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SOME PROPERTIES OF
CERTAIN EXTREMAL DECOMPOSITIONS
OF A RECTANGLE

FRIEDRICH HUCKEMANN

1. General notation. For two distinct points @, b of the complex
plane C or of the two-dimensional Euclidean space R2?, [a,b] is the
closed straight line segment joining these two points; we put <{a,b] =
[@,b] —{a}, [@,b) = [a,b] — {b}, <a,b) = [a,b] —{a,b},[a,a] =
{a}; for a subset S of C or of R%, S is the closure and aS is the
boundary of S .

For fixed M > 0, @ denotes the rectangle <0, M) x <(0,s). In the
course of this investigation, 4 or 5 or 6 boundary points of ¢ will be dis-
tinguished, and @ will be considered as quadrilateral or pentagon or
hexagon accordingly. Choosing x € <0, M) and singling out the distinct
points 0, x, M, M+i, ¢ on 8Q, @ becomes a pentagon with sides
0,2, [x,M], [M, M+, [M+¢,4], [¢,0]. Selecting two mnon-
adjacent sides s; and s, out of these five sides, the remaining sides
83, 8, 85 are so numbered that s, and s, have a common point, denoted
by P. We denote by & = R(s;,s,; P) the class of continua K in @
with the properties

(i) K connects P and s;,

(ii) K is disjoint from s; U s, .

v

0 x Sg M = P
Figure 1
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K separates s; from s, in Q and decomposes @ into several simply

connected components. The component of (@ —K) N ¢ which has s; on
its boundary (j =1,2) we call D, = Dys;,s,; K). K; = KN aD,
is connected; M; = M (s, , s,; K) denotes the extremal distance between
s; and K; in D,; M; isthen the modulus of the quadrilateral D; with
respect to the pair (s;, K;) of sides. For a domain D c C and two con-
nected compact sets y, , y, C 8D in general, d(y,,v,; D) isthe extremal
distance between y; and v, in D . Wenote d([0,¢], [M, M+i]; Q) =

M and the well known inequality
(1.1) Mi(sy, 805 K) + My(sy,85; K) =< d(sy,85; @) .

Figure 1 gives an example in the case s; = [0, 2], s, = [¢, M +2] .

2. We shall investigate the set of values of the pairs (M, , M,) obtained
this way in its dependence of the chosen pair of sides and the choice of .
Here we shall find that certain “extremal” continua which are produced by
quadratic differentials play a key role. We shall omit the case that the side
[, M] is selected since a reflection in the line {z; Rez = M/2} im-
mediately leads to a situation in which [0, M —x] is a selected side. So
we are left essentially with the following three cases:

Case I. s, = [0,1], s = [M,M+i], P = x;

Case II. s, = [0,2], sy = [M,M+1i], P = 1;

Case III. s, [0,2], s = [¢,M+i], P = M.

Of these, we will study first case I giving detailed proofs of the relevant
facts; since cases IT and IIT exhibit many similar features, a briefer dis-
cussion seems appropriate.

Il

3. Let M >0 and @ =<0,M)> x <0,7)> . In this section, and up to
section 8, welet s; = [0,¢] and s, = [M, M +4]. Weput S =<0, M) x
<0, My. With Weierstrass’ p-function p(z;2M ,21¢) = p(z) and
(x,y) € S, we introduce the quadratic differential

1 - p@)/pW)

(3.1) o, = dz?, ze@Q,

Y 1 — p(z)/p(x)
where the formal expression p(z)/p(0) is replaced by 0 for each z €@ .
Denoting by K,, the closure of the union of the trajectories o,, > 0 which
have the limit point y , we describe first the set K, .

(@) (,y)esSt = {(x,y); 0<y<ax<M}. Then o, > 0 has
two trajectories with limit point % . One trajectory has as its closure the
segment [y, ]; the other trajectory has as its closure the carrier K,
of an analytic arc with initial point y and terminal point on (i, M +1)
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which lies up to initial and terminal point in ¢, forming at y with the
direction of the positive real axis the angle 2m/3 .

b) (,y)el8 = {(r,y);0<x<y<M}. Then again o,, > 0
has two trajectories with limit point v ; [x, %] is the closure of one trajec-
tory, the closure K, of the other trajectory has the same properties as
mentioned in (a) except that the angle with the positive real axis at y
is now /3.

() (x,y) with 0 <2 =y <M. o, >0 has one trajectory with
limit point y , which is already a closed set, namely K, = [y, y+1i].

In the cases (a)—(c) thus K, = [x,y] UK, ; considering @ as
a pentagon with sides s;, s,, and s;=1[0,2], s =[x, M], s =
[¢,0+M], we have K, € R(s;,8;;), and s; as well as s, are trajec-
tories of o,, > 0.

dy) €0, M>, y=0. Then K, ,=[0,2]Us;, and s, is a
trajectory of o,, > 0.

dy) 20, My, y=M. Then K, =[x, M]Us,, and s; is
a trajectory of o, > 0.

e;) =0, yed0,My. Then Ky, = [0,y] UK, , where K;, has
the properties of K, , mentioned in b); s, is a trajectory of ¢, > 0,
and s; is the closure of a trajectory.

e) * =M, ye0,My. Then K,, = [y, M]U K, , where K,
has the properties of K, mentioned in a); s, is a trajectory of ¢, > 0
and s, isthe closure of a trajectory.

f) K, = s;,and s, is a trajectory of oy > 0;

Ky = s U0, M], and s, is the closure of a trajectory of
O > 0

Koy = s, U0, M], and s, is the closure of a trajectory of
Torr > 0

Kyy = s, and s; is a trajectory of oy, > 0.

