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AN EXTENSION OF
THE RIESZ-HERGLOTZ FORMULA

W. K. HAYMAN and B. KORENBLUM

1. Introduction and statement of results. Let
(1.1) 9z = Da,z* = u+1v

be regular in |z| < 1. If

2n

f[u(r ¢ d9 = O(1)
0

as r — 1, or equivalently if u is the difference of 2 positive harmonic
functions it is classical*, that ¢(z) possesses a representation

27 )
1 e? 4+ 2

(1.2) 00 = 5 | oo

du(®) ,

2

where u(f#) is a function of bounded variation in [0, 27] . In this paper
we consider conditions under which g¢(z) possesses a representation (1.2)
where wu(d#) is a function which is bounded, but not necessarily of bounded
variation. In this case the integral (1.2) can be defined by integration by
parts. Since ¢(0) = 0, we deduce that u(0) = u(27), so that

2n

; i
(13) o) = L [ 2O

T 119_ 2
J @ )

If (1.2) exists as a Riemann — Stieltjes integral, and in particular if u(:3)
has bounded variation, (1.2) and (1.3) are certainly equivalent.
Next we note that if

* See e.g. [2, Theorem 1.1, p. 2]. The name Riesz—Herglotz formula has been
suggested in conversation by Professor Heins.
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z

(1.4) G) = 1 /g(f)df =U+iV,
v §
then
27 9 2n
(1.5) G(z) = ife +z,u(19)d0—,uo, where u, = 1 fy(ﬁ) ad .
2750 eiﬁ — 2z 2n h

Thus instead of (1.1) we may study the equivalent representations (1.3) or
(1.5). This leads us to our first result.

Theorem 1. For g(z), given by (1.1), to have a representation
(1.2), where u(®) is measurable and |u(¥)| < M , the following conditions
are necessary and sufficient.

(i) The integral

Py
I, g1, g0 = f u(r ¢ty di
@y

satisfies  |I(r, @y, @)l <2M, 0<r<l1l, —0 <@, <@,<+00.
(ii) If the real constants ¢, and u(p,) are suitably chosen

(1.6) I(r, @1, @a) — plpy) — w(@y) as r—1

for almost all fixed @, , where |u(p;)| < M, j=1,2.

Since Theorem 1 is very simple we give the proof now. Suppose in fact
that g¢(z) possesses the representation (1.2) and so G(z) possesses the
representation (1.5) where |u(9)| < M . Taking real parts we deduce that

2n

o 1 (1—?) u(d) o
Upe?) = — / — Hy .
(ee®) 2 1 — 29 cos(@—¢) + 02 fo

0

Thus

27
—n2
Ulee™) + ol < M~ Q=)
2710 1 —2pcos(@—¢) + 0

Hence for real ¢, and ¢, and 0 <r < 1, we have
I, @1, 92) = [(U(re™) + p) — (Ulre™) + pg)| < 2M .

Next it follows that whenever u(p) is the derivative of its integral and in
particular for almost all ¢ [2, Theorem 1.2, p. 4]

Ulee™) — @) — po, aso—1.
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We choose for ¢, such a value of ¢ and deduce that for almost all ¢,

I(r, ¢, 9) = U(r e”) — U(re™) — ulp,) — plpy) .

Thus (i) and (ii) are necessary.
Suppose next that (i) and (ii) are satisfied. Then Poisson’s formula
gives for 0 <r <p <1

P1+2n 5 2
Ure?) = - il Uloe™) dy .
97 0®— 27rpcos (p—19) + 72

P1

We have
Ue®) — Ulpe™) = 1o, 1, @) -
Thus
@127 2
4 1 2—r i

Ure?) = e Lo, ¢1, @) dp + Ulg e™) .

2 0® — 2 rocos (P—g¢) + 12

P1

We take 7, & fixed and let p tend to one through the sequence g, =
1 —1/n.
Then it follows from (i) and (ii) that the integrand converges boundedly
to
1 — 7

1 — 2rcos (—¢) + 72

(u(p) — ulpy))

so that the integral converges to

@427
1 | —

27 1 — 2rcos (@—g) + 12

P

(u(p) — plgpy) do .

Thus also U(p ¢”) must tend to a limit ¢, since the left hand side is
fixed. We define the function wu(p) by periodicity outside [¢,, ¢, + 27).
Then

Prt2n

Ure?y = 1 i (u(p) — ulp) dy + o
2n 1 — 2rcos (9—¢) + 12
1 ::+2n 1 )
—7
2%/ 1—29*(3os(29—<p)4—7’2'u(§0)d(p+Cl
%271
1

_ 1 f (1—7%) pu(p) dp
2n0 1 — 2rcos (@—¢) + 12
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Setting r = 0, we deduce that

-1
¢ = — [ wle)de = —uy.
27
0
This leads in turn to (1.5), (1.3) and (1.2) and completes the proof

of Theorem 1.

