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CAUCHY-RIEMANN VECTOR FIELDS

W. H. GREUB and J. R. VANSTONE

Introduction. It is the purpose of this paper to introduce the notions
of (i) a Cauchy-Riemann vector field (CR-field) on a 2-dimensional
Riemannian manifold, (ii) the index of a line field via mapping degree
(cf. the definition in H. Poincaré [4], Ch. XIII) and to use these to obtain a
modernized proof of a classical result of H. Hopf [3].

In §1 we discuss the general properties of CR-fields. In particular,
it is shown that a nonzero CR-field has only isolated zeros.

One of the main results of § 2 states that if Z is a CR-field with an
isolated singularity at a point @ and lim,, |Z(x)| = oo, then the index
of Z at a is negative.

The Gauss—Bonnet theorem for a line field on a compact oriented
Riemannian 2-manifold is established in § 3.

Finally, in § 4 we apply the above notions and results to give a simple
proof of a theorem of H. Hopf on immersions of 2-spheres in R* with
constant mean curvature.

1. Cauchy—Riemann vector fields

1.1. Cauchy—Riemann vector fields. Let M be a smooth orient-
able 2-manifold.

We shall denote the ring of smooth functions on M by &(M) and
the &(M) -module of vector fields on M by X(M) (cf. [2] for details).

Recall that an almost complex structure on M is a tensor field J
of type (1, 1) such that J2 = —I. In particular, a Riemannian metric
g on an oriented 2-manifold determines an almost complex structure
given by

gJ X,Y) = 4,X,Y), X,Y e¥XM),

where A4,, denotes the normed 2-form on M which represents the orienta-
tion.

doi:10.5186/aasfm.1976.0213


koskenoj
Typewritten text
doi:10.5186/aasfm.1976.0213


158 W. H. GREUB and J. R. VANSTONE

A vector field Z on M will be called a Cauchy—Riemann field (CR-
field) if, for every X € ¥(M),

(L.1) J(Z,X]) = [Z,J X].
Example. Let M = C (the complex plane) and consider a vector field
Z = ue +ve,, u,veOC),

where e;,e, is a positive orthonormal basis of C. Then it is easily
checked that Z is a CR-field if and only if  and v satisfy the Cauchy—
Riemann conditions

ex(u) = ey(v), ey(v) = —ey(u).
Lemma I. A vector field Z on M is a CR-field if and only if
(1.2) Z,JZ] = 0.

Proof. 1t is obvious that (1.2) follows from (1.1). Conversely, assume
that (1.2) holds. Fix a point a € M . We may assume that a € carr Z .
Now we distinguish two cases:

Case 1. Z(a) # 0. Then Z(x) # 0 in some neighbourhood U of a
and so the vector fields Z and J Z determine an orthogonal 2-frame at
every point x € U. Thus, if X € ¥(M), we have in U

X =aZ+pJdZ, JX = —BZ+adZ, a,p e€EU),
and so (1.2) implies that
[Z.X] = [Z,02) +[Z,8JZ) = Z(«)-Z + Z(B) - J Z,
whence
J(Z,X]) = Z(o)JZ - ZP)-Z = [Z,J X], in U.
In particular,
JIZ,X] (@) = [Z,J X](a).

Case 11. Z(a) = 0. Then (1.1) follows from Case I via a continuity
argument since a € carr Z .

Corollary. If Z is a CR-field, then sois J Z .

From now on we will assume that the almost complex structure on M
is induced by a Riemannian metric g. Then we have V ,J = 0, where
V x denotes covariant differentiation in the direction of the vector field X
with respect to the corresponding Levi-Civita connection. Note that if ¢

is replaced by 4 g (4 a positive function on M ), then J is not changed
and hence a CR-field in the g-metric is also a CR-field in the 4 - g -metric.
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Lemma II. With the above notation, a vector field Z is a CR-field
if and only if
(1.3) Vx4 =JVxZ, XeXM).

In particular, a parallel vector field is a CR-field.
Proof. Since V is torsion free we have for any two vector fields
X and Z
V,X~-VyZ = [Z,X].

This relation yields
V,JX - JIVyZ = J[Z,X]
and
Vo JX = VxZ = [Z,JX].
It follows that
VixZ —-JVxZ = JZ,X] - [Z,JX].
Thus Z is a CR-field if and only if (1.3) holds.

