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1. Introduction and statement of results. Let

g(z) - Zon"" _ 'tL + iu

be regular in l"l

&s r -> I , or equivalently if z is the difference of 2 positive harmonic
functions it is classicel*, tha,t g(z) possesses a representation

, 7e'8+z(r.2) s(z) : 2, J F:1dp(0),
0

where p(ti) is a function of bounded variation in [0 , 2n] . In this paper
we consider conditions under which g(z) possesses å representation (1.2)

where p(r9) is a function which is bounded, but not necessarily of bounded
variation. In this case the integral (1.2) can be defined by integration by
parts. Since g(0) : 0 , we deduce that p(0) : p(2n), so that

(1.1)

(I.3)

I w(r rn*)t d,s: o(r)

If (1.2) exists as a Riemann-stieltjes integral, and in particular if p(8)
has bounded variation, (1.2) and (f .3) are certainly equivalent.

Next we note that if
* Seo e.g. [2, Theorem 1.1, p. 2]. The namo Riesz-Herglotz forrnula has been

suggested in conversation by Professor lleins.

koskenoj
Typewritten text
doi:10.5186/aasfm.1976.0214
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3

(r.4) et"t : !;, I ,l\f : u + dv,
0

then

(r.5) G(z) : * i#:"p@) d,s - Fo, where r, : * i 
^r, 

o, .

0g

Thus instead of (l.l) we may study the equivalent representations (r.B) or
(1.5). This leads us to our first result.

Theorem 1. nor g(z), giuen by (1.1), to haae q, representation
(7.2), where p(8) ,i,s meq,surable and, lp@)l < M , the fol,l,owing conil,it,i,ons
&re necessary and, sufficient.

(i) The integral

satisti,es ll(r,Vt,gr)l < 2M, 0<rq l, -oo < gtlgz< +oo.
(ii) If the real constants g, anil, p(q) are suitably chosen

(1.6) I(r , Vr., gz) --> p(qz) - p(VL) as r -+ l

for almost all fireil, g, , where lp(V)l 3 M , j : 1,2 .

Since Theorem I is very simple we give the proof now. Suppose in fact
that g(z) possesses the representation (1.2) and so G(") possesses the
representation (r.5) where lp(,9)l < M.Taking real parts we deduce that

2n

u(e"\ : ! [ \t-ez)P(8)d'8-2"J @-lto'
Thus

_ ll[.

Ifence for real g, and g, and O < r 4 I , we have

I(r,qt,,9z):|(U(rei9,)*po)_(U(rei9,)+p0)l<
Next it follows that whenever p(g) is the derivative of its integral and in
particular for almost all g 12, Theorem 1.2, p. 4)

U(ge'r) - p@) - Foo as g-+I.

9n'

I(,tgt,gz): 
Ju0eit)dt

flU@ eö\ + pol
2n )+Q2

') dB

(8-v
3
S

(r -
gcot2
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We choose for g, such a value of g and deduce that for almost all g,

I(r,qr,gz) : u(r eiv"1 - u(r eiqt) -> p@z) - p(pt) .

Thus (i) and (ii) are necessa,ry.
Suppose next that (i) and (ii) are satisfied. Then Poisson's formula

givesfor 0<r<g<l
9'r*h

(I(r eisl : 1 
t ^ - n' -.." ^, , t\(peiq) ilg .

2n J Q2- 2 rp cos (E-8) + r2

We have

U (Q 
"n") - U (p eiv'1 : I(Q , vr , vz) .

Thus
QtI%t

...q. I f Q2-r2 rt^..- --\r-- ,ll(re"ul I 

-

2n J Q'- 2rgcos (s-v) 'r r'I(e'?t'9)d'q + u(peq') '

We take ,, O n*"a and let g tend to one through the sequenc e Q, :
r-tln.

Then it follows from (i) and (ii) that the integrand converges boundedly
to

I-rz
| - r r cos (s-v) + r' fu@) - P@))

so that the integral converges to

Qrl2zI t '-" ^(p(v)-tt(e))de.2nJ I-2rcos(8-E) *rz' "
gt

Thus also [J(Q e'") must tend to a lirnit c , since the left hand side is
fixed. We define the function p(q) by periodicity outside lgr , gt -f 2n) .

Then

I +rz

I +rz

2n

2n

Qr*

I
9t*i

I
,:

J

tPr

J
rPt

9t

U(r rn$) : *

t
2"

:t
2n

I-rz
0r@) p@r)) dv + c

p@) dV + cL

+ ct.

2 r cos (8-V)

L-rz
,,rcos(S-V)

(L - rz) p,(d d,V

2 r cos (8-V)I +12
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Setting r - 0, we Ceduce that,

-1la

L.r tt2n p@)dv: -Fo

almost trivial.
(1.2) u:ith lp(0)l < M,tlten

{
This leads in turn to (1.5), (1.3) and (1.2) and completes the proof
of Theorem l.