1.1, In a previous paper the second author [4] showed that the re-
presentation (1.2) is certainly valid if

) 1
(1.7 u(re?) < clog — , 0<r<1,
gl—r

where ¢ is a constant. He also obtained conditions on the function wu(9),
which were necessary and sufficient for (1.7) to hold for some constant ¢ .
In particular he showed that in this case wu(9) has left and right limits
everywhere, so that (1.7) holds for all ¢, and ¢, . Our main aim in this
paper is to consider to what extent the condition (1.7) can be weakened
while still allowing a representation of the form (1.2) with a bounded u .
We prove
Theorem 2. Supposethat k(r) is a positive conttnuous nondecreasing
SJunction of v in 0 < r <1 and
(1.8) u@re?) < k(r), 0<r<1,0<4<27,

where u(z) s defined by (1.1). Then if

1 —_—

(1.9) J = fl lk%dr

0

is finite, the function ¢(z) possesses a representation (1.2) with |u(9)| <
Ay J?, where A, is an absolute constant. Further (1.6) holds for all real
P15 Pe -

The following consequence of (1.2) is almost trivial.

Theorem 3. If g(z) is given by (1.2) with |u@)| < M , then

2 M r

(1.10) lg(r )] < 1o,z 0<r<1, 0<¢<2m

In fact we deduce from (1.3) that



An extension of the Riesz-Herglotz formula 179

27

g(r &) < 2Mrif @
2n 164}19 _ rei"’{z
0
2n
_2Mr 1 f (1—72) dd _2Mr
1—12 27 1 —2rcos(d—g) + 72 1—r2’

0

by Poisson’s formula. Thus we deduce that (1.8) leads to (1.10) with
M = A,J?. With some subsidiary monotonicity conditions on k(r) a
slightly less precise result of this type was proved by Linden [6], who also
gave some examples in the opposite direction.
All the above results break down when J is infinite. We have
Theorem 4. Supposethat k(r) isasin Theorem 2,but that J = + oo .
Then there exists g = w + i v given by (1.1), satisfying (1.8) but such that

(1.11) (I=ryu(r) - —o, as r—1
and

(1.12) I(r,0,¢)

1 )
=-2—— w(ret)dt — +o0, as r—1, for 0 <<g¢ <2m.
7
0

Thus g cannot possess a representation (1.2) with bounded w(J) .

Suppose that there exists a function z = @(w), which is regular in
lw| < 1, real and increasing on the segment [0, 1] of the real axis and
that ¢(0) =7, = 0, (1) =1 and

lp(w)] < 1, for |w| <1.
Suppose further that
(1.13) 1 — gw)| < Cy|l—w|, 0<w<]1

where C is a constant.
Suppose next that f(z) is meromorphicin [z| <1 and that

(1.14)  T(r,f{%pw)}) < Cy, 0<9<2n, 0<r<1,

where T(r, ) denotes the Nevanlinna characteristic of y(w) in |w| <7,
and O, is a positive constant. Then we say that f has locally bounded
characteristic (1.b.c.) in |z| << 1.

Our positive results will follow from

Theorem 5. If f(z) is regular in |z| <1 and

(1.15) log |f(r e“?)l < k(r)
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there, where k(r) satisfies the hypotheses of Theorem 2, then we can find
@(w) such that (1.13) and (1.14) are satisfied with ry = 1le, C, and
C,/J% absolute constants.

Theorem 6. If g is given by (1.1) and f = e satisfies (1.14)
subject to (1.13) then g satisfies (1.2) with |u(®)| < CyCy where Cy
depends on Cy and ry only. Further (1.6) holds for all real ¢, , @, .

Theorem 6 shows that if f = e has 1.b.c., then g possesses a
representation (1.2). Thus we obtain more general classes of such functions,
than merely those satisfying (1.8). For instance if f is a normal non-zero
function in the sense of Lehto and Virtanen [5], or alternately if f is regular,
f# 0, fP%%z) ~ 1, then these conditions are satisfied. In the above cases
we may take ¢(w) = + + 3w (see e.g. [3]).

The remainder of the paper will proceed as follows. In sections 2, 3 and
4 we construct a function in terms of conformal mappings which yields the
example whose existence is asserted in Theorem 4. Section 5 is devoted to
the proof of Theorem 5, which is also based on conformal mappings. Both
these results use the first and second fundamental inequalities of Ahlfors [1].
In section 6 we prove Theorem 6, which is relatively elementary and
Theorem 2, which is an immediate consequence of Theorems 5 and 6.