4. Defining
<_1 - 20(2)/1\9(3/)>1’2
1 — p()/p@)

analyticin @, continuous on Q — {«} , and positive on [i, M +1¢] , we put
(4.1) 10 = [(—an, zeq.
For (x,y) e St US—, f maps ¢ conformally onto a hexagon bounded

by straight line segments parallel to the real or the imaginary axis, with
five right angles (corresponding to the points 0, «, M, M+¢, ¢ ) and
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with one 37/2 -angle (corresponding to ¥ ); for (x,y) € S - (St U 8§
various degeneracies appear. (@ — K, )N @ either consists of two com-
ponents (in the cases (a), (b), (c), (¢) i.e. when y 5 0, M ), then we call

D; that component (j = 1,2) which has s; on the boundary; or

(@ — K,)) N @ consists of just one component (in the remaining cases),
which we call D, when y = M, and D, when y = 0 (they are obtained
as limiting cases when y — 0, M ) ; for (x,y) € S we have in the notation
of section 1, D; = Ds;,s,;K,) .
We put (j =1,2) for (x,y) es
Mix,y) = d(s;, K,,N oD;; D)) when D; is defined,

(4.2) ’
M¥x,y) = 0 when D; is not defined.

For (z,y) €S we have thus: M¥(x,y) = M(s;,s;; K,,) is the modulus
of the rectangle f(D;) with respect to its vertical sides. We put further

for (x,y) el
min(x, y) 1
a’l(x ) y) = f [O'xylllz ) bl(x ) ?/) = f ]nyll/z )
0 0
(4.3) o ot
R N N
max(x, y) M

the integration being carried out on [« , f] when o« is the initial and g
the terminal point in any of the definite integrals (4.3). Simply checking
the various cases, we obtain (j = 1, 2 ) from (4.3) now

a;(@ , y) <
b,-(x,y)’ @, y) 8

(4.4) M@, y) =

indeed (apart from the degenerate cases (d), (e), (f)) the function f maps
D; onto a rectangle with horizontal sides of length a,(x,y) and vertical
sides of length b,(x,y). We observe further that in (4.3) a; and a, are
always finite and non-negative on S while b, and b, are positive (possibly
infinite) there.

5. While a,, a,, b,, b, are not continuous on S, we have
Lemma 1. Let h: S— R? be defined by

(5.1) @, y) = (Mf,y), Mi@,y), (x,y)es.

Then h s continuous.
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We shall see later (Theorem 2) that the restriction of A to S+ orto S-
is actually a homeomorphism onto the triangle

(52) 4 = {(1,p); O Sy + g <M, iy 20, piy 20}

Proof of Lemma 1. The continuity of # on S U (<0, M)> x {0, M})
follows from (4.4) since the functions a;, b,, a,, b, are clearly continuous
on this set, by (4.3) and (3.1). To prove the continuity of A on the remaining
set {0, M} x [0, M], we observe that by the trajectory structure of the
quadratic differentials o,,, (x,¥) € S, the reflection of K,, in the line
{z; Rez = M/2} yields K, , ,_,, whence

MEM -2, M—y) = Mf(x,y), _

5.3 | 3
(5.3) Mék(M—m,M—y) _ M{k(x,y); (x,y) €

it suffices thus to prove the continuity of A just also on {0} x [0, }].
Consider now the continuity at (0,%), ne€[0, M]. By (4.3), (4.4)
we have

aZ(O ’ 77)
b2(0 ) 7]) ’

The continuity of M at (0,7) follows since a, and b, are easily seen
to be continuous at that point by (4.3), (3.1). The continuity of M; at
(0,n) may either be inferred directly (considering the quotient
ay(x,y) [ by(x,y) near (0,n) which is, however, a little cumbersome when
n=0) or by using Mfx,M)—-0 when x-—0 together with the
inequality M (x,y) < M (x, M) foreach y € [0, M], whichinequality
is immediate from the structures of K,, and K, .

(5.4) ME©O,n) = 0, MHO,n) =

6. Lemma 2. Let €0, M) and K € R(s;, 8y; ). Then for any
y €10, M| we have the inequalily

(6.1) bix ,y) My(sy, sy; K) + b3(x, y) My(s, , sy ; K)
< Biw,y) M@, y) + b, y) M@, y);

for y =0 or M, the inequality (6.1) is strict ; for y € <0, M) we have
equality in (6.1) if and only of K = K, .1

The proof is accomplished in a standard way by the extremal-length-
method, using in @ the metric |o,,["*.

Using the fact that K, € §(s;,s,;2) once (v,y) €S, we conclude

from (1.1) that A(S) lies in the closed triangle 4 of (5.2), and Lemma 1
yields

1 Note that (6.1) yields (1.1) for y = z.
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(6.2) MS) c 4.
Writing
(6.3) 4 = {(p1,p02)5 O <ppy +pg <M, p; >0, >0}

for the interior of A4 we have
Theorem 1. Let 2 €<0, M) and let h,: [0, M] — R2? denote the
section of h at x given by

h(y) = (Uf@x,y), Mx,y), yel0,M].

Then

(i) kb, s injective; _
(i) I, = h,([0, M]) is a smooth curve in the closed triangle A which
has at h,(y) the slope

(6.4) My) = —blx,y) [ bx,y) < 0;

(iii) the slope 2, is strictly decreasing on [0, M] from 2,(0) at h,(0) =
(0, MF(x,0) € o4 over A xr) = —1 at hf(x) = (x,M—2x) € 24 to
(M) at h (M) = (Mfx,M),0) € a4;

(iv) the component A, of (1—1— — I')) 0 4 which has the point (0, 0) on
the boundary is a convex domain touching the side [(M ,0), (0, M)] of 4
at just one point, namely (v, M —zx) .