1.1. fn a previous pa,per the second author l4l showed that the re-
presentation (f.2) is certainly valid if

(1 .7)

(1.8)

(r . 10)

u(r noh)

where c is a constant. He also obtained conditions on the function p(tg) ,

which were necessary and sufficient, for (1.7) to hold for some constant c .

fn particular he showed that in this case p(rg) has left and right limits
everywhere, so that (f .7) holds for all E, and E, . Our main aim in this
paper is to consider to what extent the condition (f .7) can be weakened
while still allowing a representation of the form (f .2) with a bounded p .

We prove
T h e o r e m 2. Buppose that k(r) is a positiae cont'i'nuous nondecreasing

functionof r i,n 0 < r <l anil

u(r n'8)

usltere u(z) i,s defi,ned by (1.1) . Th,en i,f

/yr,
function g(z) possesses cL representat'ion (1.2 ) w'tth lp(8) I <
Ao is q,n absol,ute constant. F urtlt er ( 1 .6 ) Tt old,s for a,ll . rea,l

9t,Vz
The followirg consequence of (1.2) is
Theorem 3. If g(z) isgiuenby

(r .e)

d,s finite, the

Ao J' , wlaere

J: j
J

2IIr
lg@eiq)l < L_rr, 0

In fact' we deduce from (1.3) that
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lg(re")l < 2Mr

2Mr
L-rz

d8
- 

.a .

le"o - r e"l'

(l - r2) d0

1 2rcos(O-d + rz

1T
z"J

or,

lr
2rJ

2Mr
:t

L-rz

by Poisson?s formula. Thus we deduce that (1.8) leads to (r.I0) with
M : Ao"r2. With some subsidiary monotonicity conditions on k(r) &

slightly less precise result of this type was proved by Linden [6], who also

gave some examples in the opposite direction.
All the above results break down when J is infinite. We have

T h e o r em. 4. Supgtosethut k(r) isasinTlteorem?,butthat J : * o'
Then there eti,sts g : 'tL I i a giuen by (1.1), sati,sfyi'ng (1'8) but such that

(1.r1)

and

(1.12) I(r,0

(I-r)u(r) --> -co , 08 r-->I

u(r eit) dt -> * oo , as r-->L, for 0

Thus g cannot possess a representati'on (1.2) withbouniled p(8) '

suppose that there exists a function z : E(w), which is regular in

lwl < I , real and increasing on the segment [0 , 1] of the real axis and

that 9(0) : ro ) 0, E(r) - I and"

suppose further that 
lq(w)l < I ' for la;l < I '

ll v(w)l < CLIL-wl , 0

where Cr is a constant.
Suppose next that /(z) is meromorphic in lzl < t and that

(1.14) T(r,f{"'8 V@)}) < Cr, 0 < I I 2n, 0 <r < 1,

where T(, , rp) denotes the Nevanlinna characteristic of y(w) in lwl 1 r'
and. c, is a positive constant. Then we say that / has locally bound'eil'

characteristic (I.b.c.) in lzl < I .

Our positive results will follow from
Theorem 5. If f(") isregul,ari,n lzl<L anil

,V)
E

n

J
t

2n

(l .13)

(1.r5) los lf| tus)l < k(r)
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there, where k(r) satisfies the hypotheses of Theorem 2, then we can fi,nil
V@) such that (1.13) and, (1.14) are satisfi,ed, wi,th ro: Ile, C, and,
CrlJz absolute constants.

Theorem 6. If g i,sgi,aenby (1.1) and, f :ec sati,sfies (1.14)
subject to (L.13) then g satisfies (1.2) with lp(8)l < CrC, where Cs
d,epends on C, anil, ro onlg. Further (1.6) hold,s for all, real, gt, Vz.

Theorem 6 shows that if f : et has l.b.c., then g possesses a
representation (r.2). Thus we obtain more general classes of such functions,
than merely those satisfying (l.S). X'or instance if f is a normal non-zero
function in the sense of Lehto and Virtanen [5], or alternately if / is regular,
f + 0, f@)(") 7 I , then these conditions are satisfied. fn the above cases
we may take q@) : L + f rl; (see e.g. [3]).

The remainder of the paper will proceed as follows. fn sections 2, 3 and
4 we construct a function in terms of conformal mappings which yields the
example whose existence is asserted in Theorem 4. Section 5 is devoted to
the proof of Theorem 5, which is also based on conformal mappings. Both
these results use the first and second fundamental inequalities of Ahlfors [f ].
fn section 6 we prove Theorem 6, which is relatively elementary and
Theorem 2, which is an immediate consequence of Theorems 5 and 6.