2. The Conformal Mappings. Most of our proofs depend on conformal
maps of various striplike domains onto strips. All the results we require can

be deduced from the fundamental first and second inequalities of Ahlfors
[1]. We shall consider a domain 4 in the { = & + ¢ 4 plane given by

1
(2.1) [7] <§ﬂ(§), -0 <éE< +©
where we shall assume that #(£) is lower semi-continuous,

(2.2)

o Y
I
>
o
n

and that (&) has finite variation V(& , &) in any finite interval [&,, &,].
We consider the map s =s({) of 4 onto the strip S given by
7| < #®/2 in the s = ¢ + ¢ v plane, which is symmetrical, i.e. ¢ = F oo
correspond to & = F oo and further s(0) = 0.
Then the two basic inequalities of Ahlfors [1] can be written as follows
Lemma 1. If s; = o; + i 7; correspond to {; = & +im;, j=1,2,
where &, — & > 3n then

(2.3) az—alznfﬁ—4n
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and
&

24) o -0 < nf$ FA(L+ V(E - 6, & + 7)),
&

where A, = 2000 and V(xy, x,) is the variation of 9(x) in [x,, 2y .
The first inequality of Ahlfors [1, p. 10], states that (2.3) holds if

&
dt

g o0

which is certainly true for &, -- &; > 3x, in view of (2.2). Similarly Ahlfors’s
second inequality [1, p. 16] states that
52
2
g, — 0y < @ _Cli+87z+16nL2l’—+Zl—.
9(t) A
&
Here 7, L can be taken to be the lower and upper bounds of
Hx) for —oo <a < +o0 and V; is the wvariation of d(x)? in
[&, —4L,& +4L]. In our case we may set ! = n/2, L = 3x/2, and

V, = / 2 9(x) |[dd(x)| < 3m f d9(x)| = 3xV

say. Thus
52

9 /22 + 3
“2‘“1<ﬂfﬁ+8n+16n-_n2-wf
: () 4

(7/2)*

&

=7z ﬁd_xf-|—152n+1728V.

;v

This proves (2.4).

2.1. While Lemma 1 is used for the proof of Theorems 4 and 5, the
results that follow will be used specifically for the proof of Theorem 4.
We denote by A a positive absolute constant, not necessarily the same
each time. Specific constants will be denoted by 4, , 4,5, ....

We now suppose that n < 9(x) < 37/2 and write

M) = w+elx), 0<elxr)<<al2.

We also assume that e(z) = 0 for * < 0,
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(2.5) e(x) = ¢, = constant for (n—1) 4, <ax <nd,, n=1,

and e(@) = min {¢,,¢, ,} for ¥ =nAd,. Here 4, =8n 4,.
Lemma 2. With the above hypotheses if further

(2.6) I(z) = et)dt — +o00, as x— +c0,
/

then for &, = 3n

1
(2.7) oy < & — e 1(&) + 4,,
and so
(2.8) 0y, — & —> —o0, as & — +0.

We suppose that (n—1) 4, < & <nd,,andset {; = 0,sothat ¢, = 0.

Then
ntl
V = V(—6x,& + 6n) < 226,.
0

On the other hand

Thus

Using (2.5) we see that

n=l A, A4,
I(&) = > Ay¢, = > (V—-2¢ —2¢,—2¢,,,) = ?(V—3n),
1
ie.
2
V < —— 1) + 3x.
A2 (2)
Thus (2.4) yields
1 2
Oy = 52“%1(52)4‘4‘11 1+ZI(52)+373
2
1
< & - 1(E) + 4,
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This proves (2.7) and hence (2.8) and completes the proof of Lemma 2.
Having obtained some estimates for o, we next turn to estimates for 7.
Let S* be the upper half of S i.e. the strip

JT

s =0 +1tT, -—oo<<7<+oo,0<r<§.
Lemma 3. Suppose that (n—1)A4, <& <nd Let ¢, =
min (e, , &, 1, &,.1) and &, = max (e, , &, n+1) If s=0+ 17 cor-

responds to & + i, then we have

37

(2.9) + -6 < s < < if ©=

QO | k=t
=13

7
4
Further if n > x/2, we have

JT
(2.10) T > 5~

TFor —o0 < sy < 0, s €ST, we write

" -1 ) <62° cos (2 7) + ezs") 1
(8, 8) = - tan Fsn2r) /T2

Then h(s,s,) is harmonic and bounded in S* . Also /A(s,s,) has
boundary values 0 for 7 = 0, and v = /2, ¢ <s, and boundary values
one for 7 = m/2, o> s,. Suppose that s = s, + i7/2, s, + iw/2 cor-
respond to

1 1
{=m-2 4, + éiﬁ((n“Q)Az): (n+1) 4, + é’iﬁ'((n"}'l)Az)
respectively. Then it follows from (2.3) that
1
(2.11) 82—0‘_>_§A2—47‘£, c—8 = 7 A, — 4m.
Consider now

1
hy(s) = 7+ Ee;{h(s,sl) — h(s,8)},

7 1,
ho(s) = 51—(; - §en>{k(s,sl)—h(s,82)}.

