
Annales Academire Scientiarum Fennicm
Series A. I. Mathematica
Volumen 2, 1976, 157 - f 73

Oommentationes in honorem
Rolf Nevanlinna

LXXX annos nato

CAUCHY-RIEMAI\I\ YECTOR FIELDS

W. H. GREUB and J. R. VANSTONE

Introduction. It is the purpose of this paper to introduce the notions

of (i) a Cauchy-Riemann vector field (CR-field) on a 2-dimensional

Riemannian manifold, (ii; the index of a line field via mapping degree

(cf. the definition in H. Poincaft l4), Ch. XIII) and to use these to obtain a
modernized proof of a classical result of H. Hopf [3].

In $ f we discuss the general properties of CR-fields. In particular,
it is shown that a nonzero CR,-field has only isolated zeros.

One of the main results of $ 2 states that if. Z is a CR,-field with an

isolated. singularity at a point a and Iim"-o lZ(r)l : oo , then the index
of Z at, a is negative.

The Gauss-Bonnet theorem for a line field on a compact oriented

Riemannian 2-manifold is established in $ 3.

X'inally, in $ 4 we apply the above notions and results to give a simplo
proof of a theorem of H. Hopf on immersions of 2-spheres irr R8 with
constant mean curvature.

l. Cauchy-Riemann vector fields

1.1. Cauchy-Riemann vector fields. Let M be a smooth orient-
able 2-manifold.

We shall denote the ring of smooth functions on M by 6(Jtl) and

the @(M) -module of vector fields on M by X,(M) (cf. [2] for details).

Recall that an almost complex structure on M is a tensor field J
of type (l,l) such lhat Jz : -1. In particular, a Riemannian metric
g on an oriented 2-manifold determines an almost complex structure
given by

g(JX,Y): /M(X,Y), X,Y etr(M),

where ./, denotes the normed 2-form on M which represents the orienta-

tion.
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A vector field Z on M will be called a Cauchy-Riemann fi,etd, (CR-
field) if, for every X e tr(M) ,

(r.l) J{z , xl) : lz , J xl .

Euample. Let M : C (the complex plane) and consider a vector field

Z: ue1 *ae2t '1r,,1) eg(C),

where er, e, is a positive orthonormal basis of C . Then it is easily
checked that Z is a CR-field if and only if z and o satisfy the Cauchy-
Riemann conditions

et(u) : er(u), er(a) : -ez(u) .

Lemma f. Aaectorfield, Z on M isaCH-field,i,f and,ontyi,f

(r.2) lz,JzJ: Q.

Proof. It is obvious that (f .2) follows from (l.f ). Conversely, assume
that (f.2) holds. X'ix a point o eM. We may a,ssume that a ecanZ.
Now we distinguish two cases:

Case I. Z(o) + o . Then Z(r) + 0 in some neighbourhood U of a
and so the vector frelds Z and ./ Z determine an orthogonal 2-frame at
every point r e U . Thus, if X e X,(M), we have in U

X: aZ+pJZ, JX: _FZ+uJZ, n,fl egg),
and so (f .2) implies that

lZ,X) : lZ,xZ) + IZ,BJ Zl : Z(q,). Z + Z(fi . J Z,
whence

JIZ,X]) : Z(").J Z - Z(p).2 : lZ,J Xl, in (1.

fn particular,

JIZ,X](a): lZ,JXl(a).
Case TI. Z(a) :0 . Then (f .f ) follows from Case I via a continuity

argumentsince aecarcZ.
Corollary. If Z isaCH-field,,thensois JZ.
X'rom now on we will assume that the almost complex structure on M

is induced by a Riemannian metric a . Then we have V x J : 0, where
Vr denotes covariant differentiation in the direction of the vector field x
with respect to the corresponding Levi-Civita connection. Note lhat if g
isreplacedby l.g (A apositivefunctionon M ),then "/ isnotchanged
and hence a CR-field in the g-metric is also a CR,-field in the I .g -metric.
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L e m m a I I. With the aboue notation, a aector field' Z is a C&-fielil
i,f anil only i,f

(I.3) VrxZ : JYxZ, XeX,(M).

