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1. General notation. X'or two distinct points a , b of the complex
plane C or of the two-dimensional Euclidean space R2, La ,bf is the
closed straight line segment joining these two points; we put (a,bl
la,bf - {a}, la,b) : La,bf - {b), (a,b) : la,bf - {o,b),la,af :
{a); for a subset S of C or of R2, S i* the closure and aB is the
boundary of ,S.

X'orfixed M>0, @ denotestherectangle (0,M) x (0,i). Inthe
course of this investigation, 4 or 5 or 6 boundary points of @ will be dis-
tinguished, and A will be considered as quadrilateral or pentagon or
hexagon accordingly. Choosing r e (0 , M) and singling out the distinct
points 0,n,M,M+i,,i, on 0Q, Q becomesapentagonwithsides
L0,nf ,lr,Ml ,lM,M+il ,lM+i,,if ,li,Of . Selecting two non-
adjacent sides sl and s, out of these five sides, the remaining sides
ss , sa , s5 are so numbered that s, and sn have a common point, denoted
by P. We denote by S: S(sr ,sziP) the class of continua K in Q
with the properties

(i) K connects P and su,
(ii) K is disjoint from s, U sr.
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K separat'es sl from s2 in a and decomposes A into several simply

connected components. The component of (Q - K) n Q which has s, on
its boundary 11 : t,Z'1 we call DO: D/st,sz)K). Ki: Kn aDj
is connected; Mi : M/sr, szi K) denotes the extremal distance between
s, and K, in \; M1 isthenthemodulusofthequadrilateral Q with
respect to the pair (s, , K) of sides. X'or a domain D c C and two cbn-
nected compact sets y, , y2c 0D in general, itr(yt , Tz; D) is the extremal
fistancebetween y, and. y, in D. Wenote d(10,i,1 , lM ,M+i,l; Q) :
M and the well known inequälity

(1.r)

(3.1)

Mr(sr, sz; K) + Mr(tl ,82 ; K)

X'igure I gives anexample in the case s1 : 10, 4, sz : ld, M +i'l .

2. We shallinvestigatethe set ofvaluesofthepairs (rlft, Jl'lr) obtained
this way in its dependence of the chosen pair of sides and the choice oI r .

Here we shall find that certain "extremal" continua which are produced by
quadratic differentials play a key role. We shall omit the case that the side

lr, Ml is selected since a reflection in the line { z ; Re z : M 12 } im-
mediately leads to a situation in which l0 , M - rl is a selected side. So

we are left essentially with the following three cases:

Casef. 81 : [0,d], s2: lM,M+i,1 , P : r;
CaseII. 8r : lO,rf , sr: lM,M+il , P :,i,;
CaseIII. i, : ;0,frf , sz: li,M+i,1 , P : M.
Of these, we will study first case I giving detailed proofs of the relevant

facts; since cases II and III exhibit many similar features, a briefer dis-
cussion seems appropriate.

3. Let M )0 and Q:<0,M)x (0,d). Inthissection,andupto
section8,welet sr: [0,d] and sr:lM,M+i,1. Weput B: (0,M)x
<0 , M>. With Weierstrass' p-function p(z;2 M ,2 i,) : p(z) and.

(n , y) eS , *" introduce the quadratic differential

1 p(z)lp(a) , o6*y : ffidz', ?e Q,

where the formal expression p(z)lp(0) is replaced by 0 for each z e Q .

Denoting by K*n the closure of the union of the trajectories o,, ) 0 which
have the limit point A,we describe first the set K*r.

(a) (r,g)eS+ : {(r,A);0<A<r1M). Then o,n}0 has
two trajectories with limit point g . One trajectory has as its closure the
segment ly , *f ; the other trajectory has as its closure the carrier K'*,
of an analytic arc with initial point y and terminal point on (d , M +i,)
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which lies up to initial and terminal point in Q , forming at y with the
diroction of the positive real axis the anglo 2nl3 .

(b) (r,g)eB- : {(r,y);0 <r <y <?/}. Then again o,r} 0

has two trajectories with limit point, g ; lr , Uf is the closure of one trajec-
tory, tho closure K'", of the other trajectory has the sa,me properties as

mentioned. in (a) except that the angle with the positive real axis at y
is now zi3 .

(") (r,g) with O<a:91M. o*r)0 hasonetrajectorywith
limit point gr , which is already a closed set, namely K'., : lA , g +il .

In the cases (a)-(c) thus K*y : lr,ylU K',r; considering A as
apentagonwithsides s1 1s2, and sr:[0,r], sn:lr,Mf , sr:
U,i,+MJ, we have ff", eS(s, ,szir), and s, as well as ss &re trajec-
tories of 6*y ) 0 .

dr) ne(0,M>, A:0.
trajectory of 6*o ) 0 .

dr) n c(0,M>, A: M.
a trajectory of 6*rw ) 0 .

er) r:0, ye(0,M>. Then Kon: [0,y]UK;r,where K'o, has
the properties of K, mentioned in b); s, is a trajectory of oo, ) 0 ,

and s, is the closure of a trajectory.
ez) r: M , A e<0,M>. Then K*r: lU,MlU K*r, whero K'*,

has the properties of K'", mentioned in a); s, is a trajectory of o*r) O

and. s, is the closure ofa trajectory.
f) Koo : s, , and s, is a trajectory of ooo ) 0 ;

Ktto : s, U [0 , Mf , and' 8z is the closure of a trajectory of
o*o) 0;

Koa : s, U [0 , Mf , and. s1 is the closure of a trajectory of
oo* ) 0;

Kaa : s, , and s, is a trajectory of o*na ) 0 .