Proof. To prove (i) we observe 5, (0)e<(0,0),(0,M)> and
h (M) €{(0,0),(M,0)> whence h,(0) = h,(M), while for y, €<0,M>
and a different point y, € [0, M| we obtain h,(y,) # h,(y,) at once from
Lemma 2 choosing there K = K,, and y = y,, since K, #K,,.

(22

We show now that for fixed z <0, M),

(6.5) M ,y) is strictly increasing in y € [0, M],
. MF(x,y) is strictly decreasing in y € [0, M] .

First consider (o/ay) M§(x ,y) for y e (x, M> . We have
. a *
66)  sign, Mi@,y)

0 d
= Sign [bl(x ) 5?/ aq(x , y) — a4, Y) 5‘;/- bl(x ’ y):l >

and the expression in parentheses in (6.6) equals

i x x i
7 2
(6.7) f MRS o f |0, |2 — f |6, |12 - o f |0, |12 .
Yy Yy
0 0 0 0
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A little consideration shows that the differentiation can be taken under the
integral sign which makes (6.7) equal to

R T S C R
2p2<y>[0f o i

(6.8)

0

_ 12, e 12
Of il 5/ L= pE)p) ]
Since for ¢t €0, 2> and 7 €0, 1] we have
plt) < —pl) < P(i 7)
L= p0py) — P T 1= pl0)p)

the bracketed expression in (6.8) is negative, and since p’(y) < 0, (6.8) is
positive, whence

b

o
(6.9) -@Mf‘(x,y) > 0 for yelae, M).

Thus Mj(x,y) is strictly increasing for y e[z, M] .
Let now @ <y, <y, <M. Writing /,, for the right hand side of
(6.1), the point A,(y,) = (Mf(x,y,) . M3(x,y,)), lies trivially on the line

(6.10) ny, = { (41, po); b?(x s Y1) Myt bg(x Y1) P2 = lxy, | 3
which line has the negative slope
(6.11) L) = —bi,y) [ b@,y).

By Lemma 2, on the other hand, the point 7,(y,) lies strictly below the
line (6.10). Since for the first component of these points we have
M@, y,) < M¥@w,y,), the slope A0y, . 5s) of [h(y) , hy(ys)] satisfies

(6.12) My, y) < Aly), =y <y < M;

and in particular the second components of h,(y,) and hk,(y,) fulfill by
(6.11) the opposite inequality M (x, y;) > M¥(x,y,), whence M (x,y)
is strictly decreasing for y €[z, M| . A similar procedure applied to the
interval [0, x] then gives (6.5).

Considering instead of the line (6.10) the line L, , we obtain instead
of (6.12)

(613) }'x(yz) < lx(yl ’ ?/2) H z é yl < y2 < M ;

both (6.12) and (6.13) are easily verified also when 0 <y, <y, <2z,
and the continuity of (6.4) for y € [0, M] finally yields
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(6.14)  2,(y2) < A(y1,¥%2) < A(y;), when 0 <y, <y, <M.

I', c 4 follows from (6.2) while the remainder of statement (ii) in Theorem 1
is obtained by letting y,,y, —y €[0, M] in formula (6.14) where
Y1 =¥ =Y, and using the continuity of (6.11) in y, € [0, M] .

With (6.4), (6.14) as well as the relation b,(x, x) = by(x , ), obvious
from (3.1) and (4.3), statement (iii) now follows; statement (iv) is easily
obtained combining the statements (ii) and (iii).

Remark. Though I', is a smooth curve with slope —1 at (x, M —2z)
the partial derivatives of Mf(x,y), M¥(x,y) with respect to y at
y = x are infinite.

7. For (x,y) €S, the function f of (4.1) maps @ onto a hexagon H
(degenerate to a rectangle when x = y ) which is bounded by straight line
segments parallel to the real or the imaginary axis. The imaginary axis
decomposes H = f(Q) into two rectangles H, = f(D,) in the left half
plane and H, = f(D,) in the right half plane. M*(x,y), (j =1,2), is
the extremal distance of the vertical sides of H . » while M is the extremal
distance of the “outer’” vertical sides f([0,¢]) and f(( M, M+i]) of H
in H . The question arises: to what extent does a pair (M}, M¥) , obtained
that way, characterize the pair (x,y) € S . In order to answer that question
we need some information about the change of the extremal distance of the
outer vertical sides of such a hexagon when one of the rectangles H; is
subject to a homothetic transformation.

Lemma 3. Let M >0 and E€<0,My; let R={—&,M—¢&> x
0,0y, By =<(—&,00 x (0,55, Ry =<0, M—& x <0,3>; for >0
let Ry(9) = 0,9 M—&)» x 0,814y be the rectangle obtained from R,
through homothetic stretching by the factor @, keeping 0 fized ; let

(7.1) R(®) = interior of (Ry; U Ry(9)) = R(M , £,9),

(7.2)  p@) = d([=&, —&+1d], [H(M=§) , M —-E+9)]; R(®)).

Then® w: <0, o) — R is strictly decreasing on <0, 1], strictly increasing
on [1,c0), and

(7.8) lim p(d) = oo = lim u(d) .
B0 P>c0
We have R = R(1); R(J) is a hexagon of a type similar to that of H
above.
Proof of Lemma 3. u(9)— o for & — 0 is obvious. Writing for the
moment u(M,&,¥9) instead of w(9) to take into account also the

2 Here the notation (0, ) ete. for subsets of the real axis is self-explanatory.
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dependence on M and &, we have u(M ,&,9) = wM,M—-£,1/9);
limyg  , u(9) = oo now follows, and we conclude further that the Lemma is
proved once it is shown that p is just strictly increasing for ¢ € [1, co0) .

Let now ¢ > 1. Abbreviating the vertices of R(J) by
’ D = 9M—-¢£+i), E = ®i, F =1,

we have for the extremal distances M, M, of the vertical sides of the two
rectangles R,, R,(J) obviously

Ml d([A:B]’[O)F];Rl) = ¢,

I

whence (observing ¢ > 1) immediately
(15) w(®) = d([4,B],[C,D]; R®) > M,+M, = M = ul).