In partöcular, a paral,trel aector fielil is a CR-fieId'.
Proof. Since V is torsion free we have for any two vector fi.elds

X and Z
vrx-Y*z t lz,xl .

This relation yields

VzJX-JYrzt: JLZ,X)
and

VzJX-YwZ: lZ,JXl .

It follows that

V rx7 - JY *Z : JlZ,Xl - lZ,J Xl'
Thus Z is a CR-field if and only if (1.3) holds.

1.2. The l-forms Oz and Ytz. Let Z be a vector field on M
without zeros. Then we can write

(1.4) Y*Z : @r(X).2 +Vr(X)'J Z, X eX\M),

where (0, and Y, are l-forms on M. Theyaregivenexplicitlyby

(r.5) @,(X) : X(tnlzl)

and

(1.6) Y"(X) : ät*(z ,Y * z) .

lzl

P r o p o s i t i o n I. The erteri,or deri,aatiaes of @, anil V, are giaenby

(1.7) ö@t : g

qnd,

(1.8) övz : -K /M,

where K ilcnotes the Gaussian curaature of M .

Proof . Let R denote the curvature operator of M on X,(M):

R(X,Y) : V*Vy - V"Vr - Vrx,vl , X,Y efr(M),

(cf. tZl, p. 321). Then (t.a) yields after a short calculation,

(1.9) R(X,Y) Z : öQr(X,y). Z + öYz(X,y). J Z.
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on the other hand, the Gaussian curvature is determined by the equation

(r.r0) R(x , y) z : -K /M(X , y).J Z.
Now the proposition follows from (f.9) and (1.10).

Prop o siti on I L A aector fi,eld, Z wi,thout zeros,i,s a CR-field, if
anil onlg if the t-forms tD" anil, v, satisfy

(t.tt) *Qz: Yr,
where ,r d,enotes the Hod,ge star operator (cf. lE), p. l2l).

Proof . x'irst recall that, for any l-form @ on a Riemannian 2-manifold,
*tD(X): -@(J X), X eX,@[). Now tet Z etr@[). Then (r.a) yietds

V$Z - JYrZ : l@z(J X) +y"(X)lZ + IV"(J X) - Az(X)lJ Z.
Thus Z is a CR-field if and only if V"(X): -@r(JX): * @r(X);
i.e., V2 - ,r @z .

Corollary I. Let Z beaCR-fieldwithoutzeros. Then

ltnlZl : K.
Proof. In fact, by definition of the (Hodge) Laplacian (cf. [5], p. 125)

llnlzl -*ö*ötnlZl -xö*(0".
If Z is a CR-field, Propositions f and II yield

lblzl: -xöY2: Kxlu: K.
C or oll ary II. If Z i,s a CR-fieId, without zeros, then

/ lZlP : p K lzlp - pz lzlp-z lö lzllr, p : r,2,....
Proof. Apply the formula e-f / (et) : lf - löflr, when f : ptnlzl.
corollary rrr. A cR-fi,etd,, z, wi,th constant length i,s Ttiraltel,.
Proo{' we may assume that the constant length is positive. Then,

by (f.5), @z:0. Thus Proposition II implies that Vr:0, whence
VyZ:0, XeX,(lW).

1.3. Existence of cR-vector fields. rn this section we shall prove
the local existence of non-trivial CR-fields.

Proposition III. Let aeM and, let heT,(M) beanonzero
tangent aector. Then there is a c&-field, z in some neighbourhood, u of a
such that Z(a) : h .

froof. assume first that the Gaussiair curvature K vanishes in a
neighbourhood z of a. choose a simply connected open subset u c v
containing a. Then there is precisely one paralrel vector field z in u
such that Z(a) : h . By Lemma II, Z is a CR,-field in U .
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In the general case introduce a, new Riemannian metric j on M by
setting

d: e'^g, )'e6(M).