4. Defining

)"'
analytic in L

(4.1)

continuous on {"}, and positive on li,M+il ,woput

f("): z eQ

I - p(z){p(a

Then K*o_ l0 , nf U sl , and sz is a,

Then Kra: lr,Ml Usz, a,nd sl is

p(z)lp@)I

0

I t-o*,)'t' ,

v

For (r , y) c /S+

by straight line
five right angles

U ,S- , f maps A conformally ont,o a hexagon bounded
segments parallel to the real or the imaginary axis, with
(correspondirgtothepoints 0, n, M, M+i,,, i) and
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withone Snl2.angle (correspondingto y); for (*,y)eS - (B+ UB-)
various degeneracies appear. (Q - K-r) O Q either consists of two com-
ponents (inthecases (a), (b), (c), (e) i.e.when y +0, M ),thenwecall
D_, thatcomponent (j:1,2) whichhas sj ontheboundary; or
(Q - K; n Q consists of just one component (in the remaining cases),
whichwecall D, when y: M,and D, when y:0 (theyareobtäined.
aslimitingcaseswhen g-->0,M ); for (r,y) eS wehaveinthenotltion
of section l, D, : D/st, szi K,y) . _

We Put (i : 1,2) for (r,y) e S

Mf(r,a)(4.2) '\ / Mf(r,y)
- d(si , Kw n aDi ; D) when Di is defined,

- 0 when Dj is not defined.

X'or (r , g) e B we have thus: Mf (r , g) : M/st , sr; K,r) is the modulus
of the rectangle f(D) with respect to its vertical sides. We put further
for (r ,y) e S

(4.3)

(4.4)

5. While ar, az, b1 ,_bz are

Lemma 1. Let h:8->R2

(5.1) h(* , y) : (tI{(n , y)

Then h is cont'inuous.

lo*rltl' , br,(*,a)

l6*rltl' , br(*,a)

not continuous on .9 , we have

be d,efined by

at(r , y) -

az(r 'y) _

min(x, 1,)

I
I

max(x, y)

i ,^, tuz

0

M +t'

- f tn Jtz
J 

t"xyt ,

M

the integration being carried out on 1", fl when oc is the initial and p
the terminal point in any of the d.efinite integrals (a.3). Simply checking
the various cases, we obtain ( j : 1,2 ) from (4.3) now

Mf (r,y) : Y4, (r,a) e s;b,(r,y)' \'1.

indeed. (apart from the degenerate cases (d), (e), (f)) the function / maps
Do onto a rectangle with horizontal sides of length a1@ , A) and vertical
sides of length b,(r , A). We observe further that in (4.3) a, and a, are

always finite and non-negativ" on B while b, and b, are positive (possibly
infinite) there.

(r ,y) e /S, M*(n , y)) ,
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We shall see later (Theorem 2) lhat the restriction of h to S+ or to B-
is actually a homeomorphism onto the triangle

(5.2) Z : t(pr,tr); 0 ( Fr-r ttz lM, hZT, FzZ}\.
Prnf of Lemma 1. The continuity of å on S U ((0 , M) x {0 , M))

followsfrom(4.4) sincethefunctions a1 , b1, a2, b2 areclearlycontinuous
on this set, by (4.3) and (3.1). To prove the continuity of h on the remaining
set {0 , M} x l0 , Ml, we observe that by the trajectory structure of the
quadratic d.ifferentials o,, , (n , y) e ,S , th" reflection of K,, in the line
{ z; Re z : Ml2 } yields K*_,,rrz_n, whence

I,tf (M -n , M -A) - IVI*(r , y) ,

MtrW -n , M -il : lVIf (r ,A) ;

(r,a)€s,

it suffices thus to proye the continuity of å just also on {0} x [0 , Jl[] .

Consider now the continuity at (0 , rt) , q e l0 , Ml . By (a.3), (a.a)
we have

M{Q,rt) - 0, M{(0,r1) : :'\,?''!br(0 , rl)

(5.3)

(5.4)

The continuity of Mf ai (0 , q) follows since a, and b, are easily seen

to be continuous at that point by (4.3), (3.1). The continuity of M{ af
(0 , ri may either be inferred directly (considering the quotient
a{r , A) I br(* , y) near (0 , ri which is, however, a little cumbersome when

4 :0 ) or by using MI@,M)- 0 when r'-->0 together with the
inequality MI@ , A) < lw{(r , M) for each g e l0 , Ml, which inequality
is immediate from the structures of K,, and K,*

6. Le
a €[0,]l[f
(6.1)

fo, y - 0 or M , the 'inequali,ty (6.1) 'i's stri,ct ; for
equal'ity 'in (6.1) if and, only ,f K - K*, .t

The proof is accomplished in a standard way by
method, using in A the metric l6*rltt'.

IIsing the fact that K*, e S(r, , sz n) once (* ,

from (l . I ) that å(S) lies in the closed triangle / of
yields

mma 2. Let ne(0,M> a,nd Ke$(sl ,s2;n). Thenfo,any
use Tt aae tlue 'ineguality

szi K)

,y) ;

y e (0,M> wehaae

the extremal-length-

A) €S, wo conclude

(5.2), and Lemma I

l Note that (6.1) yietds (1.1) for U : r
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(6.2) å(B) c t.
Writing

(6.3) l: {(pt,ttz)iO{-z1+Fz{M, pt}0, p2}0}
for the interior of 7 we have

Theorem l. Let re(0,M) and,l,et h*: l0,Mf --->R2 ilenotethe
section, of h at r gi,uen by

h-(y) (il[{(*,A), Mt@,y)), y e[0, M].
Then

(i) h, i,s i,njecti,ae;

(1i) l. : h,(10 , Ml) i,s a smooth curae 'i,n the closed, tri,angle Z which
has at h*(y) the slope

(6.4) X,(a): -b7@,il1b7@,y)/-0
(iii) the sl,olte )"" i,s strictl,y d,eweasing on l0 , Ml from ).,(O) at h,(0) :

(0,M$(r,0)) e al oaer ),,(r): -1 at h"(u) : (r,M-r) e 0/ to
).,(M) at h"(M) : (lUIt@ , M) , O) e o/ ;

(iv) the cmngtonent /* of U - f,) O / which has the gtoi,nt (0 , O) on
the baund,ary is a conaer ilomain touchi,ng the sid,e l(M ,0) , (O , M)) of /
at just one po,i,nt, namely (r , M -r) .

Proof. To prove (i) we observe h"(0) e ((0 , 0) , (O , M)> and
h,(M) e((0,0),(M,0)) whence h,(0) + h,(M), while for yre(0,M)
and a different point, y, el} , Ml we obtain h,(gr) + h,(yr) at once from
Lemma2choosingthere K : K*r, and g: Uz, since Krr, * K*y".