We note that %(s), hy(s) have boundary values zero for 7 = 0. For
T =2 and 0 < 8; OF 0> 8y, hy(s) = @[2, hy(s) = 3n/4.
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Finally for s; <o <s,, 7 = a/2, hy(s) = (1/2) (x + ¢,), and hy(s) =
(1/2) (= + &,) . Thus we deduce from the maximum principle and (2.5)
that

3 1
(2.12) hl(s)<77(s)<k2(s)<-2—r, -0 <0< +oo,0<r<§n.
Suppose now first that v = n/4 . Then
his,s,) = L ltarrl (e¥2) = l‘oan—1 (e*7%%) < ! 7 < !
2 2 7 7 7 8

in view of (2.11).
Similarly

- 6281—20 >

Lo |
S|
W w

h(s,s;) >
Thus
77(8)> 1(8)>T+28n8——-8‘ =Z+§8n'

Since also 7(s) < 37/2 , we deduce (2.9).
Next suppose that # > z/2. Then we deduce that 7 > m/4. Also

’ 1 1< sin (2 1) > 1 ‘1!75—21}
(5, 8) = 7 bein ¥ 4 cos (2 1) = 7 tan g2 _

1

<§(7[——2‘L’)

in view of (2.11). Similarly

2 1 sin (2 7) 21 1
h(s,s) = ST tan—! & { cos (2 7) =~ 3 (m —27).
Thus
3 3 <n 1 ”> <2 1 >
2(8)<§T—Z—§8n n‘r——z(n—2‘t)

1 1
<<1+~ez>r+—(n—2z).
7T 4

Thus if #(s) > #/2 , we deduce from (2.12) that

1 1
w < 21<1+~ez>+*(7t——21),
7 2



An extension of the Riesz-Herglotz formula 185

2-6 " 4 . T "
(@ —27) < e < &, le. T>5 -4,

) DO | =

This proves (2.10) and completes the proof of Lemma 3.

3. The construction of &(x) in terms of £k(r). It is inconvenient
to work with the quantities ¢, , ¢, , and we wish to obtain results in terms

of ¢, . In order to do this we now make the weak monotonicity assumption
(3.1) £,07 = Aze,, n=012 ..

where 0 << A; << 1. We continue to suppose that () is defined as above
and in particular that (2.6) holds. Evidently (2.6) is equivalent to

(3.2) ien = + .
1

We now set

e 1{1 1+2 7
(3.3) S =1 el
(3.4) w = 1% = u+iv

and write w = f(z), |z| < 1. We shall show that if the ¢, are suitably
defined the function f(z), slightly renormalized, will satisfy the conclusions
for ¢g(z) in Theorem 4. The next Lemma shows that (1.11) and (1.12)
certainly hold.

Lemma 4. If w=wu+ tv = f(r) s defined by (3.3) and (3.4) on
the positive real axis then

(3.5) (I=r)yu(r) - —oo, as r—1
and
1
(3.6) f v(r)ﬂ = —00.
12 !
Thus also
9
(3.7) ‘/‘u(re”)dta +o0, as r—>1 for 0 <9 < 2m.

0

We have for 0 < r < 1

1 147 4

3.8 = T = — 1 ), —
(3.8) s o+t g log 7 iy,
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(3.9) u+iv = exp{2£+i <27]+ g>}
= ¥ (—sin (27) + ¢ cos (27)) .

Since 7 = /4, we deduce from (2.9) that
3.10 < - 7=
(8:10) “ V3 °

Again (2.7) shows that
E—0 — +00, as 0—> 4+ 00.
Using (3.8) to (3.10) we deduce that
log {(1—7)(—u)} - +o0, as r—1,

and this proves (3.5).
Next we deduce from (2.9) and (3.1) that for s = ¢ + in/4,

b4 1, 7T 1 "
n>gtga >3t gdia,
and so
A2 AZe
(811) v = e€¥cos(2n) < —e¥sin <—4—3— sn_1> < - —32—:;1(325.

We now write &, = n 4, , and suppose that ¢ = o,, r = r,, correspond
to & = £, on the real r axis, where s, &, r are related by (3.8) and
(3.9). Then Lemma 1, (2.3) and (2.2) show that

2
Oypy — Oy > §A2—4n> 1.

Hence

) <1+rn 1 - rn+1> )
= l—r, 1 4+ 7,4 =

1
L=ty < 5 (1-7,).
In view of (3.11) we deduce that

. A? ¢

1 —7r inf At
n—1

(=14, <<E<nd, 27

|

<
=~
<
-
%1%‘
|

DO |
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2 2
‘_‘13%»1 Az e, 1

.
4n

(1 - /rn—l) e2En_1 > J‘ln exp (2 En-l -2 O‘n~l) > &

for n > n,, in view of (2.8). Thus
1
dr it
f —o(r) — > an_l = +00,
"ne—1

and this proves (3.6). To deduce (3.7) we note that for fixed &, 0 <9 < 27,
we have, as r— 1,

0 r
' dt
[urerar = vuoy+ [ (reeh — w0y
0 0

= — f@@ + O0(1) - + 0.
12

This proves (3.7) and completes the proof of Lemma 4.

3.1. To complete the proof of Theorem 4, we need to construct a function
e(t) satisfying the above conditions and then obtain estimates for « in
terms of &(t) . We proceed in a number of stages.

Lemma 5. Let k(r) be a nondecreasing continuous function of r for
0 <r <1, suchthat k(0) =1, and

1 P—
(3.12) f ) = 4o

1—7r
0

For & > 0, wedefine &,(&) as follows. Let r be the unique number such that

(3.13) e® = 1/1]0(3

and set

(3.14) () = YV (1=r)k(r).