1.2. The 1forms &, and ¥,. Let Z be a vector field on M
without zeros. Then we can write

(1.4) VyZ = O,X)Z +VPyuX)-JZ, XeXM),
where @, and ¥, are 1-forms on M . They are given explicitly by
(1.5) D,(X) = X(In [Z])
and

1
(1.6) Y,(X) = [Z[_ZAM(Z’VXZ)'

Proposition I. The exterior derivatives of @, and ¥, are given by

(1.7) S®, = 0
and
(1.8) oV, = —K 4y,

where K denotes the Gaussian curvature of M .
Proof. Let R denote the curvature operator of M on X(M):

R(X,Y) = VXVY_VYVX_V[X,Y]’ X:Y EX(M)y
(cf. [2], p. 321). Then (1.4) yields after a short calculation,
(1.9) RX, VNZ = 6D,X,Y) Z +0¥,X,Y)-JZ.
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On the other hand, the Gaussian curvature is determined by the equation
(1.10) RX,Y)Z = —K A, X,Y)-JZ.

Now the proposition follows from (1.9) and (1.10).
Proposition II. A wvector field Z without zeros is a CR-field if
and only if the 1-forms @, and ¥, satisfy

(1.11) x P, = ¥,

where x denotes the Hodge star operator (cf. [5], p. 121).
Proof. First recall that, for any 1-form @ on a Riemannian 2-manifold,
* D(X) = —D(J X), X eX(M). Now let Z e X(M). Then (1.4) yields

VixZ =Ny Z = [@,(] X) + WV, X)| Z + [W,J X) — O,X)]J Z .

Thus Z is a CR-field if and only if ¥, (X) = —®,(J X) = = ®,(X)
ie, ¥, =x9,.
Corollary I. Let Z be a CR-field without zeros. Then

AIn |Z] = K.
Proof. In fact, by definition of the (Hodge) Laplacian (cf. [5], p. 125)
Aln|Z| = —xd0x0In|Z] = —x6xD,.
If Z is a CR-field, Propositions I and II yield
Al |Z| = —%x0¥, = Kx4,, = K.
Corollary II1. If Z is a OR-field without zeros, then
4121 = pK|Z)P — p*|ZP2[8|Z]1, p=12,...

Proof. Apply the formula e~ 4 (e/) = Af — |6 f2, when f=pIn|Z|.

Corollary II1. A CR-field, Z , with constant length is parallel.

Proof. We may assume that the constant length is positive. Then,
by (1.5), @, = 0. Thus Proposition IT implies that ¥, =0, whence
VxZ =0, XeXM).

b

1.3. Existence of CR-vector fields. In this section we shall prove
the local existence of non-trivial CR-fields.

Proposition II1. Let aeM and let h eT (M) be a nonzero
tangent vector. Then there is a CR-field Z in some neighbourhood U of a
such that Z(a) = h .

Proof. Assume first that the Gaussian curvature K vanishes in a
neighbourhood ¥V of a. Choose a simply connected open subset U c V
containing @ . Then there is precisely one parallel vector field Z in U
such that Z(a) = A. By Lemma II, Z is a CR-field in U .
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In the general case introduce a new Riemannian metric § on M by

setting
§= eZAg) }‘E@(M)

The corresponding Gaussian curvature K is given by
PK = K+ 412,

where 4 denotes the Laplacian with respect to the metric g . Choose for
A a local solution of the elliptic differential equation

41 = —K

(cf. [5], p. 1561). Then K = 0 and so there exists a local CR-field Z in the
g-metric such that Z(a) = k. But this is also a CR-field in the g-metric.
(Cf. the remark above Lemma II1.)

1.4. Cauchy—Riemann frames. Let e; + 0 be a CR-field in a simply
connected neighbourhood U of a point @ € M and set e, = Je;. Then
e, is again a CR-field (cf. corollary to Lemma I). Moreover, we have the
relations

led] = lesl, gleg,e) = 0 and [e1,€] = 0.

Thus e, e, is an orthogonal frame field in U . It will be called a Cauchy—
Riemann frame (CR-frame).
Now consider the dual frame e*!, ¢*2. Then

de¥t = 0 and de¥ = 0.
Thus e*! and e*? are gradient fields,
e¥ = dat, 21e@U), 1=12.

Since the covectors e*l(x) and e*?(x) are linearly independent, it follows
that the functions ', a2 are local coordinates in a neighbourhood V ¢ U
of a. In this local coordinate system the metric tensor satisfies g;; = ¢y ,
g2 = 0 and so (2!, ?) is a system of isothermal parameters.