We show now that for fixed r e (0 , M) ,

M!(r , gr) is strictly increasing h g el} , Ml ,(6.5)
Mt@ , y) is strictly decreasingin A el} , Ml .

n'irst consider (alay) MI@ ,y) for g e<r , M> . We have

o(6.6) sisn 
*M{(* , y)

a: sign 
[u. 

(r , ,) å a$r , y) a{r ,y) Tru{n , a

and the expre.ssion in parentheses in (6.6) equals

(6 7, 
/ to*nt 

r, .å 
! v*,ft, / to*,tt, .å 

/ w*,t

)1 ,
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A little
integral

(6.8)

p(i r)

(6.8) is negative, and since p'(y)

a

uyuf @ ' Y)

Thus rl[f (r , A) is strictly increasing for y e lr , Ml
Let now r 3 yr l Uz I M . Writ'ing 1", fot the right hand side of

(6.1), the point h,(yr) : (MI@ , At) , Mt@, Ut)) ,lies trivially on the line

(6.10) L*r, : { (pr, pr) ; b?(r, yt) Ft + bl1r, yt) Fz : I,r,),

which line has the negative slope

l.(ar) - -b?(" , at) I b?(r , y) .

consideration shows
sign which makes (

i
t p,(a) f f
2 e'@)L J

that the differentiation can be taken under the
6.7) equal to

to*,t't' {ffi@,t't'
ri

f v*,t't''Iffilo,,l"'].
00

€ (0 , 1] we haveSincefor t e (0,n> and r
p(t)

I p(t) lp(v)

the bracketed expression in
positive, whence

( 6.e)

(6.11)

By Lemma 2, on the other hand, the point lt'"(yr) lies strictly below the
line (6.10). Since for the first component of these points we have
Mf(*,y) <MI@,yr), the slope ),n(yr,y) of lh"(At),h*(yr)l satisfies

(6.121 l*(yr,Az) I X,(Ar), r{AtlyzlM;

and in particular the second components of h-(yr) and'h*(yr) fulfill by
(6.1r) the opposite inequality M{(r,y)> Mt@,y2),whence M[(r,y)
is strictly decreasing for y e lu , M) . A similar procedure applied to the
interval [0 , r] then gives (6.5).

Considering instead of the line (6.10) the line L*r,, we obtain instead
of (6.12)

(6.13) 1-(ar)

both (6.12) and (6.13) are easily
a,nd the continuity of ( 6.4) for A €

, n{yt1Az<M;
verified also when 0 1Ut1Uz {n,

[0 , M] finally yields
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(6.14) X.(yr) < l,(yr,A) < l"(yr), when 0 {ArlAz {M .

l, c / follows from (6.2) while the remainder of statement (ii) in Theorem I
is obtained by letting At,Az --->g eL},M) in formula (6.14) where
At 3 A { y, , and. using the contiriuity of (6.11) in y, e l0 , Ml .

With (6.4), (6.14) as well as therelation br(r,r) : bz@,r), obvious
from (3.f ) and (4.3), statement (iii) now follows; statement (iv) is easily
obtained combining the statements (ii) and (iii).

Remark. Though -l', is a smooth curve with slope -I at (x,M-r)
the partial derivatives of M{(r , y) , Mt@ , y) with respect to A at
9:r areinfi.nite.

7. For (z ,A) e S, thefunction / of (4.f) maps Q onto ahexagon fl
(degenerate to a rectangle when r : A ) which is bounded by straight line
segments parallel to the real or the imaginary axis. The imaginary axis
decomposes H : l(Q) into two rectangles Hr: f(Dr) in the left half
plane and Hr: f(Dr) in the right half plane. Mf(r,il, (j : 1,2 ), is
the extremal distance of the vertical sides of ä;, while M isthe extremal
distance of the "outer" vertical sides /(10 , il) and f(llUl , M +i,l) of H
in H . The question arises: to what extent does a patr (Mf , Mt) , obtained
that way, characterize the pair (r, A) e B . In order to answer that question
we need some information about the change of the extremal distance of the
outer vertical sides of such a hexagon when one of the rectangles H, is
subject to a homothetic transformation.

Lemma 3. Let M) 0 anil, f e (0 ,M); let R: (-f , M-E) x
<0,d>, RL: (-6,0) x (0 ,'i), Rz: (0, M-€> x (0, i); far ?g > 0
I'et Rz(8) : <0 ,8(M-t)) x (0, rl d) be the rectangl'e obtai,ned, from nz
through hamothetic stretchi,ng by the factor O , keep'i,ng 0 fi,reil ; tet

(7.1)

Thenz p : (0
on [1 ,@),
(7.3) lim p(8) -

8-'0

We have n - A(1) ; R,(S) is a
above.

Proof of Lemma 3. p(S) --> oo

moment p(lUI , E , 0) instead of

R(s) = 'interior of (& v 4yO1) : B(luI , t ,o) ,

, oo) -+ R is strictly decreasing on ( 0 , 1] , strictly ,i,ncreas,i,ng

end

(7.2) p(8) : d(l-€, -t+i'1 ,18(M-f) ,o(tr-€+i)l; a(?t))

co - lim p(8).
8-*-

hexagon of a type similar to that of H

for I -> 0 is obvious. Writing for the
p(8) to take into account also the

2 Here tho notation (0, *) etc. for subsets of the roal axis is self-explanatory.
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dependence on M and 6, we have p(M,€,8) : p(M,M-€,110);
lim.9** p(8) : oo now follows, and we conclude further that the Lemma is
proved once it is shown thab p, is just strictly increasing for r9 e [ , oo) .

Let now 0. > | . Abbreviating the vertices of ,E(d) by

A - -E*i, B_ -8, C - 8(M-8),
D_ l}(M-t+i), E_ Oi, F :'i,

we have for the extremal distances M, , M, of the vertical sides of the two
rectangles Rr, nz(8) obviously

Mt. : d(lA,Bl , [0 ,IJ;Ru) : t,
Mz : d(lo , El ,lC , Dl; Rr(8)) : M -€ ,

whenco (observing ?9 > I ) immediately

(7.5) p(8) : d(lA,Bl,lC,Dl; R(0)) > Mr+Mz: M : p(I).