Then &,(t) is a positive function of t, such that for 0 < t; <t, < 00 we
have

(3.15) ei(ty) = 47 ey(ty) .
Also
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o0

(3.16) f £(§)dé = + 0.
0

By hypothesis {k(r) / (1—7)}'2 is a continuous strictly increasing
function of 7 in [0, 1) which is equal to 1 when » = 0 and tends to
oo as r—>1. Thus (3.13) has a unique solution for & > 0, and 7 is
a continuous strictly increasing function of &. Thus &, is a continuous
function of 7 in [0, 1), and so of & in [0, ), and &(0) = 1.

Next let r = r,, 7, correspond to ¢ =¢,,¢,, where #, > t,. Thus

k(ry) (1 —7y) - k(ry) (1—7y) B eq(t4)?
k(ry) (L—ry) = k(ry) (L—ry) eq(ty)?’

since k(r) increases with ». This proves (3.15).
Finally let » = r, correspond to & = n by (3.13). Then

"n41 — -
k(r) k(r )
—Ldr < (r,., — 1, —ntl _ 2(n+1)
/ Vl—r (Tni1 ) ‘/1 . (Tup1 — Ty) €

n+1

k
< (1-r,) e l/l(_r';) = e2g(n) < e / &,(t) dt

n

in view of (3.15). Now (3.16) follows from (3.12) and the proof of Lemma 5
is complete.
We now set

(3.17) &y(t) = min {1, e,(t)} .

64 (fa—ty) __

It is evident that (3.15) and hence (3.16) still holds with &,(f) instead of
£,(¢) . Next we have
Lemma 6. Suppose that 0 < a < 1, and set

t

(3.18) g(t) = aey(t)/ { 1+ / &y(7) dr} .
0
Then for t; < t, < t; + 1, we have
1
(3.19) e3(ty) = 5 e gy(ty) -
Further

(3.20) ey(t) dt = oo
/
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and, for t = 0, we have

t
(3.21) e4(t) exp {g f &5(7) dr} < asg(l).
T
We note that in view of (3.17) we have

+1

fe2(r)dr < 1.

Thus

&(ty) _ &(ty) 0 < &y(ty) 0
g3(ts)  elty) " T ey(ty) "
1+ &(7) dt 1+ &(T) dT
/ /
” 282(51) < 2
&9(ts)

in view of (3.15). This proves (3.19).
Next we set

Thus

This proves (3.20). Again since a << 1,

t

eall) exp{z f e3(7) dr} < &) exp{ f £() dr} — aeyl).
0 0 '

This proves (3.21) and completes the proof of Lemma 6.
We now set e,4(t) = 0 for ¢ < 0, define

(3.22) e, = inf &(t)
(n—2)4, <t < (n—1)4,

and define ¢(x) by (2.5).
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4. Proof of Theorem 4. We can now prove

Lemma 7. If k(r) satisfies the hypotheses of Theorem 4, k(0) = 1
and &(t) is defined as above, where a s a sufficiently small absolute constant,
then the corresponding function w(z) satisfies the conclusions (1.8), (1.11)
and (1.12) of Theorem 4.

Suppose that (n—1) A, <a < nA,. Then it follows from (3.19) and
(3.22)

e@) = ¢, 2 Ayeg{(n—2) A4y} > Aje(x — 24,).

Thus (2.6) follows from (3.20). Similarly (3.1) follows from (3.19), so that
the conclusions of Lemma 4 hold. Thus we have (1.11) and (1.12) in view
of (3.5) and (3.7).

It remains to prove (1.8). We recall (3.3), i.e.

. 1 1+ re? T
(4.1) § = o+ 17T =3 log r:;'gﬂ? +Z§ ,

and that s corresponds to ¢ = & + ¢ in the map discussed in Lemmas
1 to 3. Evidently 7 > 0 and so

1 1
0 < n < 519(5) = §(ﬂ+€(5))-
Suppose first that & < A4, . Then, by (3.22) and (2.5), ¢(&) = 0 and
(3.9) shows that
(4.2) u = —e¥sin(29) < 0 < k(0),

so that (1.8) holds in this case. More generally, if » < 0, (1.8) is trivial.
Next suppose that &> 4,, w > 0. In this case we proceed to show
that if the constant « is small enough we have

(4.3) u(r é?) < &,(&) ¥
and
(4.4) 1—r < &8 e .

These inequalities yield (1.8) immediately. In fact let » = ¢ correspond
to & by (3.13). Then (3.13) and (3.14) yield

e1(€) € = ki), e(f)e® = 1—p.
Thus (4.4) shows that ¢ < r and (4.3) that
uré’) < k) < k(r)

which is (1.8). Thus we need only establish the inequalities (4.3) and (4.4).