To prove now u(9;) > u(¥) when 1 <@ <¥9,, we determine first an
extremal metric o for the extremal distance wu(¥). We select ;> ¢, >
t; > 1 so that the upper half plane U can be mapped conformally onto
R(¥) in such a way that the boundary points oo, 0,1 ,¢ ,t,,t; of U
correspond in turn to the vertices A ,B,C,D,E,F of R(J). With
suitable A > 0 the mapping function @ is then given by

: t—t, 12
(7.6) D(z) = zd/‘(t(t—l) (i—t) (t—t2)> at — &, zeU,

where that branch of the square root is taken which has positive boundary
values for ¢ €0, 1). The function ¢ given by

z

dt
(77) (p(z) = f [t (t——l) (t_tl)]l/z: zeU )

0

again with that branch of the square root which has positive boundary
values on <(0,1)>, maps U onto a rectangle <(0,a) x (0,¢b) with
a>0, b> 0. Having w € R(#) related to ze U by w = P(z), an
extremal metric o(w) |[dw| in R(J) is given by

|dz| 1 |dw|
2 (z=1) z=t)|"* |2 (z=1) (z=£)["* |9'(2)|’
thus
1 |t,—2|"2
(7.8) ow) = 2| z =0 Yw).
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We have then (w = u + ¢ v ) for the family I' of curves joining [4 , B]
and [C, D] in R(9)

inf [ o(w) |dw| = a, /f w)dudv = ab,
yeI‘y R(@)

whence

a
(7.9) o) = 5

For small e> 0 we put 9; = (1+¢) ¥ and denote the corresponding
vertices of R(&4;) by

A1 = —§+7;; B1 = —¢, C'1 = ﬁl(M_E):

(7.10) : .
D, = 0,(M—&+i), E, = 0,0, F, = i.

The choice of a suitable metric ¢, in R(#;) will then give u(d,) > u(d),
and the Lemma is proved. 2

We put 8’ =<0,C| x [E,E,>, 8" =[C,C,» x <0, H;>. Noticing
that o has a continuous extension to [, D] U [C, D], again denoted by
o, we put (see Figure 2)

Dl
———————————————— °
g ! |
D |
|
Sl’ ‘
R(9) :
:
C |
O — = = —— o

Figure 2

(i) o1(w) = e(w) for w e R(d);
(i) o,(w) = o(u+19) for w=u+iveS where ue{0,(] and
vel[d, v, ie tvell,E),

(iii) o,(w) = o(D) for wedl",

observing
3 A more subtle reasoning, not needed here, gives in fact for the partial derivatives

of d([4,B],[C,D];R()) with respect to each of the variables &, M, ¢ a not
too complicated expression.
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1 1/2

(7.11) oD) =

lo—t

2 U~ inf o(w).

ta_tl we[C, D]

If I, is the family of curves joining [4,,B,] = [4,B] and [C;,D,]
in R(d,), we have

LA(I'y , 04)

(7.12) u(dy) =

where

(7.13)  L(I'y,0,) = inf [ oy(w)|dw| = a + ¢(D)(C,-0),

and

(7.14) ffgl dudv = ab +ff@1 w) du dv .

S’ s”
Putting (1 <t gtz)
(7.15)  flt) = [t(t=1) (t—t)|7%, gt) = [(ta—0) [ (ts—0)["*,

the relations C,—-C = (9,—9) (M —-&) = ed(M—-&) = ¢(D—FE) and
(7.11), (7.13), (7.15) yield

1
(7.16) L'y, 01) = a+egty) 7 (D-E).
From (7.6) and (7.15) we obtain further (w € [H , D], te[t;,t,])
f(@®)
(7.17) ldw| = AE](_t) |dt|, where w = D(t),

whence with B, —FH =19 e = ¢(D—-C) and (7.8)

D
(7.18) 0i(w) du dv |E,—E| [ ol(w) |dw]
[/ f

e|D— O]ngAdt

Formulae (7.11) and (7.15) yield

1
(7.19) /f@ﬂhuiv = }{Egz(tl) (C1—=C) |D,—04]

I

1
= ¢*t) 5 e (D—E) (1+¢) [D-C].



244 FRIEDRICH HUCKEMANN

Combining (7.14) with (7.16), (7.18), (7.19) we obtain

(7.20)

IA(1'y , 04)
p(dy) = A,(0,)

[a + e g(t) A7H(D - B)?

ab + el D— C’|ffgdt+s(1+s)g( ) A"XD—E) |D-C|

1+ 2eg(t) 27 (D—E)|a

a O(e2
=% + O(e?)

£, _f & a2 B
L+ 27ID=0| | fgdt + 7 g*t) A"(D—E) [D-C]|

e

e A1
ab 9t (D—E) {b — g(ty) TIID—C’I}‘] + 0(&%) .

.|_

Using again (7.17) and the fact that ¢ is nonvanishing and strictly decreas-

ing in te[l,¢,> we obtain
t 1,
> ffdt-l/fldt

(7.21) by(t,) (D—E) = ffdt'l/f(t) S

= f dt>,1ffdtffgdt
- D-0C|- ffgdt
and
(7.22) b = ffdt = ff gg(:tl = g(t,) -fgdt
i

= g(t,) A1 D-0].

Using now (7.21) and (7.22) in the last expression of (7.20) and comparing
with (7.9) we finally conclude for any sufficiently small ¢ > 0
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a
w(+e)d) = p@y) > 7 = pud)
where @ > 1, thus Lemma 3 is proved.