To prove now p(r9r) > p(8) when I < d ( 8r, we determine first an
extremal metric p for the extremal distanco p(rl) . We select f, ) tz)
\) L so that the upper half plane U can be mapped conformally onto
.B(8) in such a way that the boundary points o, 0, L,t1,tr,t" of U
correspond in turn to the vertices A,B,C,D,E,I of -R(rt). With
suitable 1> 0 the mapping function @ is then given by

(7 .4)

(7.6) a@)

a,

,f
'vJ

t-t,

I lt^ - zluT
e(w) : llrr_"1 z:@-'(*)

\ tiz

) dt t, ze (i,
t (r-r) (t-tr) (t-tr)

where that branch of the squa,re root is taken which has positive boundary
valuesfor f e(0,f). Thefunction g givenby

;dt
(7'7) q(z' I 

- 

ocrT
'- ! tr(r-r)(t-t,y1rtz' 

P=v'

again with that branch of the square root which has positive boundary
valueson (0,f),maps a ontoarectangle (0,a)x(0,db) with
a>0, b> 0. Having weR(8) related to zeU by w:@(z), an
extremal metric p(w) ld,wl in ,B(rl) is given by

ldzl I ld'wl

lz ("- 1) (z-tr)l't' lz (r- I ) (z - tr)ltt' l@'@)l '

thus

(7.8)
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We have then
and lC , Dl in

inf
yel

whence

(7.9)

For small
vertices of

(u:: u
R(8)

I ewt

+ i, , ) for the family f of curves joining lA , BJ

ld*l - (L , : ab )I f ez4'a) d'u ilu

R(8)

a
p(o) : b.

e ) 0 we put OL- (1 + t) I and denote t'he corresponding
A(Br) by

Å - -E+t, , Bt : -E , ct : flt(M-E) ,(z-lo) '^1 -
Dt : flr(M-€+i,) , Er : flrj, I, : i.

The choice of a suitable metric g, in -B(t?1) will then give p(flt) > p(8) 
'

and the Lemma is proved. s

We put B': (0,C1 x lE,Er), S" : lC,Ct) x (0,.8'1). Noticing
that g has a continuous extensionto lE , Dl U LC , Dl, again denoted by
Q, wo put (see X'igure 2)

EL Dt
- -O

I

I

Is'f
I

I

I

I

-o

(i) e t(ru)
(ii) st(w)

ae[?9
(iii) et(w)

observittg

0

- e(u) for
_ g(u+i,8)
, 8r) , i'e'

- A@) for

8(M -) -t C\

Figure 2

weR(O);
for w_u*iuels'where uc(0,Cf and

iu e lfr,Er),
wes",

3 A more subtle reasoning, not needod hero, givos in fact for tho partial dorivatives
of d,(lA, Bf ,lO, Dl;R(8)) with rospect to each of tho variables f , M, I a not'
too complicated expression.
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(7.r) p(D) : + ll'-l'1" : inr q(?,,) .
A lL'- trLl a etc, Dl

If fr is tl{e family of curves joining lAr, Brl : fA ,4 and [Cr , Dt]
in -R(r}r) , we have

(7.t2) p(tr) , L'Vt ' Qt) 
..'r(8r) '

where

(7.r8) L(lr,ar) : inf I nr@) ld,wl : a + Q(D) (Cr-C),
Yref, J

and

(7.14) A,(Q,t : [ [ e?W itu d,u : "u * I I sl@1 du itu .

n(0') s'u s"

Putting (l <t <t2)
(7.r5) f@ : l, (t-l) (t-tr11-rtz, s(t) : l(tz-t) | (t"-qytz,
the relations Cr-C: (dr-8)(M-å) : r8@[-t): e(D-E) and
(7.1r), (7.rs), (7.15) yield

(z.rc) L(rt,ar) : a, + estt)}@-E).

From (7.6) and (7.f5) we obtain further (w elU, Dl, t eltr, tr))

(7.17) ldwl : Lf$Wrl, where w: Q(t),

whence with .Er-E -'i,8e: e(D-C) and (7.8)

D

(z.rs) | [ e?Wld,uita : tE,*Et I e?@@*t
srrro

: etD_r,+! v,f,at.

X'ormulae (7.11) and (7.15) yield

(7. re) I f sl d,u d,u : ) f ttrl (c r- c) lD r- c ,l

: ez(t) i' Q - E)(t +e) lD -cl.
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Combining (7.L4) with (7.16), (7.18), (7.19) we obtain

(7.20)

L,(fr , Qr)
F(8 t)

t2

f

J f s dt + s (1 * e) s'(tr) 1-'(D - E) lD - cl
h

1 + 2 e g(tt) ),-l(D-E) I a

ab + e ),-LlD-CI

+ O(u')
btz

r * J :-tlD - tt I f s d,t * *szL) ^-'(D 
- E) lD -cla0

,L

af e),-rl 
L

:iL, *'#\bg(t,)(D-E) - tD-rl I yno,\
,,

e1-7 I+ * s(tr)(D-E){b - s(tLl L-LlD-Ct}l * O("',).

Using again (7.f 7) and the fact that g is nonvanishing and strictly decreas-

ingin f e[,tr) we obtain

lrtr'rtt

(7.2r) bs(t,)(D-E) I ,u,.^ [ rot4!0,, I ,0,. 
^ [ rtu,

r\Lt,
trtrtrh

: 
^! ffiu,' I nrs(t')d,t, 

^ ! 
Lo'' I rou'

a

f
lD-cl . J f tat,

and

,"t'I(7.22) b: Iru,, Itot#": e(t,).|t"
11 I

: s(tr) L-LlD-Cl .

Using now (7.21) and (7.22) in the last expression of (7.20) and. comparing
with (7.9) we finally conclude for any sufficiently small e ) 0
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p((1 + s) S) : p(O)

where 8> t, thus Lemma 3 is proved.

8. Recalling the notation

B: (0,M)x(0,M),
Sl+ : {(r,A);0<y<r1M},
B- : {(r,il;0<n<y<M},
/ : {(pr,pr); 0 ( Ft* ltz<M, Ft} 0, p2} 0},

we have
Thoorem 2. Let M>O and l,et å: S-+Rz begiuenby (5.1).