The corresponding Gaussian curvature å is given by

ez^k: K+lX,
where / åenotes the Laplacian with respect to the metric g . Choose for
.l a local solution of the elliptic differential equation

/1: -K
(cf. [5], p. l5l). Then å : 0 and so there exists a local CR,-field Z inthe
fr-metric such that Z(a) : h . But this is also a CR,-field in the g-metric.
(Cf. the remark above Lemma II.)

1.4. Cauchy-Riemann lrames. Let e, + 0 be a CR-field in a simply
connected neighbourhood U of a point a e M and set ez: J er. Then
e, is again a CR-field (cf. corollary to Lemma f). Moreover, we have the
relations

letl lerl , g(er, er) : 0 and let, ezf : Q .

Thus e, , e, is an orthogonal frame field in a . h will be called a Cauchy-
Ri,emann frame (CR-frame).

Now consider the dual frame s*L , s*2. Then

öe*t - 0 and öe*2 : 0.

Thus e*l and e*2 are gradient fields,

e*d: öfii, uie6(U), ,i,:1,2.

Since the covectors e*l(r) and e*z(r) arc'linearly independent, it follows
that the functions fti , frZ are local coordinates in a neighbourhood V c U
of o . In this local coordinate system the metric tensor satisfies gn: gzz,
gn : 0 and. so (rL , rz) is a system of isothermal parameters.

Now choose a covering M : UoVo by such open sets and introduce,
in each Zo , isothermal paramet'ers. Then it is easy to check that correspond-
ing indentification maps are conformal and so ll4 becomes a l-dimensional
compler analytic mani,fol,il,.

n'inally, let e,, e, be a CR-frame in U and let

Z : ueL+aez

be a vector field. Then it is easy to check bh;at Z is a CR-field if and only
if the functions u and. n satisfy
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et(u)- ez@), et(u)- -ez(u).
Thus if Z is a CR-field, then

f _ % + ia

is a complex analytic function in tl
In particular, a nonzero CR-field has only isolated zeros.

2. The index of a line field at an isolated singularity

2.1. The index of a vector field. Let, X be a vector field on an
oriented 2-manifold M :wlth an isolated singularity at a point a . Recall
that the index of X at a is defined as follows: Choose a local trivralization

of the. tangent bundle,. Tra(J x R2. Then X determines a map
Xu: U: U - {a} - Rt(: Rt - {O}); the index of X at a is the
local degree of Xu at a ,

i,(x) : degoxu.

It is well known that the index can be expressed in terms of a line
integral. Regard R2 as the complex plane C and let o denote the 1-

form in C:C -{0} givenby

1l(2.r) e(z;h): 
l*/(z,h): l"lIm(Zh), ?€c,hec,

where / is the normed determinant function. Then

(2.2)

where B, is a positively oriented l-sphere in U around a .

If er, e, is a positively oriented 2-frame in U , then the correspond-
ing trivialization of Tu is given by X(r)+>(r,le*L(X) + i,e*z(X)l(r)),
r e U , where s*L , s*2 is the dual 2-frame. fn particular, if X :
'ue1 l1)a2t then Xu:u+i,u.

Now formula (2.2) reads

1r
J,(X): 2*J XfrQ,

sa

(2.3)

Propositio
at a . Tlten

lr
i,(x) : z" J

sa

n f. Let Z bea

uöa uöu
u,2 + I)z

C B-fi,eld, u)ith e,% isolateil singularity
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i.(z)

Proof. Choose a CR
write

Z : ueL+?)ez.
Then

f : u + i'a

is a complex analytic function in U (cf. section 1.4) and so we have, in
view of (2.3),

I f f'(z) -i,(z) : ,"t J '# o" .

s4

Now the proposition follows from a stand.ard theorem on complex analytic
functions.

2.2. Line fields. Let M be a smooth oriented 2-manifold with
tangent bundle tw : (Tu,g , M , R2) and consider the corresponding
projective bundle na: (Pu,g,M,RPt) whose fibre at c consists of
the l-dimensional subspaces of T,(M). A line field, on M is a smooth
cross-section in n* .