8. Recalling the notation
= <0, M) x <0, M),
St = {(x,y); 0<y<az< M},
S ={(@,y); 0<az<y< M},
4 = {(uy,p2); O <pg +pa <M, puy >0, >0},

we have _

Theorem 2. Let M >0 and let h: S—R? be given by (5.1).
Then

(i) b maps S onto 4;

(ii) the restriction of h to each of the two sets St and S- is a homeo-
morphism onto A, this homeomorphism is moreover sense-preserving on S+

and sense-reversing on S-.

Proof. We shall prove the part of statement (ii) which concerns S+,
since in view of (5.3) this suffices to prove the theorem. We shall proceed
in several steps.

I. h: oS+ — a4 1is a homeomorphism which 1is sense-preserving. On
a8+ = [(0,0),(M,0]U[(M,0),(M,M]UI[M,M),(0,0)] wehave

(8.1) h(xz,0) = (0,d(s; U[0,2],s,;Q)) for xe[0,M],
(82)  h(M,y) = (a,(M,y) by} ,y),0) for yel0,M],
(8.3) hzx,z) = (@, M—z) for xe[0,M].

(8.1) shows that % is injective on [(0, 0), (M , 0)] with A(0,0) = (0, M)
and k(M ,0) = [0,0], and the continuity of A implies that h maps
[(0,0), (M, 0)] homeomorphically onto [(0 M), (0,0)]. The reasoning
leading to (6.9) likewise shows (2/ay) (ay(M ,y)[by(M ,y)) > 0 for
y €0, M> and one concludes from (8.2) that h maps [M,0), (M, M)
homeomorphically onto [(0,0), (M, 0)] . With (8.3) it is now immediate
that h: @S+ — @4 is a sense-preserving homeomorphism.

II. h s injective on S+ . Since we know already that h is injective
on 9S* and since h(x,y) e 4 for (x,y) eS8+ — a8+ = S+ we have just
to show that A is injective on ST .

Let therefore (x;,%;), (®,y,) € ST be such that A(x,,y,) =
h(xy , y,) . Putting (75 =1,2)
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(8.4) fi(z) = @ ) I:f C : zi ];>1/2 dt + a,(z; , yj):|, 2€Q,

and choosing that branch of the square root which has negative boundary
values on (0,y;>, we have in the notation (7.1)

(8.5) f;(Q) = R(M];.k(xj , .7/]-) + Mék(x] s yj) , M;(x] , yj) s ﬂj) >
where
(8.6) 9 = bi(x;, ) [ bal;, ) < 1,

the boundary points M, M+, i, 0, y,  being mapped in this order
to the points 4, B, O, D, E, F of (7.4), replacing there (M, ¢, 9)
by  (Mf(x;, ;) + M3, ;) M3(x;,y;),9,). From Lemma 3 we
conclude 191 = 9y, whence f,;'of, is a conformal selfmap of @ keeping
the boundary points 0, M, M+, ¢ individually fixed. Thus f;'eof;
is the identity I on €, and we obtain

2y = fi'(fulxy) = I(x,) = 2y,
Y2 = 5 filyy) = Iyy) = vy1»

and (v;,y,) = (5, y,) , showing that % is indeed injective on S+ .

I h:St—>4 is surjective. Since h: oSt — 24 was already seen to
be surjective, it remains to show that A : St — 4 is surjective. Let w e 4
and assume that wé¢ A(ST). Since A(2St)N 4 = 0 we have also
w¢ h(St) . If y is the Jordan curve obtained by positive orientation of the
boundary a8+ , the continuity of A on S+ yields by a standard homotopy
argument that the winding number of A(y) with respect to w is zero, which
by h(8S+) = 4 is obviously false. Thus indeed h(S*) = 4. -

IV. Since % is a continuous bijection of the compact set St onto 4,
h is a homeomorphism, and h is sense preserving since (by step I) it is
sense preserving on oS+ , proving the Theorem.

9. Let (x,y)ef. 0,, > 0 determines a directional field in @
prescribing at each point z € @ the direction

1 — p(2)/p(y) >
1 — p(z)/p(@)

The direction (9.1) depends apparently continuously on all three variables
(@,y,2)el0, M] x [0, M] x @, and we showed that the pair & =
(M3, M¥) not only is continuously depending on (x,y) € S, but that %
is also a homeomorphism when ¥ is restricted to [0, ] .

1

(9.1) arg dz = — 3 arg< mod &
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We want to extend this homeomorphism when the zero y of the
quadratic differential o,, is no longer restricted to [0, 2] but varies on
8Q — {z} . To this end we shall define a directional field in € also for these
values of % in a natural manner. The form (9.1), however, is not suitable
since p(y,) = 0 for some y,e[i, M+i]U[M,M+i] making (9.1)
undefined for y = g, [(9.1) has a limit direction at each point ze @ for
fixed z, when y-—y, on 8Q from one side; the two limit directions thus
obtained differ by x/2 mod 7, though].

We put
(9.2) T = {(x,y); xe<0, M), yeo —{2}},
and for (x,y)eT, 2 €Q we define
L IR
_ AP e hen y =0,
»(z) — p()

1 + p(x) p(z) — pY)
1+ |p@)| p(z) — pe)

For fixed x €(0, M) the discontinuity of (9.3) in y is now placed at
the point y = « since

d2, when yeo@ — [0,x].

oo — 2 T 2 _
limo} = —de* = o,, limo}, = +d2® = —o0
y>x— y—>x+

and comparing with (3.1), we have for (x,y) esS+rnNT

1 + 1/p(x)
(9.4) o‘fy = Wny.