Then
(i) h maps S onto /;
(ii) the restri,ct'i,on of h to each of the two sefs rS+ anil, S- 'i's a hnmeo'

morqthi,sm onta Z , th'i,s homeomorgthism is moreouer sense-preserui,ng on S+

anil, sense-reaers'i,ng on B- .

Proof. We shall proye the part of statement (ii) which concerns B+ ,

since in view of (5.3) this suffices to prove the theorem. We shall proceed

in several steps.
I. It,: 0S+ --> 0l 'i,s a homeomorphism whi'ch is sense-preserui'ng. On

aB+ : t(0,0),(M,0)l U l(M,0),(M,M)lUlW,M),(0,0)l wehave

(8.1) h(r,0) : (0,d(sr U [0,tr], sz;QD for r elD, M),

(s.2) h(M,g) : (ar(M,U)lbr(M,A),0) for yel0,Ml ,

(8.3) h(r,r) : (n,M-*) for relD,Ml .

(8.1) shows tlnat h is injective on [(0 ,0) , (M, 0)] with D(0 , 0) : (0 , M)
and h(M, 0) : [0 , 0] , and the continuity of å implies that å maps

[(0 , 0) , (M , 0)f homeomorphically onto lQ , M), (0 , 0)] . The reasoning

leading to (6.9) likewise shows play) (ar(M , U) I bt(M , g)) > 0 for
y e<0, M) and.one concludes from (S.2) that la maps LM,0), (M, M))
homeomorphically onto l(0,0),(M,0)1 . With (8.3) it is now immediate
lhat h: 0S+ -+ al is a sense-preserving homeomorphism.

IL h is injecti,ae on S*. Since we know already that' h is injective

on 0B+ and since h(n , y) e / for (* , y) eB+ - a,S+ : ,S+ we have just
to show that' h is injective on B+ .

Let therefore (%, Ar) , (nr, Ar) e B+ be such that h(q , yt) :
h(*r, yr). Putting ( j : 1,2 )
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z

(84) ri@): d^ll (
I p(t)lp(y)

)'''or+ alni,DJ, zee,I p(t)lp@)

and choosing that branch of the square root which has negative boundary
values on (0 , Ai) , we have in the notation (7.f )

(8.5) fr(q : R(M{(r, , a) * M*(*i , U) , M{(q , a) ,8) ,

where

(8.6) 8i : br(q,A)lbz@1,A) <-r,
theboundarypoints M, M+i, i,0, A, n beingmappedinthisorder
to the points A, B, C , D, E , X of (7.4), replacing there (M ,8,8)
by (M{(%,A)*Mt@t,A),M{(q,A),8). X'rom Lemma 3 we
conclude 8t: 82, whence f;t " f, is a conformal selfmap of @ keeping
the boundarypoints 0, M, M+,i,,,i, individually fixed. Thus f;t.f,
is the identity I on Q, and we obtain

rz : f;l(fL(rr)) : I(rr) : sr,

vz : f;L(f ,@)) : I(v')) : vr,
and (r, , At) : (rz , Uz), showing that h is indeed injective on B+ .

IIII. la : S+ --Z i,u surjecti,ae. Since h : 0B+ ---> 0/ was already seen to
be surjective, it remains to show that h: B+ -+ / is surjective. Let w e /
and assume that w $ h(S+). Since h(aS+1 i I : 0 we have also

w $ h1E+1 . It y is the Jordan curve obtained by positive orientation of the
boundary 65+ , the continuity of h on 5+ yields by a standard homotopy
argument that the winding number of h(y) with respect to trl is zero, which
by lz(a8+) : 0/ is obviously false. Thus indeed n6+7 : Z . _

IV. Since h is a continuous bijection of the compact set B+ on!,o .4 ,

h is a homeomorphism, and å is sense preserving since (by step I) it is
sense preserving on aB+ , proving the Theorem.

9. Let
prescribing

(e.l )

(r , A) e S 6*y ) 0 d"etermines a, directional field in A
at each point z e Q the direction

t / 1-p(z)lp(y)\
argd'z : t ars\- ffi) mod''.

The direction (9.1) depends apparently continuously on all three variables
(r,y,z)elO,Mf xlO,MlxQ, and. we showed. that the pair h-
(ill{ , Mt) not only is continuously depending on (r , y) eB , bot that h
is alss a homsomorphism when y is restricted to [0, r] .
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We want to extend. this homeomorphism when the zero y of t'he

quadratic differential o", is no longer restricted to l0 , rf but varies on

aQ - {r}. To this end we shall d.efine a directional field in @ also for these

values of y in a natural manner. Theform (9.1), however, is not suitable

since p(Ao):0 for some aoeld,M+i,lUlM,M+i'1 making (9.r)
undefined for g: yo [(9.f) has a limit direction at each point z eQ fot
fixed r , when U + Ao on aQ from one side; the two limit firections thus
obtained differ by nlLmod'2, thoughl.

We put

(9.2) T : {(r,il;re(O,M>,Ae aQ {r}},
andfor (r,A)eT, zeq wedefine

I + P(r) P(z) P(Y) a(e.3) of, : - f;ffitffidz', when Y c(0 ,n),

1 + p(r): ffidz'' when a_ o'

| + P(r) P(") - P(Y) . "
r +ffiffia* ' when 9r eaQ - [o'r]'

n'or fixed r e (0 , M) tlne discontinuity of (9.3) in 3r is now placed at
thepoint A:r since

Lim of, _ d,zz : 6 xr t Lim of,
+

(3.1), we have for (r ,

: + dzz : dxrt

y) €,s+ n Tand comparing with

(9.4)

(ea)

Letting

I + Llp@)ofy: L+W:(il64,

Thusfor (r,y)eB+n?, oIr) 0 and c,r)0 havethesametrajec-
tories; using o[ instead of o*, in (4.3) and (4.4), the quantities (a.3) picft
up the factor (t + tlp(r)) / (t + tlp(AD> 0 while the quotient (4.4)

remains unchanged. Moreover, the directional field defined in Q by
otrr) 0 apparently depends continuously on ((r ,A),2) eT x Q - [7 is

topologized in the natural manner, carrying over the product topology of
(0,M> x aQ.7

For (* , y) e T we denot'e by
trajectories of of;, ) 0 which have

Kfy _ K,,

Kf, the closure of the union of the
the limit point A . Thus first

(*,y)€S+n T: Te.for
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(g.b) 
T L

T2

: (0, M> x ((0, il U li, M+i)),
: ((0 ,1)[> x lM , M +i>) U 8-,

T0 U TL U ((0 , M> x {M +i}) U Tz we obtain inand observirg
the other cases

(eb)

(9c) Kf, M +i

(ed)

T-

Kh: ly,iluK'., for (*,A)e Tr,
: li,M+ilUllUI ,M+il for ne(0,M),

Kfn: ly,Ml U K'-, for (n,y)e Tz.