Suppose now that o is a line field on M with an isolated singularity
at a point a . To define the index of o at o, choose a local trivialization:
Pu 3 U x R P1 of n* an:d. consider the map ou: U ---> R Pr determined
by o. The index of o at o is defined as the mapping degree

j"(o) : degoru .

In particular, if the line field o is induced from a unit vector field X
withanisolatedsingularity at a, then oo, : Q" Xa, where q: S1 ->RPl
is the double covering. Thus,

(2.4) j.(o) - 2 j"(X).

Let g: M ---> -l[ be a smooth map between 2-manifolds such that the
inducedmap (ilq)" isalinearisomorphismforeach reM. Then g induces
a bundle map 6t P*+Ptr which restricts to diffeomorphisms on the
fibres. Thus every line field z on ff determines a line field o on M
given by

o(r): Q@)-tdV@D, reM.

t

l:0
l

-frame

, if ylzl: o;

, if 0 <llm l7l

, if y:lzl: oo.

aL , ez in a neighbourhood. U of cr,, and
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Moreover, if z has an isolated singularity at b : V@), then o has
an isolated singularity at a and

j,(o) : drg"g' joG),

as follows from stand.ard properties of the mapping degree.
As in the case of vector fields there is an integral formula for j.(o) .

fn fact, consid.er the double covering g : B1 --> R PL and let o"r, be the
unique l-form on R P1 satisfying

p*d)*r,: A.

Since p has degree 2 , it follows that

Thus

and we obtain the formula

(2.5)

2.3. Proposition IT. Let E beasmoothmapfromaconnecteil,
2-manifold, M to Sr . Assume that the ind,uceil map in homology talces aII,

elements of H,(M ; Z) 'i,nto euen multi,ples of the generator of E,(St ; Z) .

Then there is a smooth m,ap q) : M ---> SL such that

p(r): qt(r)z, reM.
Proof . Choose a base point co on M . Without loss of generality we

ma,y assume that q(ro) : I . Let O be the I-form on B1 given by (2.1).
Thel-form O determinesal-form Qr:g* O on M,If a isaloop
on M we have, in view of the hypothesis,

r
J Q*"- iu'

degno,: : f * e*,,
s
"A

tr
i,(o) - ; J oö Q*o,.

s4

Ies: lr.a: Ia:ztcta:Atcn, kez,

Thus u **ooth ;rn y) : o l!' ,t is welt uro"ed by

,p(r): exp(; I o,), neM
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To show that ,p(r)' : V@), consider given by

x@) : v@)z :

It satisfies

(z.q) \ 1dy1,h: or(r;h)ix@), re M,heT*(M).

On'the other hand, the relation (V@),q(r)): l, reM, implies
that

(2.7) (ilE)*h : rt(v@) ; (dd-h) i q(r) : ar@ ; h) i q(r) .

Equations (2.6) and (2.7) show that

x : ]t'9, )' eC '

Since X@J : V@r) : l, it follows that X : q'
Corollary. Let g, M-+RPl (M connected')beasmoothmapt

anil, assume that the ind,uceil map in homology talces al'l' the elements of
Hr(M:Z) into eaen multi,pl'es of the generator of Ht(RPt;Z). Then q
Lifts to a smooth rndp ö : M ---> SL . :

Proof . Consider the diffeomorphism a : B1<- R Pl which is determined
by the commutative diagram

where s(z) - 22, z c$l

satisfies the hypothesis

fi : M -> SL such that
is a smooth map

u,og: t"ö: aoQ"e.
It follows that

E : QOö.

Propo sition III. Let o be a trine fielil in a ne'i,ghbourhooil' U
of a witlt, an'i,sol'ated, si,ngul'arity at a . Then o l,i,fts to a aector fielil, if anil,

only i,f j"(o) i,s eaen.

the map X: M + SL

e'n (; I o,).
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Proof . If o lifts to a vector field, formula Q.Q shows that, j"(o) is even.
Conversely, if j,(o) is even, choose a trivialization of z' and apply the
corollary of Proposition If to ou.