Thus for (x,y) eStNT, oF > 0 and o, > 0 have the same trajec-
tories; using o, 1nstead of o, in (4.3) and (4.4), the quantities (4.3) pick
up the factor + 1/p(x)) | ( 1 + 1/p(y)) > 0 while the quotient (4.4)
remains unchanged Moreover, the directional field defined in @ by
ok > 0 apparently depends continuously on ((z,y),z2) € Tx@Q. [T is
topologized in the natural manner, carrying over the product topology of
0, My x aQ) .]
For (x,y) €T we denote by K3, the closure of the union of the
trajectories of ¢} > 0 which have the limit point y . Thus first

(9a) K¥ = K, for (v,y)eS*NT =T,.
Letting
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Il

T, O, M> x (KO,¢]Ue, M+1)),

(9.5) .
T2 = (<0,M> X [M3M+@>)U8_a

and observing T = T, UT, U (K0, M) x {M+i}) UT, we obtain in
the other cases

(9b) K¥ = [y,i]UK,,  for (x,y)eT,,
(9¢) Ky = [0, M+i]U[M, M+i] for 2 <0, M),
(gd) K;ky = [?/,M] U K;y for (x?y) ETZ'

Here K, is the carrier of an analytic arc with initial point » and terminal
point (in case (9b)) on (x , M) or (in case (9d)) on (0, %) , the arc lying up
to initial and terminal point in @ . [M , M +1] is a trajectory of o} > 0
for (v,y)eT,, while [i,7+M] is a trajectory when (z,y)eT,;
[0, ] is the closure of a trajectory in all three cases (9b), (9¢), (9d). Con-
sidering @ as a pentagon as in section 1, we have

(9.6) K¥ e Q([0,2],[M, M+1] ;1) for (x,y)eT,,
(9.7) K} e Q(0,2],[i, M+i]; M) for (x,y)eT,,
leading to the cases IT and III of section 2. We put therefore
(9.8) sy(x,y) = [0,a] for (x,y)eT,UT,,
(9.9) So(x,y) = [M,M+:] for (x,y)eT,,

= [i,M+7] for (w,y)eT,.

10. We define now on 7' a function A* , coinciding with % of (5.1)
on S*, in a natural way, obtaining results which are analogous to the
Lemmata 1, 2, 3 and the Theorems 1, 2.

Observing (9.6) and (9.7) we put in the notation of section 1, using
(9.8) and (9.9),

D;k(xuy) = Dl(sl(x’?/)’sz(“::y);K:‘y)’ (x>?/)ET1UT2’
Di@,y) = Dy(sy(x,y), s, y); KF), (v,y)eTUT,.

Again, (j =1,2), K} N eD¥ is connected for (x,y)eT,UT,, so
we put

(10.1)

M{k(x’y) = —d(81(90,y)’K:}naD{k(x,?/)§ Dik(x’y))
(10.2 for (x,y)eT,UT,,
) M@, M+i) = —d([0,2],[¢, M+3] U[M,M+i];Q)

for x €<0, M),
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Mi@,y) = dsy(x,y), K, 0 aDf(x,y); Di(x,y))
for (z,y)eT,,

(10.3)
Mi(x, M+1) 0 for €0, M),
— d(sy(x , ), K N aDY(x, )5 Di(x,y))

fOI‘ (x:y)ETz:

and define A* on 7T wusing (10.2), (10.3) and the notation of (9a):

b, y) for (x,y) €Ty,

B05 .4 = {<M;*<<x,y),M;‘(x,y>) for (v,y) eT-T,.

The quantities (10.2), (10.3) have expressions similar to (4.4): We have

ieald (@,y) €T — (K0, M) x {0})
Mi@,y) = | @,y Y ’ ’
0, (x,y) €<0, M) x {0},
(10.5)
@, y) @,y) €T — (0, M) x {M+1i})
Mi@,y) = | @, y’ ’ ’ ’
0, (@,y) €<0, My x {M+i},

where af, b, af, by are obtained from the table below in the

Table 1
y | af bf a b3

[, 0] [0,y] [0,1] [z, M] (M, M+1]

0 0 — [z, M] (M, M4i]
[0,¢] —[0,y] [0, 2] [¢, M+1] [M, M~+7]
Mi —[0,4] [0, ] 0 -
(M3, M] —[, M] [0, ] —[ly, M+i] i, M+i]
(M, x] —[=,¥] [0, 2] —[M, M+1] (e, M+1]

following way: if x €<0,M) and y €{a,f> when [«,f] is an entry
in the first column, if ¢ €{af , bf, a¥ , b}, and if [y, 0] or —[y,d] is
the entry determined by [o, f] andé:c , then

B B
(10.6) c(x,y) = f]c;“yll/Z or ——f]a;"y]l/z, integration on [u, f];
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the expression (10.6) is used also for y e{a,f} — {#} excepting
c=0b, y=0 and ¢ =0}, y = M+1, leaving (as indicated by dashes
in Table 1) bf undefined at (x,0) and b undefined at (x, M +1);
in each case, however, lim, , c(x,y) and lim, _,c(x ,y) do exist and are
finite, and we put in particular

(10.7) limbff(x,y) = bf(x,0+) > 0, limbf(x,y) = bfx,0—)>0,
70 520

lim b (x,i+y) = bz, (M+i)+)> 0,

y—>M
(10.8) = ,
Lim b} (x , M +iy) = bf(x, (M+i)—) > 0.
7
Though the intervals in the first column of Table 1 overlap, an application
of Cauchy’s Integral Theorem shows at once: af and a} are well defined
on T, bf is well defined on 7' — (<0, M) x {0}), b} is well defined on

T - (0, M) x {M+13}). We have e.g.

ara,y) = — f!a:;wz for (@, y) €0, M> x [0,i].
0

Now we may write instead of (10.4)
(10.9)  h¥a,y) = (M¥@.,y), Mi@,y) for (x,y) el

Lemma 4. a) The functions af, b*, af, bF are continuous on
their respective domains of definition, b* and b} are positive, and we have
for each x €0, M)

bf@,0+) + bf(x,0—) = bf(x,0),

(10.10) . . .
b, (M+i)+) + bz, (M+i)—) = bf@, M+1);

b) the functions M, My are continuous on T .

