore » is exhaustive. [

Remark. Since any subgroup of a group of & belongs to & it
follows that the projective limits of groups of & belong to & .

Theorem 3.2. Let G be a Hausdorff topological commutative group
and let U be a 0-neighbourhood in G such that for any a € UN\{0} there
exist a continuous semi-value p, on G with p,(a) £1 and an w-map
u, of

U, = {zeG]| ple) <1}

tnto a group of & not vanishing at a. Then G € .
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We may assume G non-discrete. Let u be a R-regular G-valued
measure on R . Let us denote by L the set of 0-neighbourhoods in @
and by U’ the set U\{0}. By Theorem 2.5 there exist for any
(@,V) eU'x®B an G,, €@ and a f-regular @, -valued measure
Aoy on R such that: a) 4,,(4) = u,(u(4)) for any 4 € R with

{uB)| BeR, Bc A} c U,;

b) any proper atom of 1,, is a proper atom of u; c¢) if 9 is an atom
of u such that for any A €9 there exists Be with B ¢ 4 and
u(B)¢ V then U is a proper atom of 1,,,. We denote by A the map

A4 = (A p(4))gyevrx g R— I Goy -

@V)eU’ x B

Then 4 is a f-regular IT, ;) y x @ Gy -valued measure on %R. By a) we

have N(u) < N(A).

Let 9 be a proper atom of A. Then there exists (@, V) e U’ x 8
such that 4,,(F(A)) does not converge to 0. Since N(1) € N(4,,),
A is a proper atom of 1., ([1], Corollary 1.4). By b) 2 is a proper atom
of u.

Let A be a proper atom of u . Then there exists V € ¥ such that for
any A €U there exists Be A with B € 4 and uB)¢V . By c) A
is a proper atom of 1, for any a e U’.

Let 4 e 3\N(u) and let A be a proper atom of u containing A4 .
By the above considerations there exists 7 € 8 such that 9 is a proper
atom of 1, for any a € U’. Since @ is not discrete we get A ¢ N(A) .

Let 4 e R\N(u) such that no proper atom of u contains 4 . By
Proposition 1.2 there exists B e R\N(u) contained in A such that
u(B) e U’ . Then w(B)e U,z and

Uy (B) (u(B)) # 0.

By Proposition 2.3 we get B¢ RN(A,py) for any Ve B and therefore
A ¢N(A). Hence N(u) = N(A) .
Let U be a proper atom of x.Then A4 is anatomof 1 ([1], Corollary
1.4) and by the above considerations it is even a proper atom of 1.
Assume that u is exhaustive. Let (a, V) € U’ X 8 and let (4,),.n
be a disjoint sequence in R . By Proposition 1.6 there exists m € N such
that

{ud)| AeR,4cd,} c U,
for any n =m . We get by a)
z’a,V(An) = ua(cu(An))
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for any n =m . Since (u(4,)),.v converges to 0 and since u, is an
w-map it follows that (4,,(4,)),.y converges to 0. Hence (A(4,)),en
converges to 0 and 1 is exhaustive.

By Proposition 3.1 I, y)cpry g3 Gor € @ . Hence there existan H € §

and a R-regular H-valued measure (resp. a positive f-regular H-valued
measure) » on R such that N(1) = N(v) . It follows that N(u) = N(») .
If variant a) holds we may require in addition that the proper atoms
of 2 and » coincide. Then the proper atoms of x4 and » coincide.
If variant b) holds we may require

Ny) = {AeR| »4)=0}.

If variant ¢) holds and if x is exhaustive, then by the above con-
siderations A is exhaustive and therefore we may choose an exhaustive
v . [

Corollary 3.3. Let G be a Hausdorff topological commutative
group and let U be a O-neighbourhood in G such that for any a € U\{0}
there exist a continuous semi-value p, on G with p,(a) <1 andan w-map
u, of

U, := {we@]| pa) <1}

into R mnot vamishing at a . Then for any K-regular exhaustive G-valued
measure u on R satisfying ccc there exists a positive K-regular exhaustive
real valued measure v on R such that N(u) = N(») .

By the theorem there exist a set X and an exhaustive ®-regular
R¥-valued measure 2 on R such that N(u) = N(4) . Let us denote for
any z € X by =z, the corresponding projection RY — R . By [3] Theorem
1 there exists a sequence (2,),.y in X such that

N() = N Rew,, °p)
nelN
By Proposition 1.6

o, := sup |m,° i (4) < o©
AR

for any a € X . The measure

possesses the required properties. [

From this corollary we may deduce the following result of K. Musial
([2], Theorem 8):

Corollary 34. Let p be a S-regular exhaustive measure on RN
satisfying ccc with values in a locally compact commutative group. Then
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there exists a positive R-reqular exhaustive real valued measure v on R
such that N(u) = N() .
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