2. The Conformal Mappings. Most of our proofs depend on conformal
maps of various striplike domains onto strips. All the results we require can
be deduced from the fundamental first and second inequalities of Ahlfors
El. We shall consider a domain / in the C : € * i, q plane given by

(2.1) Inl

where we shall assume that S(S) is lower semi-continuous,

I

7A

2
(2.2)

3
8(6)

and that 8(f) has finite variation Z(f. , 6z) in any finite interval l€._ , Erl .

We consider the map I : s(f) of A onto the strip /S given by
Irl <nl2 in the I : o * d z plane. which is symmetrical, i.e. o: Tm
correspond to f : fco and further s(0) : 0.

Then the two basic inequalities of Ahlfors [l] can be written as follows
Lemma l. If s,:oj+i,ri comespondto (,: Ei*irli, j:1,2,

where f, - 6, 2 3n then

(2.3)

€,

oz 61 J s(t)
a

!b1
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and,

€g

(2.4) or- o, I n t I t Ar{L + Y(€r- 6n, €r+ aqy,
! s(t)

where Ar: 2000 anil, V(r, , rr) 'i,s the aariation of O(r) ,i,n lr, , rrl .

The first inequality of Ahlfors [, p. l0], states that (2.3) holds if
E"

f L - 2,
! 8(t)

which is certainly true for €, -- Er. ) 3n , in view of (2.2). Similarly Ahlfors's
second inequality [f, p. f6] states that

6r

62 - 6L < ,t t y -t 8n-t t6nl'lt j-!t.
!, 8(t) t4

Here I , L can be taken to be the Iower and upper bounds of
8(r) for -oo<r<-*a and VI is the variation of 8(n), in
[6r - 4!,€z+ 4L].kt our casewemayset l: nl2, L:3nl2,and

vfrrr - l z8(r)1d,8(r)l
JJ

say. Thus

€o

6z - ct . " I # .82 r 16 *' l,n'' 
@lz)?-!--?nv

: , f 
j!- 

* LE2n r t728v.
! 8(r)

This proves (2.4).

2.1. While Lemma 1 is used for the proof of Theorems 4 and 5, the
results that follow will be used specifically for the proof of Theorem 4.

We denote by A a positive absolute constant, not necessarily the same
each time. Specific constants will be denoted by Ar, A", ... .

We now suppose lhat n < 8(r) < 3nl2 and write

8(r) : n + e(r), o < e(r) < xvl2 .

We also assume lhat e(n) : 0 for r 10 ,

18t
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(2.5) u(n) _ en _ constant for (n-L) A, 1r
and e(r)- min {tn,en+r} for fr- %Az. Here Az: 8nAL.

L e m m a 2. With the aboue hypotheses i,f further

then fo, t z

(2.7)

a,nd so

(2.8)

L

92

TEf lI
J s(t) - Ll 2n \- e'

0

62

s tz *IG,)+ A?.

I
o2

oz €z -co, &8 Ez* *oo,

We suppose that (n-l) A, < t2 < n Ar, and set 6r : 0, sothat dr : 0.
Then

n+L
V : V(-6n,Er+ 6n1

0

On the other hand

llle(t)
O(t) 

: 
ra+e(t)

Thus

Using (2.5) we see that

n-r A" A,
I(tr)

1

i.e.
2

V
/L2

Thus (2.4) yields
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This proves (2.7) and hence (2.S) and completes the proof of Lemma 2.

Having obtained some estimates for d, we next turn to estimates for z .

Let B+ be the upper half of B i.e. the strip

TI

2

42.
atö

Lemma 3.

min (u, , tn-t , en+t)

responds to t + irl

(2.s) !
4

Furtheruf q

(2. I 0)

åt(t) _ r

3
lrr(s) - , r

We note that hrr(s) , hr(t)
r :nlz and 6{sror 6

For - co

ezo'sin (2 ,)
4)- 1 /r'o cos (2 t) +

lr(t,so) : tan-1 \rc

1

C : (n-2) A, + zi,S((n-Z) Ar), (n*I) A,

respectively. Then it follows from (2.3) that

1t
(2,1 1) sz 6

Consider now

Suppose tlr,at

and, {* - max

, th,,en we lt aae

I
+B e'"

, Ma haae

(n-r) A,
(unrtn-trsn+t)

, ,if T

Let tn _
o + ir cor-rf

JT

4

3n
-a/<-.-8

T
n

tn

I
t_T2

Then la(s , so) is harmonic and bounded in B+ . Also å(s , so) has

boundaryvalues 0 for z:0, and r:nl2,o{80 andboundaryvalues
one for r : nl2, 6 7 so . Suppose that s : 8r + i'n12, s, +'i'nlZ cor-

respond. to

I
+ tu;{lr(s, sr)

/n t
(: ;';){t'(s

have boundary

I
+ 2i8((n+L) Ar)

Az 4n

h(s , sr) ) ,

, sr) h(s , sr) )

values z"ero for T _ 0

, hr(t) - Snla .