The easy proof, similar to parts of the proof of Lemma 1, is omitted.

Lemma 5. Let x €0, M)y, let s, =[0,z], s, =[M,M+i] and
K € R(sy, ;1) . Then forany y €<0,1] U [0, M+1i> we have the inequality

(10.11) bi*(@, y) My(sy, 825 K) + b, y) My(sy s 555 K)
< b, y) (= M, y) + b, y) Mz, y),

with equality if and only if K = K% ; for y e{0,M+1i} formula (10.11)

holds with strict inequality when b¥(x,y) and bf(x ,y) are replaced by
the corresponding limits.
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Lemma 6. Let xed0, M)y, let s =1[0,2], sy =1[0,M+1] and
K e Q(sy,8;M). Then for any yel{M+i, MU [M, x> we have the
inequality
(10.12) b, y) My(sy, 855 K) + bf*(x , y) My(sy, 855 K)

< W@, y) (- MY, y) + %@, y) (- Mi,y),

with equality if and only if K = K, ; for y = M+i, formula (10.12)
holds with strict inequality when bf(x ,y) is replaced by b¥(x, (M +1i)—) ;
we have also

(10.13) X2 M(8y, 8e; K) + M2 My(sy,s5; K) < M.

The proofs of Lemma 5 and Lemma 6 are analogous to the proof of
Lemma 2; (10.13) is obtained from (10.12) using

limb¥,y) = «, limbi,y) = M,
(10.14) 72 e
1
lim M¥@,y) = 0, limM¥z,y) = — -,
y—=>x y—x M
y>% y>x

where these latter relations follow easily from (9.3), (10.5), Table 1.

. L For xed(M,0» we use now the two-point compactification
2@, of @ — {x} by adding the two points

x— = limy and o+ = limy.
y<x >

We put further
(1L.1) Ay = {(p1,pa)s p1 <0, 0 <puy <M},
(11.2) dy = {(p1sp2)s p1 <0, — 1M <y, <O},
and with A of (5.2),
(11.3) E = AU 4, U 4,,
(11.4) E = interior of K .

Then we have in analogy to Theorem 2
Theorem 3. Let €0, M) and let

oQ, = (6@ — {w}) U ({z—} U {w+})

be the two-point compactification of 0Q — {x}; let h} : 6Q\x — R? be the con-
tinuous function, satisfying
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k*(y) = (Ml*(x s y) s M;(x > y)) for ye Q) — {z} .

x

Then
(i) hF is injective ;
@) I'* = h;"(a@x) 18 a piecewise smooth curve in B, the points hF(0)
and b} (M +1) being the points at which the slope of I'* is discontinuous ;
(iii) R¥(Q — {x})c E, in particular

hi(<0, @) C 4,
RECO,i1 U [0, M+i))C 4,,
REKM 43, MU [M,2)) C 4,,
and hx(a@x) 18 a cross-cut of K ;
(iv) for y elx,00U0,qJ Ui, M+i)UM+i, MU [M,xy, T'*
has at hX(y) the slope
(11.5) 2% (y)
= — b,y bx,y) < 0, yelx,00UM+i, MU [M,z>,
= b, y) 0%, y) > 0, yel0,i] Ui, M+i);

(v) the angle @f(y) € <0, 2n) which the tangent-vector to I'F , oriented
wn the sense corresponding to the negative orientation of eQ , forms at h¥*(y)
with the direction of the positive wu, -axis in the (uy, u,) -plane is strictly
mereasing from

p¥e—) = 3n/4 at hFe—) = (v, M—x)

lo

pF(@+) = arctan A¥(x+) €(Tn/4,2r)> at h¥(x+)= (0, —1/M),
over

p¥(0+4) = arctan A¥(0+) € (3n/4,n) ,

®X¥(0—) = arctan A¥(0—) e (m, bn/4) ,

pr() = 5n/4,

PF(M+10)+) = arctan A¥(M +1)+) €<{bn/4, 3n/2),

PF(M +1)—) = arctan A¥(M +1¢)—) € {(3n/2, Tn/4),

¢i (M) = Tn/4;

(vi) the map x— @f(x+) is a decreasing homeomorphism of <0, M>

onto {Tnl[4, 27) .
Proof. That A} is continuous on @@ — {z} with continuous extension
to 8@ follows from (10.5) with table 1, and one obtains in particular
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h¥@+) = (0, —1/M). The restriction of the statements of Theorem 3 to

0,x—) € a@x is contained in Theorem 1. The proof of Theorem 1 was
based on Lemma 2 and the expression (4.4). Using now Lemma 5 for
ye0,i]U[i,M+43) and Lemma 6 for ye(M+i,M]U[M,z)
together with the expressions (10.5), a similar reasoning gives those state-
ments of Theorem 3 which concern y € (0,¢] U [¢, M+i) U (M +i, M] U
[M,z). With 2*0) e (4U 4,) N E and h¥(M +i) € (4, U 4,) N B the
statements (i) through (v) of Theorem 3 follow. Finally, (10.14) and (11.5)
give immediately statement (vi), completing the proof.

12. We recall the definition (9.2) of 7' and the topology of 7'. Denot-
ing for (x,y)eT by d, e€<0,2+2 M) the distance of y from x—
along o0&, the uiag

(x:y)'%(x’x—dxy)> x,y)eT,

is a homeomorphism of 7' onto the parallelogram

T ={(x,y); 0<ax<M, —2-2M4+ax<y<ax};

the restriction of this homeomorphism to S+ c 7' is the identity, and we
orient 7T by carrying over the usual positive orientation of the plane set
T . Likewise we compactify 7' by carrying over the compactification of
T we call T this compactification of 7' (which corresponds to the com-
pactification a@x of @ — {z}). In the notation (10.9), (11.4) we have as
an extension of Theorem 2:

Theorem 4. The map h*: T —E is a sense-preserving homeo-
morphism.