Now choose a covering M = U,V by such open sets and introduce,
in each V,, isothermal parameters. Then it is easy to check that correspond-
ing indentification maps are conformal and so M becomes a 1-dimensional
complex analytic manifold.

Finally, let e, , e, be a CR-frame in U and let

Z = ue; + ve,

be a vector field. Then it is easy to check that Z is a CR-field if and only
if the functions » and v satisfy
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ej(u) = ey(v), eqv) = —ey(u).
Thus if Z is a CR-field, then
f=u+1iv

is a complex analytic function in U .
In particular, a nonzero CR-field has only isolated zeros.

2. The index of a line field at an isolated singularity

2.1. The index of a vector field. Let X be a vector field on an
oriented 2-manifold M with an isolated singularity at a point a. Recall
that the index of X at a is defined as follows: Choose a local trivialization
of the tangent bundle, TUi U x R?. Then X determines a map
X, U="U - {a} — RZ(: R? — {0}); the index of X at a is the
local degree of X, at a,

ja(X) = degaXU'
It is well known that the index can be expressed in terms of a line

integral. Regard R? as the complex plane C and let 2 denote the 1-
form in € = C — {0} given by

1
(2.2) ux) = o [ xte,

where S, is a positively oriented 1-sphere in U around a .

If e,, e, is a positively oriented 2-frame in U, then the correspond-
ing trivialization of 7', is given by X(x)+ (@, [e*(X) + ¢ e*(X)] (z)),
xelU, where e*, ¢*2 is the dual 2-frame. In particular, if X =
ue +vey,, then X, =u +iv.

Now formula (2.2) reads

1 uov —vou

(2.3) JoX) = %7 ut + o2

Sa

Proposition I. Let Z be a CR-field with an isolated singularity
at a. Then
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[ >o0, if lim [Z] = 0;

r—>a

JZ) } =0, if 0 <lim |Z] < o0;

<0, if lim |Z| = .
Proof. Choose a CR-frame e, e, in a neighbourhood U of a and
write
Z = ue; +ve,y.
Then
f=u+1iv

is a complex analytic function in U (cf. section 1.4) and so we have, in
view of (2.3),

. 1L ([
JalZ) = %Sfﬂz)dz-

Now the proposition follows from a standard theorem on complex analytic
functions.

2.2, Line fields. Let M be a smooth oriented 2-manifold with
tangent bundle <, = (T'),,p, M , R?) and consider the corresponding
projective bundle =, = (P,,,q, M , R P) whose fibre at = consists of
the 1-dimensional subspaces of T, (M). A line field on M is a smooth
cross-section in ;.

Suppose now that o is a line field on M with an isolated singularity
at a point a. To define the index of o at a, choose a local trivialization

Py Svu X R P! of m,, and consider the map oy, : U — R P! determined
by o. The index of o at a is defined as the mapping degree

ja(g) = dega Oy -
In particular, if the line field o is induced from a unit vector field X
with an isolated singularity at a , then o, = p° X, where p: S*— R P!
is the double covering. Thus,

(2.4) Ja(0) = 2j,(X).

Let ¢ : M — N be a smooth map between 2-manifolds such that the
induced map (dg), is a linear isomorphism for each @ € M. Then ¢ induces
a bundle map ¢: P, — Py which restricts to diffeomorphisms on the
fibres. Thus every line field v on N determines a line field ¢ on M
given by

o) = @) ttlp), well.
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Moreover, if 7 has an isolated singularity at b = ¢(a), then o has
an isolated singularity at « and

.ja(a) = dega(p ‘jb(r) ’

as follows from standard properties of the mapping degree.

As in the case of vector fields there is an integral formula for j, (o).
In fact, consider the double covering p: S'— R P! and let Q4. be the
unique 1-form on R P! satisfying

0F Qpp = 2.

Since p has degree 2, it follows that

Qep = 7.

RP!

Thus
1
deg, oy = - op Qgp
Sa

and we obtain the formula

1
(2.5) @) =~ [ ot 2.

Sa

23. Proposition II. Let ¢ be a smooth map from a connected
2-manifold M to S'. Assume that the induced map in homology takes all
elements of H{(M ; Z) into even multiples of the generator of H,(S'; Z) .
Then there is a smooth map w: M — S' such that

px) = wpk)?, ael.

