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ASYMPTOTIC VALUES OF AN ENTIRE FUNCTION
AND ITS DERIVATIVE

BO KJELLBERG and BENGT SANDSTROM

1. Asymptotic values. Let us consider entire functions f(z) of
a complex variable z. We set F(r) = max |f(z)] on [z2| = r and define
the order ¢ and type 7= by

y log log F'(r) i log F(r)
o = limsu Wilogr , T = H:liup pr .

¥—> 0

A function of finite positive order p is said to be of minimum, mean
or maximum type if 7 =0, 0 <7 < 00 or 7 = oo respectively.

Let I' be a curve in the z-plane which stretches out towards infinity.
Suppose f(z) has a finite limit @ as z— oo along I'. Then a is said to be
an asymptotic value of the function f(z). On this topic much has been
written since the conjecture of Denjoy in 1907, that the number = of
asymptotic values is bounded by n < 2. This fact was proved more than
20 years later by Ahlfors, Beurling, Carleman and others.

2. What happens to tho derivative? A number of authors have
later investigated the following problem. Question: Let a be a finite
number and suppose that f(z)—a as z-> co along a curve 1I'. Is it then
necessarily true that f'(z)—0 as z— oo along I'?

Jaenisch [4] has made an extensive study of this question, earlier taken
up by Plancherel, Pélya, Delange, Gaier and others. Functions up to order
1/2 , minimum type, have no finite asymptotic values because their mini-
mum modulus is unbounded according to the classical theorem by Wiman.

However, for functions of order 1/2, mean type, the answer to the
question is yes. The same holds for functions up to order 1, minimum
type, if I' is a straight line or has a curvature O(1/ |z]).

For functions with growth at least of order 1, mean type, the answer
to the question is no.
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3. The scope of this investigation. From what has been said,
it remains to investigate functions of orders from 1/2 to 1 if arbitrarily
curved paths [' are allowed. For each ¢ in this interval we intend to
construct an entire function of order ¢ and a path [ which is asymptotic
for f(z) but not for f'(z).

Thus for functions of order o > 1/2 the answer lo the question posed is no.

It still remains to study a limiting case, functions of order 1/2, maxi-
mum type. We indicate an analogous construction in this case also.

4. An earlier construction. One of the present authors, Sandstrom,
did succeed already several years ago in constructing suitable functions
in the case 1/2 <o < 1.

From what has been said it follows that it is useless to work with
rectilinear or weakly curved paths. Therefore, the paths chosen were of the
type here illustrated in Figure 1.

Figure 1.

It turned out that it was possible to construct entire functions f(z)
such that f(z) — 0 along I" but not f’(z). The latter had large values at
the corners. One thing, however, which was felt to be unsatisfactory, was
that the exact value of the order ¢ could not be stated. Only by a con-
tinuity argument was it possible to infer that a suitable function could
be obtained for each order p, 1/2 <p << 1.

Our intention now is to obtain a direct construction for given o .

5. The method of construction. As a first step we intend to
construct a subharmonic function u(z) resembling log |f(z)|, where f(z)
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is the desired entire function. A subharmonic function has associated with
it a certain mass distribution in the plane which is equal to Adu taken
in the sense of distribution theory. In a second step we move the mass
a little in order to form unit masses.

In such a manner log |f(z)] and then f(z) is obtained. The method
has been used earlier, see, for instance Kjellberg [5, Ch. 4], Hayman [2].

6. Construction of the subharmonic function. Let o be given,
12<p<1. Set z=re? and consider the two rays ¢ =z F /20,

starting from the points with real part 1, which are connected by a line

segment.
On the ray d=x—xm/20 we take a number of points
Py, Py, ..., P,.. at distances R,, B,, ..., R,, ... from the origin.

It might be good to have R, | R, | > 4.
Let us, for instance, take

(6.1) R =", n = 1,2 ...

From each P, we draw upwards a line segment P, ¢, of length I, ,
perpendicular to the ray ¢ =z —a/20.
Let us take

Figure 2.
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R 82"

n

(log R,)? ~— 4n?

(6.2) I, =

so that the sum of [, / R, is convergent, a fact which will be used later.

The three segments first constructed and all the segments P, Q,P,
constitute the boundary [' of a simply connected region D containing
the part of the real axis to the left of z = 1.