I'or
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Einallyfor sr<d<s22 r:n12, hr(s): (tlz)(n + ei),and år(s):
(ll2) (n + t'1") . Thus we deduce from the maximum principle and (2.5)
that

(2.t2) år(s) < zi(s) < hr(g <|r, -oo<o,< +@, 0 ."a'rn.

Suppose now first that t : nl4. Then

,lttllh(s,sr) -tan-t(e2s,-zo1 : -tan-L7e2o-z'"1 q - "zo-zs'a;
in view of (2.11).

Similarly
11 3

å(s,sr) > , - - e2st-26 > g.

Thus

4(s) >å,(s) >r*i";(3-å) i*'u":.
Since also f(s) < hll , we deduce (2.9).

Next suppose that 11) nl2. Then we deduce that r > nl4. Also

I 
-_' (_ sin(zr) \ r lr"-2r\

å(s, sr) : - ta'.-' \utr-+ co. (z ,) ) a ;tan-t\g-2, _jl
I

< s (zr - 2')

in view of (2.11). Similarly

2 I ( sin(22) | 2t I
l,(s,sr) : ;, - - tan-LtFtr, + coilrri > ; -, (n - 2t).

Thus

hr(s)

Thus if rt@)

ft

(n

2r
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it"-21 1'j":<ei, i.e. rr;-,:;.
This proves (2.10) and completes the proof of Lemma 3.

3. The construction of "(r) in terms of k(r) . It is inconvenient
to work with the quantities t',, , u'1, and we wish to obtain results in terms
of e* . In order to do this we now make the weak monotonicity assumption

(3.1) e*+r 2 Asen, n : 0,1,2, ...

where 0 1 As < I . We continue to suppose that' e(r) is defined as above

and in particular that (2.6) holds. Evidently (2.6) is equivalent to

(3.2)

We now set

Il l*z nl(3.3) s:,llosl_z +irl ,

(3.4) w: i,åE : u+'i,u
and write w : f(z) , l"l < I . We shall show that if the e, are suitably
defined the function /(z) , slightly renormalized, will satisfy the conclusions
for g(z) in Theorem 4. The next Lemma shows that (f.ff) and (f.12)
certainly hold.

Lemma 4. If w:u *ia:f(r) i,sd,efined,by (3.3) anil (3.t1) on

the posi,ti,ue real ar'i,s then

(3.5) (l-r) u(r) --> -co, as r-->L

and,

1(36) I ,r'+: -.o.
u2

Thus also

We have for 0

I L+r ra
(3.8) s : 6 + ir - Z 

log L4 + i 4,

iu-- *co.
1

I
f

(3.7) lu(reit)dt --> *oo, asr-->l for 0<8
J
0
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(s.e) u*i,a: "*n{, e +;,(zr.;)J
: e'E (-sin (2 q) + ';, cos (2 r7)) .

Since z : nl4, we deduce from (2.9) that

(s.ro) u < -fia'.
Again (2.7) shows that

' E -o-> *@, a,s o-++@.
Using (3.8) to (3.10) we deduce that

log {(l -r) (-u)} --> + oo , a,s r --> l,

and this proves (3.5).
Next we deduce from (2.9) and (3.f ) that for I : o, + inlL ,

, , i *: "; , i *'u o?",-,,

and so

lA3 \ 13."-, oE(3.11) a:ezEcos(2r)

We now write f, : n Az, and suppose that o : 6n, r : Tn, correspond
to [:€n on thereal r axis,where s, €, r are relatedby(3.8)and
(3.9). Then Lemma l, (2.3) and (2.2) show that

2
6n+, 6n

Ifence

ros (*=å""",)
I

I Tn+,

fn view of (3.11) we deduce that

f -a(r) 
d'r

,l-, 2 @-')A'_€-nA' 2n
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ATt*-, .- tz '
, -=#' (l - r*-r) ez€n-r ) '=# exp (2 E,-t - 2 o,-r.) ) en-r

for n ) tLo , in view of (2.8). Thus

1

'!-'-'o'Y 
> å'.-' 

: *oo'

and this proves (3.6). To deduce (3.7) we note that for fixed 0 , 0 < I < 2n ,

wo have, as r --> I ,

8r
rfodt
I "Veil)d,t:lu(o)+ | {o{e"'o)-r(d} tJJ

I o@)ap + o(r) -+ +oo.
{,8

This proves (3.7) and completes the proof of Lemma 4.

3.1. To,complete the proof of Theorem 4, we need to construct a function
e(f) satisfying the above conditions and then obtain estimates fot u in
terms of e(f) . We proceed in a number of stages.