Proof. Choose a base point x, on M . Without loss of generality we
may assume that ¢(x,) = 1. Let 2 be the 1-form on S' given by (2.1).
The 1-form @ determines a 1-form @, = ¢* 2 on M . If « is a loop
on M we have, in view of the hypothesis,

f9¢=/¢*9=fg=2k/9=4kn, keZ.
Sl

a o o(®)
Thus a smooth map y: M — S* is well defined by

x

p() = exp<%/9¢>, xelM.

o
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To show that w(x)? = ¢(x), consider the map yx: M — S given by

do) = var = exp(i [ 2,).

%o

It satisfies
(2.6) dy),h = Qx;h)iyx), zeM, heT, (M).

On the other hand, the relation (¢(z), ¢(x)) =1, x €M, implies
that

(2.7) o), b = Q@) ; [de), h)ip@) = 2@;h) ie@).
Equations (2.6) and (2.7) show that
vy = A-gp, ALeC.

Since y(x,) = @(x,) = 1, it follows that y = ¢ .

Corollary. Let ¢: M-—-~RP' (M connected) be a smooth map
and assume that the induced map in homology takes all the elements of
H,(M :Z) into even multiples of the generator of H (R P';Z). Then ¢
lifts to a smooth map ¢ : M — S*. N

Proof. Consider the diffeomorphism « : S <= R P! which is determined
by the commutative diagram

RO L N |
A
4 S
\%
R P

where s(z) = 22, z €S'. Then the composite map

o

MY, RrRP 2. S

satisfies the hypothesis of Proposition II. Thus there is a smooth map
¢: M —8' such that

It follows that
g =0°0,
Proposition II11. Let o be a line field in a neighbourhood U

of a with an isolated singularity at a . Then o lifts to a vector field if and
only if j,(o) s even.
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Proof. If o lifts to a vector field, formula (2.4) shows that j (o) is even.
Conversely, if j,(o) is even, choose a trivialization of 7, and apply the
corollary of Proposition II to oy .

3. The Gauss—Bonnet theorem for line fields

3.1. Line fields on Riemannian manifolds. In section 3.3 it will
be shown that the index sum of a line field o with finitely many
singularities on a compact oriented Riemannian 2-manifold M is given by

jozi/KAM’
44
M

where K denotes the Gaussian curvature of 3 . The proof is essentially
based on a 1-form ¥, associated with o .

Consider the circle bundle (S,,,r, M, S) associated with 7,, via the
metric and observe that S, is a double covering manifold of P,,. Choose
an open covering M = U, U, such that the covering projection
0: Sy — P, admits a cross-section over each U,. Then there are
precisely two unit vector fields X, and —X, in U, such that

Now set
Vow;h) = dylx; X (x),V X, (@;h), xeU,, heT, (U,).

Since ¥, is not changed if X, is replaced by —X,, it is a well-defined
l-form in U, . Moreover, if U, N U, = @, we have

¥, =%, inU,NU,

and so the local 1-forms ¥, determine a 1-form ¥, on M .
Proposition I. The 1-form ¥, has the following properties:
(i) 0¥, = —K 4,;
(ii) if o has an isolated singularity at a and if the metric is flat in a

neighbourhood of a , then
. 1
Ju(a) = — fTa °
7
Sl

Proof. (i) follows directly from the definition of ¥, and formula (1.8).
To establish (ii) observe that, since the metric is flat near @, we can

choose a trivialization 7' S U x R* which induces isometries between
the tangent spaces. It is easily checked that for such a trivialization
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% _ W
oy Qrp = ¥,

and so (ii) follows from formula (2.5).

3.2. The Gauss—Bonnet theorem. Suppose now that M is oriented
and compact. Let ¢ be a line field with finitely many singularities and
denote the index sum of o by j, .

Theorem. With the notation and hypotheses above,

. 1
Jo = "‘/\KAM'
7T
M

Thus j, = 2 y(M), where y(M) denotes the Euler characteristic of M .

For the proof we establish first

Lemma I. Let g, and g, be Riemannian metrics on an oriented
2-mamnifold which agree in a neighbourhood U of a point a . Denote the cor-
responding normed 2-forms and Gaussian curvatures by 4; and K; (i =
1,2). Then the 2-form

K4, — Ky 4,

s exact on M .

Proof. Denote the Levi-Civita connections corresponding to g; by
V, (i =1,2). Choose a vector field, X, with a single singularity at a
and consider the 1-forms

dy@; X(x), V,; X(x; b))

Filzsh) = — 0 X@), X@)

xeM —{a}, i =1,2.