An extension of the Riesz-Herglotz formula 191

We recall that (&) = 0 for & < A, and that ¢(&) is defined by (3.22)
and (2.5) for &> 4,.
We suppose that (n—1) 4, <& <nd,, n>1, so that (4.2) yields

u(ré®) = —e¥sin(27),

where 0 < 2% < 9(§) =a + &) . If 2% <z, we have u < 0, so that
(1.8) is trivial. If 2% > &, we have
—sin (29) = sin (29 — ) < sineg(§) < &(§)

=&, = inf  eyt) .
(n—2)4, < (< (n—1)4,

Thus (3.19) yields &(&) < Ag (&) . Hence, using (3.17) and (3.18) we have
u(r €%y < e(£) & < Agaey(§) ¥ < ey(8)e*

provided that

(4.5) a < Ag'.

Thus if (4.5) holds we deduce (4.3).
It remains to prove (4.4). We deduce from (4.1) that

ie¥ + 1 1 — 2e*sin (2 7) + €

re? — ——— = . = .
e — 17 1 4+ 26¥sin(27) + €%

Thus

4 ¢* sin (2 1)

1 +2e sin(27) + ¢

(4.6) 1—7r < 1—12 = L < 4e¥sin(27),

since 0 < v < m/2, so that sin (27) > 0.
In view of (3.9) and since u > 0, we have # > n/2. We apply Lemma
3, (2.1) and (3.1). These show that
(4.7) sin (27) < w— 271 < 2¢, < Aye,., < A;e(8),
in view of (3.22).
Next Lemma 1, (2.3) shows that, since & > 4, > 37,
¢ £

dt f dt
o > — —4n == _ —dm
9(¢) 7+ &(t)

3
> 5—£fe(t)dt—4n.
no

Thus
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¢
(4.8) e™ < Age ¥ exp {g f e(t) dt} .
7
0

It follows from (3.22) that
e(t) < et—A,) .

Thus

¢ E—4, &
(4.9) / e(t)dt < f e(t) dt < / ey(t) dt + Ay,
: 0 —A4, 0

since 0 < g(t) << 1. Thus (4.6) to (4.9) show that for & > 3
£

T—r < A, e(8) e exp {% f &s(t) dt}

T

< Apagé)e ™ < Ayyas(é)e ™,

in view of (3.21), (3.17). Hence if @ = min (4}, A;'), we deduce that
(4.4) holds. We have already proved (4.3) subject to (4.5). Thus the proof
of Lemma 7 is complete.

Suppose now that f(0) = o +¢f. If « > 0, g(z) = f(z) — f(0) will
also satisfy (1.8), (1.11) and (1.12) and in addition (1.1). If « < 0, we set
f(z) — f(0) || + k(r)

= ———— , sothat R{g(z)} < T

1+ [« iE

g(z

~

if k(0) = 1. If k(0) # 1, we construct g(z) / k(0) to satisfy Theorem 4
with k(r) / k(0) , instead of k(r). Thus Theorem 4 is proved in all cases.

5. Proof of Theorem 5. In order to prove Theorem 5 we also use
conformal mapping. We make the preliminary transformation

1
(5.1) Z=X+iY:Iog;, z=e %,

which makes the unit disk [2| < 1, punctured at the origin correspond
to the half plane

Di: X>0.
We set
X =27 n>0.

n

Let Y, be a nonincreasing sequence of positive numbers such that
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X,
(5.2) Y, = ¥, =1, 5 < 1.

o\ 8

Let D, be the domain given by
(5.3) 1Y) < X, X > 1,
(54) IYI < Yn’ Xn+1<X < Xn'
We note that D, c D, . Thus D, corresponds by (5.1) to a domain D,
in |z] < 1. We proceed to consider the map of D, onto the strip S of
section 2. To do this we set
1
(5.5) § = log, = &+
and proceed to show that D, corresponds in the { plane to a domain

4 given by (2.1).
To see this we note that D, consists of all points Z = e~ *~" where

1
n] < 50(5), -0 < &< o0

and the function 9(&) is defined as follows

1 1
(5.6) BE) = =, &< — Flog2,
1
519(5) = sin71 (Y, ¢,
(5.7)
s (i) = ¢ = v (g m)
Elog X?-T?ﬁ < ¢ < §og X3+1+Y3 , n=0 to o,
1 £
5 9(6) = cost (X, €),
(5.8)
1] ( 1 ) e l1 < 1 > -
—logl5—=35) < é< slog\ws—55), »n=0to .
2 8\X2,, + 12 2 B\xz ¥ 72,

In view of (5.2) we have Y, > X, , and so 7/2 < #(§) < z, which yields
(2.2). Thus we may apply Lemma 1.