L e m m a 5. Let k(r) be a nonil,ecreasing cont'i,nuous function of r far
O < r 1 l, such that Ic(0) : l, and,

; lkhr(3.r2) I ll åd, : + co .

{l

nor E > 0 ,wed,efine er(() asfollows. T'et r betheuniquenumber suchthat

_ I rre)(3.r4) ezE:Vr*

anil set

(3.14) cr(6) : \t Q 'r) k(r) '

Then er(t) is agtositi,uefuncti,unof t, suchthatfor 0{fr <tz<@ ue

haae

(3.15) er(tz) > e2(t'-'21€r(lr) .

AIso



r88 W. K. Hevuerv and B. KonnNBr,unr

etf)d€ - *co

By hypothesis {k(r) l!-r)}ttz is a continuous strictly increasing
function of r in [0 , l) which is equal to ] when r : O and tends to
oo as r-->1. Thus (3.f8) has a unique solution for f > 0, and r is
a continuous strictly increasing function of 6 . Thus e, is a contiyr.uous
function of r in [0, f) , and so of 6 in [0, oo) , and er(O) : I .

Next let r : 11 1t,2 correspond lo t : t1 ,t2, where tr) tr. Thus

^4(t"_t.\ k(rr) (l -rr) Ic(rr,) (f -rr) et(tt)z
e_{! .,, : 

Art)e_r)
since k(r) increases with r . This proves (3.15).

X'inally let r : r, correspond to 6 : n by (8.t3). Then

'f'/g* 
= (r*+t -,,)/H, : (rn+,- rn)ez(n+,

i (t-r,)-/-H: ezet(n). "i e,(t)d,t

in view of (3.15). Now (8.16) follows from (J.12) and the n"ol, o, Lemma 5
is complete.

We now set

(3.16)

(3.1 7)

(3. 18)

{

ez?) _ min {1 , tr (r)}

rt is evident that (3.r5) and hence (8.16) still holds with er(f) instead of
er(f) . Next we have

Lemma 6. Supposethat 0 < a <1, and,set

Then fo, tL

es(t): aez|)l{t

I
esQz)

+{ ezft) drl

(3.1e)

Further

(3.20) I es!) dt - oo
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and, fo, t

{: { 
esk) d"l

(3.I7) we have

t+t
f

J e'(t) tu

eu\) exp

We note that in view of

(3.21)

Thus

sg(fr)

es(tz)

Thus

This proYes (3.

sr(f) exp 
t

This proves (3.

We now set'

(3.22)

and define e(r)

tL

r+ f e,ft)d,r

tL

2+ I e,ft)itr

tr

1+ I e,ft)d,r

er(t) d,r

t2

r+ f,J
e z(tt)
ez?z)

ez\ r)

ez\ t)

in view of (3.f 5). This proves (3.I9).
Next we set

f@: t"*{ ezk) d"l, ss(f) : a f'(t)'I+ {

- a er(t)

f
I er(r) d,r _ a f(t) -+ co , &s t -> oo

J

,Or. Again since a

2 ; -) (;
: J es(z) d'l

,riand completes the proof oi ,**m& o.

ss(f) _0 for t

tn _ 
(n-2)A,:11 (n-L)A,sg(f) '

by (2.5).
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4. Prool of Theorem 4. We can now proye
L e m m a 7. If k(r) satisfies the hypotheses of Theorem 4, lc(O) : t

anil, e(t) i,s d,efined, as aboue, where a is a suffi,ci,ently small absolute constant,
then the correspond,i,ng functi,on u(z) satisfi,es the conclusions (1.8), (1.11)
and, (1.12) of Theorem 4.

Suppose that (n-l) Az I r 1 n Ar. Then it follows from (3.19) and
(3.22)

e(r) - en Ane"{(n-2) Ar} 2 Ases(r - 2 Ar) .

Thus (2.6) follows from (3.20). Similarly (3.f ) follows from (3.19), so that
the conclusions of Lemma 4 hold. Thus we have (f .ll) and (1.f 2) in view
of (3.5) and (3.7).

ft remains to prove (1.8). We recall (3.3), i.e.

I ( /l+refr\ nl(4.1) I : d * ir : t tlog \1---]]-----]_ r",r) * i ;1,
and that I corresponds to ö : f + i 11 in the map discussed in Lemmas
I to 3. Evidently z > 0 and so

0 8(6) (n + s(f))

Suppose first that t < Az. Then, by (3.22) and (2.5), e(6) : 0 and
(3.9) shows that

(4.2) % - - ez€ sin (2 q)

so that (f .8) holds in this case. More generally, if u < 0 , (1.8) is trivial.
Next suppose that E ) Ar, % ) 0 . In this case we proceed to show

that if the constant o is small enough we have

(4.3) u(r ei8) I ur(€) e'€

and

(4.4) l-r < er(E) e-2€ .