IJerc K!* is the carrier of an analytic arc with initial potnt y and. terminal
point (in case (9b)) on (r , M) or (in case (9d)) on <0 , i>, the arc lyrng up
to initial and terminal point in Q . lM , M +i,l is a trajectory of ofr> 0
for (r,y) e ?r, while li,i+Ml is a trajectory when (r,y) eTr;
[0, r] is the closure of a trajectory in all three cases (9b), (9c), (9d). Con-
sidering @ as a pentagon as in section l, we have

(9.6) Kh . S([0,r] ,lM,M+i,l;i) for (r ,A) eTt,
(9.7) Kh . S([0,c],li,,M+i,l;M) for (c,A) eTz,

leading to the cases II and fII of section 2. We put therefore

(9.8) st(r ,A) : [0 ,r] for (u ,y) eTrU Tr,
(9.9) sz(u , y) : lM , M +il for (* , A) e Tt ,

: ld,M+i,l for (r,A)eTr.

10. We define now on 7 a function h*, coinciding with å of (5.1)
on B+, in a natural way, obtaining results which aro analogous to the
Lemmata I, 2, 3 and the Theorems l, 2.

Observing (9.6) and (9.7) we put in the notation of section l, using
(e.8) and (e.e),

_ Dr(t t(n , y)' , sz(r ,y) ; Kfr) , (r , y) e T,U Tr,

- Dr(tt(r ,y) , sz(r ,y); Kfr) , (r ,y) ef LU Tz.

2), KfynaDf isconnectedfor (r,y)eTtUTr, so

M{(r, A) - d,(sr(r, y), Kfy n aDf(r, y) ; Df@, y))

for (r,y) e Tt U Tr,
M{(*, M+i,) _ d(l},rJ,li, M+il U lM , M+il Q)

for fi €(0 ,M),

Df @,y)(l0.r) I
\ / D{(r,Y)

Again, (j_ l,
we put

( r 0.2)
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Mt(r ,

tul* (r ,

(r0.3)

(10.5)

M+i) :

y) : d,(sr(r ,y) , Kfy n aD*(r , y) ; Dt@ , a))

for (r,y) e Tr,
0 for n e(0,M),

d(sr(n ,y) , Kfy n aDt(n , y) ; Dt@ , y))

for (r,y) e Tr,

using (10.2), (10.3) and the notation of (9a):

lh(*,y) for (r,y)eTs,
\ frVf (r, y), Mt@, y)) for (n, y) e T -To .

(10.3) have expressions similar to (4.4): We have

ta{@ra) . , ,,, ,.A,,.r\ t

' 

- 

, (r,Y) eT ((o , M> x {o}) ,I ar(n,y',

to, @,il€(o,M>x{o},

f a*@,u\

I ffi, (r,Y) er ((o 
' 
M> x {M +i}) 

'

to, @,y)e(o,M> x {M+i},

bt are obtained from the table below in the

Table I

bf

and define h* on T

(f 0.4) h*(r , y) :

The quantities (10.2),

Mf(*,y) :

Mt@,v) :

where af , bf , af ,

btafrYl"f
ln,of

0

[0,?]
li , M +i,l
M+i,
lM+i , Ml
lM,rf

lo,al
0

-lo , yl

-[o ' 
?]

-[0, ?]

-lr , Mf
-lr , yl

ln,MJ
l*,Ml
li, , M+i,l
la , M +i,l
0

-ly , M +i'l
-lM , M+i,l

lM , M+i,l
lM , M+i,l
lM , M+il
lM , M+i,l

l'i' , M +i'l
li, , M+i,l

[0,?]

l0,rl
lo,rf
[o'rJ
[o'r]
lo,rf

following way: if r e(0 ,M) and, y e(q,B) when [a'p] is an entry
in the first column, if ce{ot ,bf ,ot ,bt\, and if fu, dl o, -ly, öl is

the entry determined by [or, B] and$c , then

fp
(10.6) c(r , y) [ Vf,f, or - [ Wf', integration on [oc , p] ;
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the expression (10.6) is used also for y e{q, f) - {*} excepting
c : b{ , A :0 and c: bt , U : M+i,,leaving (as indicated by dashes
in Table l) öf undefined at (n,0) and bf undefined at (r,M+i,);
in each case, however, limr-, c(r , A) and limr*B c(r , A) do exist and are
finite, and we put in particular

(r0.7) limb{(r,y) : bf(r,0+) > 0, limåf(z,A) : b{(r,O-) >0,
jt-o y+O
!>0 iy<o

(10.8)

lim b*(", i+A) - b*(", (M +i)+ ) > 0,
y-->M
y{M

lim b*(" , M +iy) : bt@ , (M +i) - )y-r
y1L

Though tho intervals in the first column of Table I overlap, an application
of Cauchy's Integral Theorem shows at once: of and a{ arc well defined
on T, åf is well defined on T - (<0 , M> x {0}) , öf; is well defined on
? - ((O , M) x {M+i,\). We have e.g.

af(r,y) _ Iofrltrz for (*,ile(0,M> x[0,0]

of (10.4)Now we may write ins

(10.9) h*(* ,y) : (Mf (* , A) , M{(r , y)) for (* , A) e f

I
tead

Lemma 4. a) The functions
the'i,r respectiue domains of definition,

fo, each n €(0,M>

af , bf , atr , b{ e,re cantinuolls ont,

b{ arLd bX ure positiue, and, we haue

(10.10) 
b{(" 'o*) + bf(*'o-)
b*(",(M+i) +) + bt@,

: bt@, o) ,

(M+i)-): b{(*,M+i);

(10. t 1)

b) the functions Mf , Mt are cantinuuts on T .