To do this we next consider the total variation V of #(¢). We note
that 9(£) < = and that 9(£) is monotonic in each of the ranges (5.6) to
(5.8). Also in the ranges (5.7) and (5.8) we have
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nfg - L)

( X, X, 1 >
max R S S—
\/Xi + Y ‘/Xﬁﬂ + Y3,

cos { % 19(5)}

Il

IA

Thus

{Xn Xnﬂ}
(5.9) 7w — 9(¢) < mmax ?; 'Y,

Thus the variation of #(£) in the union of the two ranges (5.7) and (5.8)

is at most
X, Xn+1}
2 e .
i {Y Ty,

n

Thus the total variation ¥V of 9(&) in —oo < & < + oo satisfies
(5.10)

- X, ° X,
= {nzo? 27}= <X0+2X1+2§7>S8”

n

in view of (5.2). Thus Lemma 1 is applicable with V < 8= .
We now write

HE) = 7 — &(8)
Then (5.9) yields
{ Xn XnJrl} d T
(5.11) e(§) < mmax Y,'Y,., an e(§) < 3

since 9(&) > x/2 . Further if

(s 7). & = v ).
So=glelyriy) S gle\y Ty
we have

&

n

X, X,
log e eé,) < =n A log 2.

[eeras < @ - e <
n+1 n
én
Further for &, < & < &,,,, we have
1
Se(f) = sin (X, €¢), &) < aX, €,
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§n+1

f e(f) de < mwX,,, 1 < 7 Xy
Yn+1

L

n

Also &, < 0 in view of (5.2). Thus

X 3
"< _a(log2 + 1),
Y, 7 (log )

HMS

[\

fe(.f)df < mw(log2 + 1)
0

in view of (5.2). Also for & > 0 we deduce, using (5.11),
¢ ¢ ¢

(5.12) fﬂ - nf @ fdt{1+ £(0) }

9 : 7w —e(l) : 7 —e(t)

<e4 2 /e(t)dt < &+3(og2+1) < &+6.
T o
0

We deduce
Lemma 8. If in the above mappings s = o + ¢ v corresponds to
(=¢&+1in, where &£ > —(1/2) log 2, then
(5.13) lo—¢& < 44
We first take & = —3n — (1/2)log 2, s, = &, = 0 in Lemma 1. Then
(2.4) yields
(5.14) -0, < 4y,
in view of (5.10) and (2.2). Also s, = & = 0, so that ¢, << 0. Next we
take & > —(1/2)log 2, Cy = & + i7m,. Then (2.3) and (2.4) yield
52 d
t
(0p—0y) — i < 4y

()

Using (5.12) we deduce
log—01—&] < Ayq,

|og—&,| < A4y, in view of (5.14). This proves Lemma 8.
We now recall (5.1), (5.5) and define

14w es—1

(5.15) s=log-1-_—w, W= si1 z = pw).

Clearly |w] < 1, corresponds to D, in the Z plane and so to D, in



196 W. K. HAYMAN and B. KORENBLUM

|z] < 1. Also ¢(0) = 1/e and ¢(1) = 1. Let f(z) be the function of
Theorem 5. We cons1der

log® [fz)] = u(z) = u{p(w)}

as a function of w in |w| < 1. Wewrite v = U(w) . Then

(5.16) - f U+(e?) do
27

+

1 i 17T do
= e T+ JE— + U+ { < — __>} -
27 I:U {w(a + 2 >} ol B 2 cosh ¢~

— 00

We now return to the ¢ plane. By (1.8) we have

Ut(z) < k(r), |z| = r.
We write K(r) = k(r) / (100 J?) where J is given by (1.9) and set
k, = K{exp(—27")}.

We deduce that at all points Z = X + ¢ Y, where X > X, we have
u < (10J)2k,. In particular if the points ¢ = &, F iy, correspond to
s = o, F 1/2, we have for n > 1

o [

7 do do
5.17 7+ - 2 o
( ) f : {w<6 T 2)} cosh ¢ < (10J)k, f cosh o
On—1 Ty —1

n

< 200.J2k, f e "do < 200J%k,e -1 < A J¥k, e -1
On—1

= A JZ kn(X?;—-l + Y?'_])l/Z =< A J2 kn Yn—l

in view of (5.13) and (5.2).
We set r, =exp(—27") and deduce that, for n >0, 1-r, =
(I—=7,.4) (1+rn¢1) > 1.6 (1-r,,,). Thus

"n4+1

l/l_rdr > Vi, f \/1_7

- 1
= 2V, ((1=n)® = (L=r, )8 > 2 (k, 2772

Further
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1 1
f <K(r)>1/2 1 f (k(r))l/z 1
=) " =ws) W) =0
0 0
Thus
2 1
(5.18) 2, (k, 27" < o
0 2

We now choose Y, = inf{l, (2" *k, )2}, n > 2. Then Y, de-
creases with increasing n and if YV, =1, n<n,, Y, <1, n>mn,
we have

© X” 1o Y © kn-{-l 1/2 1 1
;Y—SZ? +Z<2n+1 S’2“+§=1,

n 2 #ne+1

so that (5.2) holds. Also in view of (5.16) to (5.18) we have

F1

b f Ut a9 < A {ko L 23k, Yn_l} < AS (k20 < Ay
2 7 J? n=1 0
This proves (1.14) with C, = A,;J% when & = 0. The general case
follows, since f(z 6“9) satisfies the hypotheses of Theorem 2, whenever
f(z) does.