These inequalities yield (f .8) immediately. fn fact let r : p correspond
to 6 by (3.13). Then (3.13) and (3.14) yield

,r(E) e'e : k(d, er(f) e-zt : I -g .

Thus ( .a) shows that p { r and (a.3) that

u(r eifl) < k(d < k(r)

which is (1.8). Thus we need only establish the inequalities (4.3) and (a.a).

I
2

I
n
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We recall that e(f) : 0 fol E < Az and that e(f) is defined by (3.22)
and (2.5) for [ > A,.

We suppose that (n-l)A, < 4 < nA2, n> l, so that (4.2) yields

u1r efiy - e26 sin (2 q) ,

where 0<2q<S(E):nl e(f) . If 2r1 3n,wehave u<0,sothat
(1.8) is trivial. If 2q; z, we have

-sin(24) : ," :'- "l"r' --;l; ' 'tu'
- un - @_z),t,it<(n_rlq,

Thus (3.r0) yields €(6) < Aaeuf). Hence, using (3.17) and (3'f 8) we have

u(reio'1 < e(f) ezE < Auaer(f)ezt < er(€)e'E

provided that

(4.5) < Aut .

Thus if (a.5) holds we deduce (4.3).
It remains to prove (a.a). We deduce from (4.1) that

.o iez'+ I - l-2e2osin(2r)+e4'
-. -1?a _ --2 _ 

-

'Iq :'"2"_1, ' -l+Zez"sin(22) +e*o

Thus

4 ezo sin (2 t\
(4.6) r-r < L-rZ : | +rF sinqf; + e- I 4e-'osin(22),

since 0 <r<nl2,s;othat sin(2t)>0.
In view of (3.9) and since u t 0, we have rl > nlz. We apply Lemma

3, (2.f ) and (3.r). These show that

(4.7) sin(2 z) < n - 2 r I 2 
"!i, 

< Aze*+r < A, es(E),

in view of (3.22).
Next Lemma l, (2.3) shows that, since t > Ar) 3n,

o

00

f

7AJ
0

Thus
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(4.8) e-2o

€

L- r

It follows from (3.22) that

e(t)

Thus

E €-e, f
(4.e) [ e|)d,t

{ 
\/ 

!o, 
-ö\-/ 

{ 
-ö\-'l

since 0

1 Aroa ezf) e-28 < Aroa er(t) e-2€ ,

in view of (3.2f ), (3.17). Hence if. a: min (24;1 ,A;t), we deduce that
( .a) holds. We have already proved (a.3) subject to (a.5). Thus the proof
of Lemma 7 is complete.

Suppose nowthat /(0): a.+i,8. If oc > 0, g(z):f(") -/(0) will
also satisfy (l.S), (1.11) and (f .12) and in addition (t.l). If oc ( 0 , we set

f(z) - f(o\ la.l + k(r)s(z):"riid , sorharR{g(z)}< r+-#< ke),

if fr(0) : r. If k(g)+ 1, weconstruct g(z) lk(O) tosatisfyTheorem4
with /c(r) I k(0) , inåtead of k(r). Thus Theorem 4 is proved in all cases.

5. Proof of Theorem 5. fn order to prove Theorem 5 we also use
conformal mapping. We make the preliminary transformation

I(5.I) Z : X.,+'i,Y : lo1 i, z: e-Z ,

which makes the unit disk lzl < l, punctured. at the origin correspond
to the half plane

Dr: X2O.
We set

Xr:2-", n>0'
Let Y * be a nonincreasing sequence of positive numbers such that
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(5.2) Yo : Yt : r, 2+ = r.2 tn

Let D, !p the domain given by

(5.3) lYl<x, x>1,
(5.4) lyl <Yn, Xn+t<X<Xn.

We note that D, c Dr. Thus D, corresponds by (5.1) to a domain Do

in lzl < l. We proceed to consider the map of D, onlo the strip B of
section 2. To do this we set

(5.5)

and proceed to show that Dz
/ given by (2.1).

To see this we note that Dz

t
C : Iogr: € + irl

corresponds in the C plane to a domain

consists of all points Z _ e-€-i't where

1

lrtl

and the function d(f) is defined as follows

(5.6)

(5.7)

(5.8)

?9(f )

11: ,rc, t

I
2

I
,

log2,

I
2

I
t
I
2

I
2

S(il - sin-l (Y * t€) ,

ros (g+*")

?t(6) : cos-1 (X*+re€) ,

ll\ros\ffi)

ros (#), n: o to @,

ros(#),n:oto.o

fn view of (5.2) we have Yn 2 Xn, and so nll < ?9(1) < z, which yields
(2.2). Thus we may 

"pply 
Lemma l.