The easy proof, similar to parts of the proof of Lemma l, is omitted.
Lemma 5. Let re(0,M),l,et sr:[0,r], sz:lM,M+il anil

K e S(sr, sz i i) . Thenfor any y e (0, dl U [i,, M +i,) wehauethe inequality

bf'(* , A) Mr(tl ,rz ; K) + bt'@ ,y) Mr(sr, sz, K)

with ery,ali,ty i,f and, only if K : Ktrr; fo, A e{0, M +t) formula (10.11)
holils with strict ,i,nequali,ty when b{(*,y) and, bt@,y) are replaceil, by
the corresponili,ng limits.
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Lemma 6. Let *e(0,M),let sr:l0,xl, sr:[d,M+i'] anil'

"l(e $(sr,sziM). Then for ony ye(M+i,,Mf UlM,*) we haae the

i,nequali,ty

(10.12) b{'(*,il Mt@t,szi K) + b{21r,y) Mz@t,sr; K)

< b{'(*,il e MI@,aD + btz(r,y) (- Mf (r,y)),
wi,th equ,al,ity if anil only i,f K - K*y; for g: M+i,, formula (10.12)
holils wi,th strict'i,nequnl,i,ty when b{(*,il 'i,s replaceil,by bf(r,(M+i)-) t

we haae also

(10.13) rz Mr(s, , szi K) + M2 Mr(st, szi K) < M .

The proofs of Lemma 5 and Lemma 6 are analogous to the proof of
Lemma 2; (f0.13) is obtained from (10.12) using

limbf(r ,U) : n, limbf(r,Y) : M ,

(r0.r4) i,:i i9i
I

limM{(r,y) - 0, limII{(r,A): - M,y+* y+t
ylr vlr

where these latter relations follow easily from (9.3), (f 0.5), Table t.

tl. For r e(M,O) we use now the two-point compactification
aQ, of Q - {r} by adding the two points

. n- : limy and n+ : li^y.
tt<x Y)*

We put further

(ll.l) lt: {(pr,pz)i h<0,01p21M},
(11.2) lz : { Utt, pz) i py 10 , - llII I pz 10) ,

and with Z of @.2),

(n.3) E: lvZruZ*
(11.4) .& : interior of .E .

Then we havo in analogy to Theorem 2
Theorem 3. Let re(O,M) anil'let

aÖ": pe - {r}) u ({r-} u {r+})
be the two-ltoint compacti,ficati,on of aQ - {n); tet hf : aQ,'-> Rz be the con'

ti,nuous function, satisfyi,ng
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hf(il : W{@,y),Mt@,il) for yeaQ-{r\.
Then

(i) hf i,s i,njecti,ae;

(ii) 4 : htr@Ö,) i,s a gti,ecewise smooth cun)e in E , th" poi,nts hl(0)
anil hf (M +i) bei,ng the poi,nts at which the slolte of f: is d,isconti,nuu.ts;

(iii) hfQQ -{r}) cE, in particular

hIKo,r))c /,
hI(<0, i,l U li,, M +i,)) c tr,

hfKM+i,Mf UlM,r))c lr,
and, h,1aQ*) i,s a cross-cut of E ;

(iv) for y e<n,0) U (0,i1 U li,M+i>U <M+i,MlU lM,r), g
has at hf (y) the slope

(rr.5) 
^f 

@)

-bf'(*,il lb{z(r,g) I 0, y e<n,0) U (M+i,,MlUlM,n),
bf'(*,il I bt'@,y) 2 o, a e<0,i,lU li,, M+i,) ;

(") the angl,e EI(y) e (0 ,2n) whi,ch the tangent-uector to $ , oriented,
i,n the sense correspond,ing to the negati,ue ori,entation of aQ , forms at hf(y)
wi,th the ilirecti,on of the positiue p1-aris in the Qt, , lt) -plane i,s strictly
'i,ncreasing from

qI@-) : Bnl4 at hf(r-) : (r,M-r)
to

vf@+) : arctan ff(r+) e(7n14,2n) at hl(r+) : (0 , -rlM),
oaer

vf(o+ ) : arctan ],1(o+) e(3nl4,n) ,

vIQ- ) : arctan 
^f 

(o-) e(n ,5n14) ,

el@) : \nla,

7Y(QI+i,)+) : arctan ]tl((M+i,)+) e(\nla, 3nl2),

ef(@+i)-) : arctan Ltr(QW+i,)-) e(snl2, 7nl4),

EIW) : 7nl4;

(vi) the map n-->gl@i-) is a ileueasinghameotnorphism of <0,M>
onto (7n14, 2n) .

Proof. Thai hl is continuous on aO - {r} with continuous extension
to ad, follows from (r0.5) with table l, and one obtains in particular



12. We recall the definition (9.2) of T
irg for (r , y) e T by d,, € (0 ,2*2 II>
along öQ , öhe map

Some properties of certain extremal decompositions of a recbangle 253

hl(r+) : (0 , -llM). The restriction of the statements of Theorem 3 to

(0 , r-) e oö- is contained in Theorem 1. The proof of Theorem I was

based on Lemma 2 anLd the expression (4.4). Using now Lemma 5 for
ye(0,ilUli,,M+i,) and Lemma 6 for ye(M+i,,M)UlM,r)
together with the expressions (f0.5), a similar reasoning gives those state-
ments of Theorem Swhich concern A e<0,dlU Ld,M+i,) U <M+i,Mf U

lM,r). With hl(0)e(tU/r)o"E and htrW+i,)e(lrU/2)ofi t'he

statements (i) through (v) of Theorem 3 follow. n'inally, (10.14) and (11.5)

give immediately statement (vi), completing the proof.

and the topolo gy of T . Denot-
the distance of y from r -

(*,y) e T,

is a homeomorphism of ? onto the parallelogram

fi : 1@,g); o .--u<M, -z - 2M + r1y <r\;
the restriction of this homeomorphism to B+ c ? is the identity, and we
orient T by carrying over the usual positive orientation of the plane set

ä. lit"*ise we compactify T by carrying over the compactification of
fu ; *u call fr this compactification of ? (which conesponds to the com-

pactification aÖ, of Q - {z}). In the notation (10.9), (f f .4) we have as

an extension of Theorem 2:

T h e o r e m 4. The map h* : T ---> E is a sense-Ttreserairug homeo-

morph'ism.
To prove Theorem 4, we adapt the proof of Theorem 2, minor changes

are due to the fact that h* cannot be extended homeomorphically to f
(already h*(r,ra) : (0 , -llM) for each r e (0,M>). We proceed
again in several steps.