3. The Gauss-Bonnet theorem tor line flelds

3.1. Line fields ofl Rlemannlan manifolds. In section B,B it will
be shown that the index sum of a line field o with finitely many
singularities on a, compact oriented Riemannian 2-manifold Jl,/ is given by

4:JO /*,

where K denotes the Gaussian curvature of M
based on a, I -form Y o associated with o .

The proof is essentially

Consider the circle bundle (S*,r,M,St) associated with r* via the
metric and observe that Baz is a double covering manifold of P*. Choose
an open covering M : UnUo such that the covering projection
Q: B,n *Pu admits a cross-section over each (Jo. Then there are
precisely two unit vector fields X* and -X" in Un such that

Q"Xo: o'
Now set

V,(*;h) : /M@; X*(*), Y Xo@;h)) , fr € Uo, h eT*([]*)

Since Po is not changed if X* is replaced by - Xn , it is a well-defined
I-form h Uo . Moreover, if U, n UF + 0 , we have

Yo _ Vp in (Jo n UB

and so the local l-forms Fo determine a l-form Yo on M .

Pr o p o s it i o n I. The I-form Yo has the folluni,ng proltert,i,es:
(i) öY, : -K /*t
(ii) if o has an i,solateil si,ngulari,tg at a and, if the metri,c is flat i,n a

nei,ghbourhooil, of a, then

i"(o) - I Iv".nr!

Proof. (i) follows directly from the definition of V, and formula (1.8).
To establish (ii) observe that, since the metric is flat near o, we can

choose a trivialization Toa (J x Rz which induces isometries between
the tangent spaces, It is easily checked that for such a trivialization

:{"
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ofi Q*r, - Yo

and so (ii) follows from formula (2.5).

3.2. The Gauss-Bonnet theorem. Suppose now that ll4 is oriented
and compact. Let o be a line field with finitely ma,ny singularities and

d.enote the index sum of o by j,.
T h e o r e m. With the notation and' hypotheses aboue,

i, : r [ *o*.ni
Thus jo : 2 X,(M) , where XQ[) ilenotes the Eul,er character'i,sti,c of M .

For the proof we establish first
L e m m a I. Let gt and, g, be R'iemann'i,an metr'i,cs on cwl oriented,

2-mani,fold' wh'i,ch agree i,n a neighbourhood, U of a point a . Denote the cor-

responili,ng normeil 2-forms anil, Gaussian curaatures by ln and, K, (i' :
l, 2 ). Then the 2-form

Krlr- Kr/,
'i,s ena,ct on M .

Proof. Denote the Levi-Civita connections corresponding to gr by
Vn (d:1,2 ). Choose a vector field, X, with a single singularity at a

and consider the l-forms

/o@; X(r) , Y oX(r; h))
Vn@;h) :

Then by (1.8)

9lr;X(r),X("))

öY, : -Ki lo,

, ne M {a}, d_ L,2

i : 1, 2 ,

whence

(3.r) ö(Yz-Y!) - KLlt-K2/2.
But in u we have gr : gz and thus (3.I) holds on the whole manifold ll{

3.3. Proof of the theorem. We first reduce to the case that g is

flat in a neighbourhood of the singularities o, ('i,: I, -.-,r). Choose

neighbourhoods [Ji of au such that Uin Uj: A for i'+ i and let
Vnc U, be open subsets diffeomorphic to the unit disk such that

Vrc Un. Set

U_ It
/_
UVi
,i:I

Then

M_ ULU"'U(JrUtl
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is an open covering of M. Choose a partition of unity (cf. [f], p. 92)

fr,...,/,,/ subordinate to this covering. Then

A:f 's+2f,.s,
is again a Riemannian metric where g, is a flat metric in [Ir. Since fr : nin V;, it follows flnat fi is flat in Ya. On the other hand, d : g h
M - Ui:r 4. Thor, by Lemma f,

ff--I Kl: I xz.JJ
Hence we may assume l}rat g is flat in Vn ( d : t, ... , r ).

Now consider the l-form v, (cf. section B.l) in the complement of the
singularities {dr , ... , e,}. Set 7 : lJi:t Z, . Then Stokes' theorem yields,
in view of Proposition f, (i)

[*o*:9 fv-. B"
,l f, J -o, -ai:7Vr,'i,:1,...,r.