To prove Theorem 4, we adapt the proof of Theorem 2, minor changes

are due to the fact that A* cannot be extended homeomorphically to i
(already Ah*(x,x+) = (0, —1/M) for each x €0, M)). We proceed
again in several steps.
I. »¥(T)c E follows from Theorem 3 (iii).
II. 2* is injective on T . We shall indicate later how this can be seen.
IIT. A*: T — E s surjective. We use the fact (Theorem 3) that for
xel0, My, I'* isacross-cut of £ joining the boundary points (v, M —x)
and (0, —1/M). I'¥ decomposes E into two simple connected components, we
denote by Z, that component which has the point (0, 0) on the boundary.
Using II we conclude further: if &ed{x, M) then I is a cross-cut in
E,. So in order to prove that h* takes the value u = (uy,u,) €&, it
suffices, by a standard homotopy-argument, to show that there exist
xel0, My and &elx, M) such that u e B, and that I} separates
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u from (0,0) in E,, since, as is easily seen, A* has a continuous extension

to the closure fxé of
(12.1) T ={(,y);te, 8, yeaQ — {t}}
in 7.

Assume first p = (uy, pu,) € B satisfies u; <0, u, >0. From
Theorem 3 it follows that x € B, once there exists y € <0,4] U [i, M +1i]
such that M ,y) < u,, Mi(x,y) > p,. To find such a pair (x,y) we

choose first y €(0,¢] such that
1/2 1/2
@ | f | [ 2]
1+ 1/ ip

M+
(12.2) u, < f |
: 1+ 1/ Ip
This is possible since the quotient in (12.2) tends to M for y—0,
y €<0,1], and since u, < M for u e X . From (9.3) we have then for
xed0,M>

g - LT p@ 1 - @G

T L+ 1Ip@)] pR)/pl) - ’
and comparison with (12.2) yields: there exists x, € (0, M) such that
M@ ,y) > puy once xe<0,z), since [of[V2 tends uniformly to the
integrands in (12.2) for x— 0. Using the Laurent-series of p(z) near

z = 0 it is easily seen that
) = [ o
0

is bounded for fixed y and x €0, x>, while

¥y
e, y) = — f ok 12
0

tends to —oco when @— 0, 2> 0. Thus for suitable 2 €<0,z,> we
have Mi(x,y) < pu, and M} ,y) > u, as desired, and u € E, . If now
§elw, My is such that u¢ E, then Iy separates p from (0,0) in
E, . By Theorem 3 again u ¢ E& certainly holds when M¥(&, M +1) > u,
since M3 (&, M+i) = 0, and (observing u, < 0) this is by (10.2) ob-
viously the case when ¢& is sufficiently close to M . Similar considerations
in the other cases (u; =0 or equivalently ued N K already covered
in the proof of Theorem 2, and u, < 0 or equivalently u € 4,) show
again the existence of xe<0,M) and &edw, M) so that ucek,
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and that I'f separates u from (0,0) in E,. So any value u ek is
indeed taken by A* in 7.

IV. b*¥: T —E is a homeomorphism. To see that it suffices now to
show that A* is an open mapping. We show therefore: if (x, , y,) is any
point of 7' and if @ is a sufficiently small open set containing (z, , ¥,)
then A*(G) is open. We choose «, & sothat 0 <o <zy, <& <M and
that I'} separates u = h*(xy,y,) from (0,0) in K, . The cross-cut [
decomposes F, into two components, we call K, that component which
has I'¥ cn the boundary, and we note

0B, = [(§, M—§&), (@, M—2)] U I'*U I'}.
We have u €k, , and the continuous extension of A* to 17;5 satisfies
hEt  t—) = (t, M—t) and h*(¢t,t+) = (0, —1/M), for te[x,&]. The
homotopy-argument of III then implies

(12.3) B, = h*(T,).
Since A*(G) C E,. once @ is sufficiently small, by (12.3), we have
(12.4) RH(G) = B, 0 [R* — BT, — G)]

and since k*(fxE — @) is compact, h*(G) is by (12.4) clearly open. So
Theorem 4 is proved once it is shown that 2* : T — E is injective, which
fact will be dealt with now.

13. In section 8, the proof that the function % is injective on S*,
did use Lemma 3. By similar reasoning it is shown that A* : T') — 4, is
injective by the use of

Lemma 7. Let M, &, 9, R(®) be as in Lemma 3; let

pi(®) = d([— &+1i,0] , [0(M—=&), M —=E+0)]; R() for 0<P <1,
= d([— E+1,i]U[i,i0], [9(M—-E&),IM—E+1)]; R(D))
for 1 <9 < 0.

Then w, ts strictly decreasing for 9 € {0, o).

Concerning the proof of Lemma 7, the following remarks may suffice.
For ¢ €<0,1], the Lemma can be proved by the method used in the
proof of Lemma 3; the same method can be used to show that the conjugate
extremal distance

1
— = d([—&, —E+i] U [—&,dM=8)], [0, 9M—E+i)]; R(D))
()

is strictly increasing for ¢ e[1, o) .
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In a similar way it is proved that A*: T, -— 4, is injective. Since
in the notation of section 9, 7' =T U T, U (0, M) x {M+i})UT,,
since A* was already seen to be injective on 7', (Theorem 2), since the
sets  R¥(Ty), h¥(T,), h*(O,M) x {M+1}), h*(T,) all are disjoint,
and since by (10.2) A* is clearly injective on <0, M) x {M+1},
h*: T — E is indeed injective, completing the proof of Theorem 4.
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