We can now define the subharmonic function wu(z). Let wu(z) be har-
monic and positive in D, let «(0) = +1 and wu(z) = 0 on the boundary
I". Then wu(z) exists uniquely in D, a fact well-known for a half-plane
upon which D can be mapped. For a very simple proof, see Tideman
[7]. In the rest of the plane we set w(z) = 0. The function wu(z) so
constructed is subharmonic and non-negative in the whole plane.

If ' simply were the rays @ =x Fa/2p and wu(—1)= +1,
then w(z) should be #°cosg (¢ — x) in the left part of the plane. Now
u(z) is somewhat different, a few properties are listed in Section 9.

7. Construction of the entire function. The function w(z), as
defined above, has the representation, see, e.g. Heins [3],

1 — —

2
t

(7.1) w(z) = 1 + f]og du(t) .

Here w(t) is a function monotonically increasing as ¢ traverses [ in the
direction indicated in Figure 2.

Let us set p(1) = 0. We remember that du(f) in the integral stands
for (1 /2xn) (éujen) |dt|, where oujon is the derivative in the direction
of the normal pointing into D .

We now move the mass a little by setting

(7.2) h(z) = 1 + f]og 1 - ;ldfy,(t)]

where [u(f)] signifies the integral part of u(f) . We could just as well write

* 2
(7.3) h(z) = 1+ log|1 —
2 t”

where ¢,, v = 1,2, ..., signify the discontinuity points of [u(t)], ordered
with respect to their distances from the origin.
We shall show in Sections 10 and 11 that

(7.4) —25log |z| < h(z) — u(z) << 25log |z
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for |z| sufficiently large. The left inequality, however, holds only if the
distance from z to I is at least 1/ [z].
Let us now define

(7.5) flz) = i(l - ;-)

28

It then holds with good margin for large |[z| that
(7.6) —531log 2| < log |f(z)] — u(z) < —log |z|

with the aforementioned restriction for the left inequality. We show in
9a that f(z) is of order o . Because u(z) = 0 on I, it is seen from (7.6)
that f(z)— 0 as z-> oo along I'.

8. Study of f’(z). Let us fix a point @, (see Figure 2) and study
|f| and |f’| near this point. We define a nearby point Q. as follows.
If already |f'(Q,)] =1 we set @, =@,. If [f'(@,)] <1 the same in-
equality |f’(z)] < 1 holds on some interval on the prolongation of P, @), .
For each z on this interval we have

Figure 3,
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Because [f(Q,)] < 1/R, by (7.6) we obtain, since u(@,) = 0,

1
(8.1) fE@] < 1f@I +9d < 5 + 9.

"

The left inequality in (7.6) gives for 6 > 1/ R, that

Ve Re

(8.2) log |f(2)] > wu(z) — 53log |z| > 150 loo R

— 53log R, .

Here we use an estimate of w(z) which is obtained in 9d. It is obvious
that the distance [z — @,|, i.e. &, must be very short for this to hold.
If we compare (8.1) and (8.2) and denote by @/ the first point on the
prolongation of P,Q, for which |[f(@,)| =1, we see that surely
1@, — Q,] < R, @1 | for instance. It follows from (8.1) that |f(z)| — 0
uniformly on Q,Q, as n-— o .

Let us now define a certain path I . It starts from z = 1 and follows
I" to the point P, . Then it makes a detour P,Q;P,, thereafter it follows
I to Py, makes a detour P,Q,P,, goes from P, to P,, makes a detour
P,Q;P, and so on.

From the construction it follows that f(z)—0 as z-> oo along 1.
But this is not true for f'(z) . At the cusps @, of I wehave [f'(Q.)] =1,
but from the comments to 9¢ we infer that w(z), [f(z)| and thus |[f'(z)]
are close to zero in a wide strip around the segments P,P,,; which are
parts of .

To sum up, we have constructed an entire function f(z) of order o,
1/2 <o <1, and a path I'', asymptotic for f(z) but not for f'(z) .

9. Properties of wu(z). Let us study wu(z) in Section 6, harmonic
and positive in the region D , zero on the boundary I' and in the rest of
the plane. We need some facts about w(z) .

9a. u(z) is of order ¢ (wu(z) corresponds to log |f(z)| in the definition
of order in Section 1).

9b. u(z) takes its maximum M(r) on |z| = » near z = —r.

9c. u(z) -0 as z-—> oo in the strip consisting of those z whose
distance from I is at most 1/ |z].