M_V Soi

On the other hand, by part (ii) of that proposition,

[*, : nj",(o),,i : 1,...,t.
,!,

X'inally, since the metric is flat in V ,

f
I KlM: o.

J
v

4. Immerslons into Rs wlth constant mean curvature

4.1. Let M bean oriented. Riemannian 2-manifold and let g : M --> Rg
be an isometric immersion. Let -F, denote the oriented plane in Rs given
by

X* : (ilg),T.(M), r eM .

Then there is a unique unit vector n(r) e Rs orthogonal to -F, such that
the oriented plane /n together with n(r) induces the given orientation of

These equations yield

IKlM: ",2i,,@): nio.
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Rs . The corresponde'nce nr> n(r) determines a smooth ma,p n: M --> RB

called the normalfielil, of the'i,mmersion E .

Recall that the second funilamental form for g is the symmetric tensor
field of degree two on M givenby

A(r;h,lc) : - ((dd,h,(il,n),lc), neM, h,k eT.(M).

Sus zL determines a selfadjoint tensor field ,f of type (t , t; such that

(4.1) g(r;l(r)h,lc) :'A(*;h,k), reM, h,k eT,(M),

where g denotes the Riemannian metric. Recall further that the mean
curvature of g is defined by

H : +tur.
In this section we shall provo tho following
T h e o r e m (Hopf). Let M be a Riemanni,an 2-mani,folil, whi,ch i,s

ili,ffeomorphi,c to B2 anil let g : M --> Rs be an 'i,sometr'i,c 'i,mmersion wi,th
constant rnean cura&ture. Then q i,s a ili,ffeomorphi,sm from M onto a
Eucl,i,ilean Z-sphere i,n Rs .

4.2. Gauss-Godazzl flelds. A selfadjoint tensor field @ of type
(I , l) on a Riemannian 2-manifold will be called a Gauss-Coilnzzi, field,, if
(4.2) VX(@VD-V.@l-XD: @(LX,YJ), X,Y e$(tul).

fn particular, the tensor field ,l' determined by (a.l) is a Gauss-Codazzi
field.

L e m m a f. A nonzero Gauss-Cod,azzi, fi,elil, @, wi,th aanish'i,ng traae
has only 'isolateil zeros.

Proof' set 
6 - {@,

whero p is a smooth function. Then 6 satisfies the relation

(4.s) Y *(ön - v "(6n 
: x(p)öfn - ytu)6o:) + 6qx,4y.

Now choose a local Cauchy-Riemann frame a1 t az and write

6"r: uer*0a2,
6'r:0er-uez'

Then (a.2) implies that

er@) - ez(u) : et(P-f)a - er(P'-f1u
and
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et(u1 * ez(a) : et(P-f) u + er(P-f)a,

where .f : ln lerl|:lnlerll, as is easily checked by using 1.4 and 1.5.
Now set

p:f.
Then these equations become

er(s) : er(u) ,

er(a): -er@).
It follows that u + i, u is a complex analytic function and so it can have

only isolated zeros. Thus the same is true for 6 and hence for @ .

Corollary. If @ i,s anonzero Gauss-Coilazzi, field, wi,th aani,shi,ng
trace, then the functi,on det @ has only isolateil, zeros.

L e m m a fL Let @ be o trace free Gauss-Cod,azzi fi,eld, anÅ, sul,pose
that @(r) * 0 for r e (J (an open subset of II ). Denote the positiae eigen-
aal,ueof @(r) by 1(r) (reU). Let Z beasmootheigenaectorfielit of @

in VcU suchthat lZl2: ].-1 . Then Z i,saC&-field,.
Proof. Consider the l-forms Q" and, V, (cf. section I.2). We have

to show that

(4.4) x @" : Yt, .

Now the unit vector field
Ix : ä2 : {Tz

satisfies
@(X) : 11 .

X determines a l-form V* (cf. section 1.2) such that

YrX : Vx(Y).J(X), Y etr(M).