Then by (1.8)

whence
(3.1) 0 (W,—¥,) = K,4, — Ky 4,.
Butin U wehave g, = g, and thus (3.1) holds on the whole manifold A/ .

3.3. Proof of the theorem. We first reduce to the case that g is
flat in a neighbourhood of the singularities @, (¢ = 1,...,7). Choose
neighbourhoods U, of a; such that U, N U; = O for i+ j and let

V.c U, be open subsets diffeomorphic to the unit disk such that
V.c U,. Set

~

U=M-UV,.
Then
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is an open covering of M . Choose a partition of unity (cf. [1], p. 32)
Sfis -, [, ,f subordinate to this covering. Then

g = f‘g+_zlfi'gi
is again a Riemannian metric where g; is a flat metric in U, . Since § = g,
in V;, it follows that g is flat in ¥,. On the other hand, § = ¢ in
M — Uj_, U;. Thus, by Lemma I,

f K4 = f K4.

M M

Hence we may assume that g isflatin V, (i = 1,...,r).

Now consider the 1-form ¥, (cf. section 3.1) in the complement of the
singularities {a;,...,a,}. Set V= U/_; V;,. Then Stokes’ theorem yields,
in view of Proposition I, (i)

fKAMZZ Tu, Sai=aV,i,7:=l,...,T.

On the other hand, by part (ii) of that proposition,

f‘PU = awj(0), t=1..,r.
Sa;

Finally, since the metric is flat in V',

fKAM=O.
14

These equations yield

4. Immersions into R3 with constant mean curvature

4.1. Let M be an oriented Riemannian 2-manifold and let ¢ : M — R3
be an isometric immersion. Let ¥, denote the oriented plane in R3 given
by

F, = (do),TM), zeM.

x

Then there is a unique unit vector n(xz) € R® orthogonal to F_ such that
the oriented plane F, together with n(z) induces the given orientation of
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R3 . The correspondence x> n(x) determines a smooth map n: M — R3
called the normal field of the immersion ¢ .

Recall that the second fundamental form for ¢ is the symmetric tensor
field of degree two on M given by

A@;h, k) = — {dp),b,(dn), k>, xeM, h,k eT(M).
Thus A determines a selfadjoint tensor field I" of type (1, 1) such that
(4.1) glx; I'xyh , k) = A(x;h, k), xeM, h,k €T, (M),
where ¢ denotes the Riemannian metric. Recall further that the mean
curvature of ¢ is defined by

H = 1trI'.

In this section we shall prove the following

Theorem (Hopf). Let M be a Riemannian 2-manifold which is
diffeomorphic to S% and let ¢ : M — R® be an isometric immersion with
constant mean curvature. Then ¢ 1s a diffeomorphism from M onto a
Buclidean 2-sphere in R3 .

4.2. Gauss—Godazzi fields. A selfadjoint tensor field @ of type
(1,1) ona Riemannian 2-manifold will be called a Gauss-Codazzi field, if
(42)  Vx(O(Y) - Vy(0X) = 6(X,Y]), X,Y eX(M).

In particular, the tensor field I determined by (4.1) is a Gauss-Codazzi
field.

Lemma I. A4 nonzero Gauss—Codazzi field, © , with vanishing trace
has only isolated zeros.

Proof. Set
é = e,
where p is a smooth function. Then @ satisfies the relation
(43) Vy(0Y)— Vy(6X) = X(u)6(Y) - ¥Y(u) 0(X) + 6((X, ¥]).
Now choose a local Cauchy—-Riemann frame e, , e, and write
Oe, = ue, + vey,
Oe, = ve, — uey.
Then (4.2) implies that

e1(v) — ey(u) = e (u—f)v — e(u—f)u
and
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er(u) + e(v) = ej(u—f)u + ex(u—f)v,

where f = In |e;|? = In |e,|?, as is easily checked by using 1.4 and 1.5.
Now set

wo=1r.
Then these equations become
ey(v) = ey(u),
e(v) = —ey(u).

It follows that » + ¢« is a complex analytic function and so it can have

only isolated zeros. Thus the same is true for 6 and hence for © .

Corollary. If @ is a nonzero Gauss—Codazzi field with vanishing
trace, then the function det © has only isolated zeros.