9d. u(z) grows rapidly near @, ,if z is located as indicated in Figure 3
one has

n 2

(9.1) W) =m0

for sufficiently large = . As before, R

iy
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Comments to 9a. There are formulae giving a lower estimate of the
growth of the maximum modulus M(r) in D . Theorem 7.6 in Fuchs [1]
gives for n > 1 that

v

M1 dt 1
(9.2) M(r) = *%) exp {nff_%} > —4—79.

1

In our case M(1) > 1 and the angular measure d(¢) of that part of |z =1
which is contained in D ,is <z /o.
On the other hand there must for each ¢ > o exist 7, such that

(9.3) M) = »*  for v =7r,.

For suppose that there exists a sequence 7,7y, ...~ o0 such that
M(r,) > r%. Choose 7 such that ¢ <7 <o. Because of (6.2) there
exists 7, such that the region D,, defined by n — 7z /27 <argz <
%+ m/27, |z|>r,, is contained in D . Let (7 denote the arc in D,
of |z| =r,. Because r; << M(r,) = u(r, ¢?n), where 9, ~a by 9b,
there exists by Harnack’s theorem a constant C, > 0 such that u(z) >
C,r° for zeC?. If zeD, and |z] <7, then

(9.4) wz) > O, r% " (r" — ¥ r ") cos T (0 — 7).

The right-hand expression is a harmonic minorant of w(z) having
boundary values < C 7 on C%, zero elsewhere. In each point of D,
the minorants — + o0 as n — oo . Thus (9.3) must hold.

Comments to 9b. By transformation w = logz that part of D where
lz] > 1 is mapped into a half-strip of breadth /o . The growth of w to-
wards the middle of the strip can be shown simply by reflection in circles.

Figure 4,
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The procedure is indicated in Figure 4. The points z and 8(z) are
symmetric with respect to the circle C'. For each C chosen so that
the image S, of S; stays in the strip where w(z) > 0 it holds that
u{S(z)} — u(z) >0 if ze8,.

If M(r) = u(r &) it follows that & —>x as r— 0.

Comments to 9c. Take a point ¢ on a segment P,P,. ., such that
R = |{| exceeds r, defined in (9.3). Construct a semicircle above the
diameter with end points /2 and 3¢ /2. Form the harmonic majorant
of wu(z) equal to zero on the diameter, (3 R/2)° on the arc. Then (see,
e.g., Nevanlinna [6, Ch. 3, §2]) for |z — {| <d < R/2,

4 d
(9.5) u(z) < — are tanR IE .

Thus u(z) -0 as z-—> oo in a wide strip around the ray ¢ =z —
n[2¢0. Also, ou/on —0 as z-> oo along this ray. The same holds for
theray & = @ + 7/ 2¢ . In order to estimate u(z) in the neighbourhood
of the segments P,Q, we consider a circle centered at @, and with radius
21,. We obtain a majorant of w(z) on the circumference from (9.5) by
choosing d =31,, R = R,, which gives wu(z) <127, R;'*°. On the
radius through P, we have u(z) = 0 by definition. By w = (z — Q,)"?
the cut circle is transformed into a half-circle. If the distance from z to
P.Q, is <0 we obtain, remembering (6.2), that

4 Ve Re-12

- IR . —1+o0 o
(9.6)  u(z) < _arctan Nexa 121, - Ryt < 12«/’510an.

We have here omitted the little discussion that shows that the most
rapid growth of w(z) takes place near @,. By taking 6 = 1 /R, the
validity of 9¢ also near P,Q, is proved.

Comments to 9d. Let us go to Figure 3 and denote by @/ the point
beyond @, whose distance to @, is [, /4. By (9.2) MR, > R2[4.

Make for a moment the logarithmic transformation as in the comments
to 9b. By Harnack’s theorem for a circle we roughly obtain

” e L 1 e
(9.7) w(@,) > 5, M) > g5 W

for sufficiently large = . Go back to Figure 3, set w = (z — @,)"? and

3 g
(ER> < 4d R,

apply Harnack’s theorem taking a circle with radius V. Z; /2, centered
at the image point of @, . Then, for z as in Figure 3,

9.8 Vo . VoRrT™

(9.8) uz) = ﬁu(Qn) = 150 log R,

We see that oujon — o at @, .
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10. The displacement of the masses. Let z be a point not on [ and
|z| > 2. From (7.1) and (7.2) we infer that

(10.1) he) — ule f log |1 ld{[u(t)] — plt)} -

A partial integration gives that

~|

hz) — u(z) = — f{[u(t)] — p()} dlog|l —

4l

In the next section we prove that the integral in (10.2) is less than
25log |z| if |z| is large enough and if the distance from z to I is at
least 1/ |z|. To prove (7.4) it remains to prove that

which gives

(10.2) |h(z) — u(z)] f‘dlog

(10.3) h(z) — u(z) < 25log |7|

holds also if z is close to I'.