Since tr@:0,J"@*@oJ:0. Thus @JX- -1'JX. Putting
y : J X in $.2) we find that these relations imply that

V X(]') - 2 )".Y*(X)l X + lx(x) + 2 ),.Y xQ X)lJ X : o

Thus (since X, J X form aframe on V )

(4.5) Y(1) -2,L.Y,QVD, Y eX,(V).

X'inally, observe that, by (1.5) and (1.6)

I
@z : - nö.l and V",: V*.,

and thus (a.5) implies (a. ). . i-:
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4.3. The operator @. Let @ be a nonzero trace free Gauss-

Codazzi field and set, M : M - {at, ..., ar} , where the an are the zeros

of @ (cf.Lemma I). Then @ induces a strong bundle map @: P6a->P;a.
Since @(r1: T,(M)--->T.(M) is a nonzero selfadjoint linear map with
trace zero, there are precisely two (orthogonal) straight lines ot(r) and

oz@) in f -(M) spanned by its eigenvectors. These lines define cross-

sections o, and o, in P;, which satisfy

@1or1 : 6, (i, : 1,2) .

Lemma III. Let obeauoss-secti,onin Pin suchthat O1o1 :o anitr

l,et a be one of the zeros of @ . Then

i"(o) < o.

Proof. Assume first that y,(o) is even. Then o lifts to a vector field
X in a neighbourhood U of a (cf. Proposition IIf, section 2.3). We may
assume that X is a unit vector field. Since

q(@(X(z))) : o(o(*D : o(r) : s(X(r)) ,

it follows lhat' X is a unit eigenvector field of @ . Denote the corresponding
eigenvalue at r by ,l(r) . Then, by Lemma fI,

is a CR-field. Since 12 - - del @ , it follows that

ltm lzl : @

and so Proposition l, section 2.1, implies thaf j"Q) 4 0 . Thus, by formula
(2.4),

i,(o) < o.

If j"(o\ is odd, choose a diffeomorphism q from U onto the unit
disk in the complex plane such that E@) :0 and set U : a - {a\ .

Let s: U->U be the map which corresponds to the map zF>22,

zeC, under g. Then (ds),: T,(U)-*fua(J) is a linear isomorphism

for n e I/. Thus s induces a bundle map 3: P;r->Pr; and. so o deter-

mines a cross-section o, in U by (cf. section 2.2)

Iz :7i"

ot@) : ;-1 o(s(r))
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X'inally, introduce a new Riemannian metric g, in U by gr: stg and
consider the tensor field @1 given by

@{r) : (d,s);, @(s(r)) (its)., * e U

Then @, is a trace free Gauss-Codazzi field with respect to g, and

@r,(or) : 6L'
Since (cf. section 2.2)

j"(ot) : dego s . j,(o) : 2 j"(ol

it follows from the first part of the proof that 
l

j,(or) I 0.
Thus

i"@) < 0.

4.4. Proof 0f the Hopf theorem. Let I be the tensor field of
type (f , l) comesponding to the second fundamental form and set

(4.6) @: r-H.r
( 1 the unit tensor field). Then, since ä is constant, @ is again a Gauss-
Codazzi field. Moreover.

tr@ :0.
We shall show that

(4.7) @ : 0

In fact, assume lhat @ # 0. Then, by Lemma 4.1, @ has only finitely
many zeros a!,..,,a, (r > I ). Set l/ : M - {at,,.,,a,). fn view
of section 4.3 there is a cross-section o in P;a such that

O1o1 : o'
Ifence, by Lemma flf,

i",@) < o '
It follows that

i"<o
On the other hand, since ll4 is diffeomorphic to Br, by the Gauss-Bonnet
theorem,

j,:27(M) : 4.

Thus we have a contradiction and (4.7) follows.
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Now relation (a.6) implies via a standard result (cf. [6], p. 99) lhat q
maps M into a Euclidean sphere /S' in R3. Since -il'f is compact, this
must be an onto map and hence a covering projection. Since B2 is simply
connect*d, it follows that g is a diffeomorphism.
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