Lemma II. Let @ be a trace free Gauss—Codazzi field and suppose
that O(x) # 0 for x € U (an open subset of M ). Denote the positive eigen-
value of O(x) by Ax) (xeU). Let Z be a smooth eigenvector field of ©
wm Vc U suchthat |Z|*> = A1, Then Z is a CR-field.

Proof. Consider the 1-forms @, and ¥, (cf. section 1.2). We have
to show that

(4.4) x P, = ¥,.
Now the unit vector field

1 _
X = —27 =Viz
|Z|

satisfies
O0X) = AX.

X determines a 1-form ¥, (cf. section 1.2) such that
VX = Pu(Y)-JX), YeXM).

Since tr@® =0, Jo® + O©oJ =0. Thus 6J X = —4-J X . Putting
Y = JX in (4.2) we find that these relations imply that

[JX(A) — 22 - Px(X)] X + [X(A) +22-P,(JX)]JX = 0.
Thus (since X, J X form a frame on V')
(4.5) Y(A) = =21 -¥(J(Y)), YeXV).
Finally, observe that, by (1.5) and (1.6)

1
b, = —ﬂdl and ¥, = ¥,

and thus (4.5) implies (4.4).
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4.3. The operator ©. Let © be a nonzero trace free Gauss—
Codazzi field and set M = M — {a,, ..., qa,}, where the a, are the zeros
of @ (cf. Lemma I). Then @ induces a strong bundle map @ : Py — Py, .

Since O(x): T (M )—>Tx(M ) is a nonzero selfadjoint linear map with
trace zero, there are precisely two (orthogonal) straight lines o¢,(x) and

oy(x) in T,M) spanned by its eigenvectors. These lines define cross-
sections ¢, and o, in P, which satisfy

O(g,) = o; (e=1,2).

Lemma III. Let o be a cross-section in Py such that é(a) = o and
let a be one of the zeros of © . Then

Jalo) < 0.

Proof. Assume first that j,(o) is even. Then o lifts to a vector field
X in a neighbourhood U of a (cf. Proposition III, section 2.3). We may
assume that X is a unit vector field. Since

it follows that X is a unit eigenvector field of @ . Denote the corresponding
eigenvalue at « by A(x). Then, by Lemma II,

1
Z = —X
Vi
is a CR-field. Since A2 = — det @, it follows that
lim |Z] = o

and so Proposition 1, section 2.1, implies that j,(Z) << 0. Thus, by formula
(2.4),
jo) < 0.

If j,(0) is odd, choose a diffeomorphism ¢ from U onto the unit

disk in the complex plane such that ¢(a) = 0 and set U = U — {a}.
Let s: U—U be the map which corresponds to the map z+>22,

zeC, under ¢. Then (ds),: T (U)—T,(U) is a linear isomorphism
for x € U. Thus s induces a bundle map s: P; — Py and so o deter-

mines a cross-section o, in U by (cf. section 2.2)

o(x) = s1o(s(x)).
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Finally, introduce a new Riemannian metric ¢, in U by ¢, = s*g and
consider the tensor field @, given by

0,(x) = (ds); O(s(w)) (ds),, «eU.

Then @, is a trace free Gauss—Codazzi field with respect to g, and

04(0y) = 0y.

Since (cf. section 2.2)
ja(gl) = dega $§ .ja(g) = 2ja(a)
it follows from the first part of the proof that
Ja(01) < 0.
Thus
(o) < 0.

4.4. Proof of the Hopf theorem. Let I' be the tensor field of
type (1, 1) corresponding to the second fundamental form and set

(4.6) © =1I-H-1
(I the unit tensor field). Then, since H is constant, @ is again a Gauss—
Codazzi field. Moreover.
tre = 0.
We shall show that

(4.7) O = 0.
In fact, assume that © = 0. Then, by Lemma 4.1, @ has only finitely

many zeros a.,..,a, (r =21). Set M =M — {a,,...,a,}. In view

L 4

of section 4.3 there is a cross-section ¢ in Py such that

5(0) = 0o
Hence, by Lemma III,
Julo) < 0.
It follows that
jr < 0.

On the other hand, since M is diffeomorphic to S2, by the Gauss—Bonnet
theorem,

Jo = 2x(M) = 4.

Thus we have a contradiction and (4.7) follows.
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Now relation (4.6) implies via a standard result (cf. [6], p. 99) that ¢
maps M into a Euclidean sphere S? in R3. Since M is compact, this
must be an onto map and hence a covering projection. Since 8% is simply
connected, it follows that ¢ is a diffeomorphism.
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