Next we recall that g(w) , given by (5.15) maps |w| < 1 into [z| <]
and ¢(1) =1, ¢(0) =7, = 1/e as required. Finally we have for
ry < 2z < 1, using (5.13), (5.15)

A

l—w > e % > e = A7 = A|logz| > A(1-=2).

This proves (1.13) and completes the proof of Theorem 5.

6. Proof of Theorems 6 and 2. To complete our results we need
to establish the relation between the representation (1.2) and 1.b.c. We
have

Lemma 9. Suppose that g(z) in (1.1) satisfies

2n
(6.1) / |u(r e“())J > < C, 0<r<1.
0
Then

1
(6.2) f 1w )| @ _ ¢ 0<o<om.
0
0
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It is enough to assume & = 0 in (6.2) since we may consider ¢(z e“’)
instead of g(z) . We recall that (6.1) implies that g¢(z) possesses the
representation (1.2) in view of Theorem 1 and (1.6) shows that u(p) is
a function of bounded variation, whose total variation in [0, 2n] is at

most C by (6.1). We deduce from (1.2)

4

—1 2 o sin 9
o) = f e du(9) .
27 1 —2pcos?d + g2

—7

Thus

IA
I

1 7 1
d 1 sin 9
[ <X [ [ R0
: 0 n J : 1 —2pcos?d + o

1 A , 0 — cos 9!
7;:/‘ |[du(9)| H:tan =

sin ¥ 0

IA

f du(®)| < C.

This proves Lemma 9.
We have next
Lemma 10. If g(z) satisfies the hypotheses of Theorem 6 then

1
9., do
[v(o € )l? < 0,0, = 160,C, |7 + (I +32xC)) |-
0

(L—7o)?
It is again enough to consider the case ¥ = 0. We consider the function
Gw) = glgw)} = U+iV.
It follows from (1.14) that

2n
(6.3) _2L Utredo < 0,, 0<r<1.
7T

Also

Thus
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% /IU(r N do = 515 f{z Ut@re?) — Ure?)1dd < 20, — u(ry) .

We now set G(w) = Gw) — G(0) = Uy(w) + i Vy(w) and deduce that

1 / \U,(r &%) @9 < 20y + 2 |ulry)] .
7
Now Lemma 9 shows that

[V4(r)] |[V(r) — V(0 I—— < 4z (Cy + [u(ry)l) -
frn® - f

Hence
[ e = vonar s 4+ ue)
and so 0
08 [ VNdr < 20 lu) + VO] = 47+ 2 gt0))

We now note that

where

It also follows from Pick’s Lemma and (1.13) that

do

dr

1—0? 1—
= |p'(r)] < 1,2 < 2-—-1—7‘ < 20C,, 0<r<l.

o

Thus (6.4) yields

f|v fv

Let 7, = max (ry, 1/2) . Then we deduce that

d@

ir < 20, /w \dr < 870, (Cy + 21g(r)]) .
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(6.5) f 1o(o)| % < 1670, (0, + 2 lg(ro)]) -

L£Y

We next deduce from (6.3) and Poisson’s formula that

27
¢ . t
U+) < 1_1f U+(re’ﬂ)d0 < 0, e , 0<t<r.
r—t 2n r—it
0

On letting r tend to one we deduce

o+ 1+¢ 20, 0 ]
(t)sozl—_tsl_t, <t<l.
Using (1.13) we deduce that

A corresponding inequality holds for U* (o ¢?), 0 <9 < 2a. We choose
@ =1y = (1/2) (14+7r,) and apply Carathéodory’s inequality to ¢(z). This
gives

2rC; 0,
lg(r)| < A=ry) (ra—r)’ 0<7r<r,.
Thus
N e I
. 0 : 4 (1 =ry) (rg—1y)
8C,C, 320,C,
T2 T (—re
Also
(6.7) o) < sl

(I=rg) (ra—10) = (I—r? "

On combining (6.5) to (6.7) we deduce Lemma 10.

6.1. We can now complete our proofs. We recall the notation of the
introduction. Then, with the hypotheses of Theorem 6,

. . ‘9 d
Ur )] = ]Qf ”(Qeg’__@ < 0,0,
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in view of Lemma 10. Thus
I(r, @y, @) = | U(re™ — Ur en) |
< 20,C;,, 0<r<l,0<q@ <g@,<2m.
Also for fixed ¢, , @,

.
r —1

1 . .
1(7.’ P15 (Pz) — hm{ U(T ei%) _ U(’I’ eizp,)} _ f {U(T@ ) —-;)(7’6 )}d?‘
0

We set

and see that the hypotheses of Theorem 1 hold with M = C, C, . Further
the limit (1.6) exists for every pair ¢, , ¢, . Thus we have proved Theorem
6. Now Theorem 2 follows at once from Theorems 5 and 6. For in view of
Theorem 5 we may apply Theorem 6 with ry = 1/e, O, = 4,5 and
Oy = A,5J?. Thus, by Theorem 6, g(z) has the representation (1.2) with
|u(®)| < Ay, J?. We have already seen that (1.6) holds for every pair
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