To do this we next consider the total variation V of 8(t). We note
that 8(6) < z and that 8(f) is monotonic in each of the ranges (5.6) to
(5.S). AIso in the ranges (5.7) and (5.8) we have
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cos {i aer} : sin 1z - i tctl

/ X, Xn+r \< max \Txr* y7,T-x2.;+iTrl '

Thus

(5.e) n-s(€) < ir,''ax 1?,+:l
Thus the variation of r?(f) in the union of the two ranges (5.7) and (5.8)

is at most

,"{?*7,,\
Thus the total variation V of 8(f) in - oo { 6 < + oo satisfies

(5. r0)

v < 2n {2,+, . 2,?) ,, (t, + 2 x, * ,; ?,) = r"

in view of (5.2). Thus Lemma I is applicable with V < 8n .

We now write

d(f): n-e(E).
Then (5.9) yields

(5.1r) u(6)

since t9(6) > xvl2. X'urther if
t/r\t/r\t,: rt"s\gy\) , e'":Zror\n;i-Vr_) , n>t

we have
Lttn

[' ,fel ot = (E; - t,) e(E-)

. En

X'urther for fi < 6 < 6,a1 , we have

I
i r@ : sin-,l (x,+reE), e(f) < n xn*re€ ,



An extension of the Riesz-Herglotz forrnula 195

€n*L

I e(r) d€

€; 

\-' - 'f tL 
Yn+l'

Also € r

in view of (5.2). Also for f > 0 we deduce, using (5.11),
Ett

(5.t2) " ! *!t, 
: " ! :" I d,{' . rlä,}

t

<t+? [ rp.at = 6+s(log2al) < f +e .- nJ

We deduce
Lemma 8. If in the aboae mappings s: o *'ir correspond,s to

e : E *'irt, where t > -(tl2)log2, then

(5.13) lo-El I Arr.

Wefirsttake ft : -Bn - (ll2)log2,8z: €z:0 inlemmal.Then
(2.4) yields

(5.14) -6t I An,
inviewof (5.10) and (2.2).Also sr: €z:0, sothat o1 {0. Nextwo
lake f, > -Ql2)log2 , tz: tz * drtr. Then (2.3) and (2.a) yield

Using (5.12) we deduce

lor-or-€zl < Au,

i.e. lor-trl l Arr, in view of (5.1a). This proves Lemma 8.

We now recall (5.1), (5.5) and define

(5.r5) s:losX, *:#r, z:E@).

Clearly lwl < |, corresponds to D, in the Z plane and so to Do in

f eG) d'€
J 

\ v 
1 Yn 2

Ez

(or-or) 7a f y
J o(t)
91
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lzl < l. Also E(0) : tle and E(r) : r . Let f(z) be the function of
Theorem 5. We consider

log+ l/(z)l : u(z) : u{E(w))

asafunctionof w in lwl < l.Wewfite u: U(w).Then

$tq ! [ a*p,\ao

+@

: * [ 1,.{*G. T)} * o. {*(" - +)\]#
We now return to the f plane. By (1.8) v'o have

U*(z) < k(r), lzl - r.
We write K(r) : k(r) I Q00 J2) where "I is given by (1.9) and set

k*: K{exp(-2-")).
We deduce that at all points Z: X + iy, where X 2 X*, we have
'u < (10 J)'k*. In particular if the points C : t,T d ry* correspondto
s : 6n{ inl2, we have for n > I

ofr ofr

(5.r2) I o.l*("*oT))#-*= (t'r)zk, I k
an-Ion-7 

ofr

"!_,
: A J2 k*(x|-, * Yf;-r\tz < A Jz k, Yn-t

in view of (5.13) and (5.2).
We set rn: exp (-2*") and deduce that, for n > 0, l-rn:

(l - r,+r) (l * r,+r) > r.6 (l - r,+r) . Thus

rnll rn*l

f /K(r\ r il,r

I l--o' = ur" J 71-'
ffr fn

: z{U {(t-r)rtz - (l-r"+r)ttzl } f, ,r*r-,rr,, .

Further
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I
t0I{

(Y)" d'r: #

Itr(e ,nfl)l

Thus

(5.1p)

(6.1)

Then

(6.2)

å ur* z-n1,,

We now choose Y*: inf {1, (2"-'k,nr)-'l'l , % 2 2. Then Y, de'
creaseswithincreasing rc andif Yn:1, n3rl,st Yoll, !L)'tl6t
we have

s x' 
= 2r--. ; (H)* = :.; :,,? Yr- , rofl\- '

so that (5.2) holds. Also in view of (5.16) to (5.18) we have

-:
#" f r*@'")do < A{r, * rå,r,"--,1 = oä(k,t2\'t'< A,,.

tti, p-åous (1.14) with Cz: Aralz when O:0' The general case

follows, since f@ &) satisfies the hypotheses of Theorem 2, whenever

f(z) does.
Next we recall that E(w) , given by (5.10) maps lrul < I into lzl < r

and E(r) : I , g(0) : ro : lle as required' Finally we have for
to 1 z4 l, using (5.13), (5.15)

I-w ) e-" > "-€-ar - AZ :,4 llogzl; A(l-zl.