I. h*(T) c "E follows from Theorem 3 (iii).
III. h* i,s i,njectiae an, ? . We shall indicate later how this can be seen.

IIII. h* : T ---> D 'i,s surject'i,ae. We use the fact (Theorem 3) that for
r e (0 , M) , J-j is a cross-cut of .0 joining the boundary points (r , M -n)
and (0, - ll M). 'ff decomposes -E intotwo simple connected components, we
denote by E" that component which has the point (0 , 0) on the boundary.
Using II we conclude further: if 6 e (r , M) then J-f is a cross-cut in
Z" . So in order to prove t'hab h* takes the value F : }tt, pz) e E , it
suffi.ces, by a standard homotopy-argument, to show that there exist
re(0,M) and f e(r,M) such that FeEn and that -I'f separates
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p from (0 , 0) in E* , sirtce, as is easily seen, å* has a continuous extension
to the closure T-u of

(12.1) T*e: {$,y);te(r,t), ye aQ-{t))
infi.

Assume first p:(ltr.,t-rz)eE satisfies h10, p220. X'rom
Theorem 3 it follows thab p eE, once there exists y e <O,i)U Ln, M+i,l
such that Mf(*,il I pt, Mt@,y) > Fz.Tofind such a pair (u,y) we
choose first, y e (0 , dl such that

(L2.2) Fz

M+i

t!
M+i

:{

:t'
J

1 - p(r)lp@),:t, 
d,ztI + Lile@l I '*-'

t - p(")lp@)

1 + rllp@)l
Itlz

I rdzt

This is possible since the quotient n (I2.2) tends to M for U - 0 ,
y e<0,d], and since p, <M for peD. X'rom (9.3) we have then for
re(0,M)

d.n _ t+tlp@) r-p(")lp@),-,
"*Y | + tllp(y)l p(z)lp@)-r *o 

'

and comparison with (12.2) yields: there exists ro e(0, M) such that
Mt@,il) pz once u e(0,r0), since lofr|tz tunds uniformly to the
integrands in (f 2.2) for r -> 0. Using the Laurent-series of p(z) ne&r
z : O it is easily seen that

b{(" ,a) lo,rltt'

is bounded for fixed y a,nd fr €(0 ,no), while

af (* ,y) lox 7tz

tendsto -@ when r->0, n>0. Thusforsuitable re(0,r0) we
have M{(r,U) < p, and. Mt@,y)> p, as desired, and p eE,.If now

Ee(r,M) is such tinat p6Eu then J'f separates p from (0,0) in
E*.By Theorem 3 again p#fre certainly holdswhen Mf(E,M+i)> p1
since LI|G, M +i,) : 0, and (observing h I 0) this is by (f0.2) ob-
viously the case when f is sufficiently close to M. Similar considerations
in the other cases (pr.2 0 or equivalently p .Z n E aheady covered.
in the proof of Theorem 2, and pz10 or equivalently p e/r) show
again the existence of re(0,M) and €e(x,M) so that peU*
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and that J-f separates p from (0 , 0) in J" . So any value p e E is

indeod taken by fu* in T .

lV. lb*; T->E is a homeom,orphism. To see that it suffices now to
show that åx is an open ma,pping. We show therefore: if (ao , yo) is any
point of ? and if G is a sufficiently small open set containing (rs , Uo)

then å*(G) isopen.Wechoose r, f sothat 0<n<ro<E<M und'

that J"f separates p : h*(ro , yo) from (0 , 0) in E* . The cross-cut "If
decomposes E" into two components, we call Eng that component which
has ,ff cn the boundary, and we note

aU,e : lG, A -E), (r, M -r)l U,ff U If .

We have F e E*e, and the continuous extension of h* to ?"u satisfies
h*(t,t-):(r,M-t) and h*(t,t+):(0,-LlM), for f e [r,f].The
homotopy-argument of III then implies

( I 2.3)

Since

(r2.4)

E"E : h*(T*)'

hx(G) c fr*E once G is sufficiently small, by (L2.3), we have

and since h*(T,€ - G) is compact, h*(G) is by (f2.4) clearly open. So

Theorem 4 is proved once it is shown thai h* : T -->.O is injective, which
fact will be dealt with now.

13. In section 8, the proof that the function å is injective on B+,
did use Lemma 3. By similar reasoning it is shown that h* : Tr-> /, is
injective by the use of

Lemma 7. Let M, t, 8, R(8) be as'in Lemma 3; let

p{8) : d(l- t+i,,i'l ,18(M -E) ,8(M -6+i)l ; -B(te)) for o < t9 < I ,

: d(l- t+i,,i,lu li',iol ,lfl(M-E),8(Lr-6+d)l; .B(t9))

for L.'-d<oo.
Then p1 i,s stri,ctl,g il,ecreasing for I e ( 0 , co) .

Concerning the proof of Lemma 7, t'he following remarks may suffice.
X'or r9 e (0 , 1] , the Lemma can be proved by the method used in tho
proof of Lemma 3; the same method can be usod to show that the conjugate
extremal distance

I
pr(s) 

: d(l-t , -t+i,l u t-6 ,0(M-6)l , [8i,8(M-f +tt)] ;,8(d))

is strictly increasing for r9 e [t , co) .
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fn a similar way it is proved that h* : Tr--> /, is injective. Since
in the notation of section 9, T : To U ?1 U (<0,M> x {M+i})U Tr,
since la* was already seen to be injective on To (Theorem 2), since the
sets h*(Td, h*(Tr), h*(<O,M> x {M+i,}), h*(Tr) all &re disjoint,
q,nd since by (10.2) h* is clearly injective on <0,M> x {M+i},
h* : T -+ Z is indeed injective, completing the proof of Theorem 4.
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