Let us restrict ourselves to the half-plane Re z > 2 and denote by F
the set of z in this half-plane whose distance to I' is less than 1/ |z].
We have just seen that the subharmonic function A(z) — 25log |z]| < u(2)
on the boundary of E if |z| is large enough. Because wu(z) — 0 on this
boundary as |z| — co (proved in 9c) there exists a constant K such that
h(z) — 25log |z| << K on the boundary. If we set

max { h(z) — 25log |2| , K} for zekl,
K elsewhere,

(10.4) v(z) = {

we obtain a function which is subharmonic in the half-plane consi-
dered and equal to K on its boundary. The order of #A(z) and then
v(z) is < 1 because if follows from the form of (7.3) that the maximum
modulus of A(z) on |z| = r is taken in the left half-plane where &(z) is
closely connected to u(z) by (10.2) which has order o <1.

By the theorem of Phragmén — Lindelof it follows that o(z) < K in
the half-plane. In particular for z € £ we obtain h(z) — 251log 2| < K
and since u(z) > 0 also h(z) — u(z) < 25log |z| + K . As we see in next
section that the number 25 could be chosen somewhat smaller, the validity
of (10.3) is obvious and also (7.4).

11. The variation of the logarithm. We want to estimate the integral
n (10.2) but begin with an arbitrary straight line instead of I". Let us
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fix z, |2|] > 2, and denote by L the set of ¢ on the line where |t| > 1
and [t —z| > 1/]z|. By the Mobius transformation w =1 — z /¢ the
circles [t] =1 and |t —z| = 1/ |z| will, for large |z|, be mapped ap-
proximately on |w| = |z| and |w| = 1/|z|>. When ¢ runs through L
the corresponding point w will run through those parts of a line or a circle
which are situated in the ring between the two circles mentioned. That
means that the variation of log |w| can be = 6log |z| at most, i.e.

(11.1) f ldlog
-

at most for large |z|.
We also need a corresponding estimate for a short line segment such

as P,Q,, ie.

0

2

(11.2) f’dlog 1 -
Pn

On P,Q,, whose length is /,, we have |{| = R,. If we know that
[t — 2| > |z| /| 2 then the integral in (11.2) can be = 2/, R, at most.

We are now in a position to estimate the variation of log |1 — z /|
on I' supposing that the distance from z to I'is 1/ |z| at least. If there
is a P, in the ring 2] /2 <t < 3]z]/2 the variation on P,Q,P,
can be = 12log [z] at most.

On each one of the rays ¢ =z T 7 /20 the variation is = 6 log |2]
at most. The sum of the variations on all remaining line segments is bounded
by a fixed constant. Thus

(11.3) f‘dlog

for sufficiently large |z|; the coefficient could be taken somewhat less
than 25.

z
1—?’ = 6 log |z]

Q

0, .
! gp['dlog<1 —%)’ — . i?:flltliitlz]

n

z
1 —?H < 25]og |z|

12. Some final comments. We formulated a question in Section 2.
The answer is yes for functions of order 1/2, mean type, the answer is
no for functions of order o > 1/2. Thus there is a limiting case to investigate,
namely functions of order 1/2, maximum type. To obtain them in our
manner we have to replace the rays ¢ = 7 ¥ 7 /20 by curves closer to
the positive real axis. The growth is estimated as was done in 9a. Let us
write M(r) = A(r) r'* where lim sup A(r) = o as » - co. In (8.2) the
factor RZ™V2 will be replaced by A(R,). In order to succeed with the
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same sort of proof we need that A(R,) surpasses some multiple of (log R,).
We leave open the question of what is true in this connection for functions
having a weaker growth within the class of functions of order 1/2, maxi-
mum type.

Let us at last mention that the K -functions of Mittag —Leffler could
be used for our constructions. These functions, together with all the
derivatives, tend to zero in an angular region. Suppose we have constructed
as described here above one suitable function f(z) of order ¢ and a path I'.
If we take o such that o <o <1, then F(z) = f(z) + E,(—2) Is
an example of a function of order ¢ > ¢ with F(z) —0 along I' but
not F'(z).
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