This proves (f .13) and completes the proof of Theorem 5.

6. Proof of Theorems 6 and 2. To complete our results we need

to establish the relation between the representation (r'2) and l.b.c. We
h,ave

L e m m a 9. Suppose that g(z) in (1.1) satisfi'es

Oa

f wv,o')t d,s

d,g

oI
0

0
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It is enough to assume I : 0 in (6.2) since we may consid.er g(z eifl)
instead of g(z) . We recall that (6.r) implies that g(z) possesses the
representation (f .2) in view of Theorem I and (1.6) shows that p(9) is
a function of bounded variation, whose total variation in l0 ,2nf is at
most C by (6.1). We deduce from (1.2)

a(q):l i ?n"tn! =dr.t(s).2n J l-2pcosr9+ g,2*rt-r'

Thus

Lnl

I wat,+ =: I wrrott/ -j#h*0-zO

;

This proves Lemma 9. 
-n

We have next
L e m m a 10. If S@) satisfdes the hypotheses of Theorem 6 then

1

I ,,rotltf' = czcs : t6czctl". uh(r + s2 ,qf .

ft is again enough to consider the case 19 : 0 . We consider the function

G(w) : s{E@)} : U+i,V.
ft follows from (1.14) that

,'n(6.3) : Io*@"fryaoscr, o<r<1.2nJ
0

Also

* f (t(, eis) do: u(o) : u(rq).

0

Thuq
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2n

* I pg&71d,0 : * I*s*1,"ns)-u(,e'o1yd,o 
< 2c,-u(ro).

00

We now set Gt(w): G(w) - G(0): Ur(w) + iVt(w) and deduce t'hat

' f t(lr(refi11ito < 2c2+zlu(ro)1 .ilo
Now Lemma 9 shows that

11

I v'vtt + : I vvt - v(0), * = 4n (c2+ lu(ro)l) '
00

,1
f

J tv(,) z(o) I d,

f(6.4) I lV(r)ld, < 4n(C2 + la(ro)1) + lz(0)l < 4n(C2+2ls(rdl).
J
0

We now note that

Hence

and so

Y (') : 22(g) ,

where

a: q(r).

It also follows from Pick's Lemma and (1.13) that
_.i

dq

d,

Thus (6.a) yields

1lr

I wrnnr, : ! 
rvtlfflo, = r t, ! ffe)td,r < 8nc1(c,+ 2te(r')l).

Let rr: rrr&X (ro', rlr). Then we deduce that,
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(6.5) t b(e)l 
da . r6nc1(cz + z lg(ro)l) .JA

We next a"a*" from (6.3) and Poisson's formula that

EL) 
2a

a+Q)
r -l 

o

On letting r tend to one we deduce

TJ+Q)

Using (f .f3) we deduce that

u+(d =2Jt9, ̂ ,, rosg<r.
r -g

A corresponding inequality holds for (J* (p "8), 0 < d < 2n . We choose

Q : rz : $12) (r +rr) and apply Carathdodory's inequality to 9(z) . This
gives

ls.4l = ffia' os rlrz'
Thus

lr ft

(6.6) f p<nltL = [ WrOtdQ =,, 
2?\c, 

.Jo Q-{ s-(l-rr}(rr-rr)
g ctcz 32 crcz: 
1t-rY < (t-ro)z '

Also

(6.7) IIVJI

On combining (6.5) to (6.7) we deduce Lemma 10.

6.1. We can now complete our proofs. We recall the notation of the
introduction. Then, with the h;ryotheses of Theorem 6,

tu(,eih) | - ll'3119
0
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(, e"') \ dra

r{(r , gt, g) -> lim { U(, eo") (l(r en")} f=JJ

We set

in view of Lemma 10. Thus

I(r , gt , gz) : I (lV ei") U(, ei") 
I

Also for fixed gt , gz

p@) : I'!+!,
0

and see that the hypotheses of Theorem I hold willn M : CzCs. X'urther
the limit (1.6) exists for every puir g, , g, . Thus we have proved Theorem
6. Now Theorem 2 follows at once from Theorems 5 and 6. X'orinviewof
Theorem 5 we may upply Theorem 6 with ro: lle , Ct: Arc and

Cz : Au"I2 . Thus, by Theorem 6, g(") has the representation (1.2) with
lp(r9)l s ArrJ'. We have already seen that (1.6) holds for every pair

QtrQz.
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