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1. Introduction. Let B be the family of regular and univalent func-
tions in the unit disk lzl ( I with the series development

(1) w : f(z) : z*azzz+...
and let

(2) dr: inf{lal:f(z)*a,lzl <l}.
Let B(d) , ll4<d<r, bethesub-familyof B forwhich 4:d.
Because of the compactness of B(d) there exists, at least one function

f(") e B(d) for which

(3) 
f;3; {1""1}

is attained, and we denote

(4) a,(d) : Max {la"l} .

Consider expressions

I
a*(d) d^ , ),

do be a local maximum for such &n expression, i.e. there exists

a*(do+h) (do+h)^ S e,(di dt

holds for all real h yith lhl < rt (in case that do : r/4 only positive
values of å come in consideration).

There exist always points of local maxima. fndeed, for every real 1
consid.er the functional {la,l d'} where a, is the nth coefficient of a func-
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tion /(z) e B , and d is the radius of the greatest disk around u) : 0

contained in the image of lzl < I by f(z). We may now ask for

(6') Marx {la,l di} .

Because of the compactness of B there is, at least, one function which
solves the problem. Let il,, of the extremal frrnction be equal to do . But
then la*l of this extremal function is equal for a,(ilo\ ; and for this value
of do (6) certainly holds.

In this pa,per we investigato the properties of the extremal function
for which tho expression (5) has a local maximum ab d,o.It will be shown,

among other things, that a*(il) has at such a point a derivative from the
right which is equal to (- X I do) ao(do\ , and when )' > 0 it has

a derivative.
X'or l, : 0 this is an additional information about the Koebe function,

whose nbln coefficient is maximal for lar-21 <-8* t [l] , [2] , or when
O < d - U4 and sufficiently small.

The methods used are variational methods, and. part of them were

usod in an oarlier paper [5].

2. Characterizatlon 0f an extremal lunctlon. Leb f(z) : z *
arzz + ... * &,2' + ... be an extremal function of B(do) . We may assume

that a,) 0 , &n : en(do). Otherwisowe considerthefunction e-'811"efi1 ,

which also belongs to B(do) , and choose I so that the nth coefficient
becomes real and positive.

Let D be the image domain of lzl < f by f(z) n the ar-plane. This
domain contains the disk l.l < do. Consider the mapping

(7)
f a,oz

?t)* _ LUI 1+ \
LWWL

oQ'* I
F*;rJ

where q>0, lal:I, wreD and #lwreD. We can choose g
sufficiently small so thåt this mapping is regular and univalent on the
boundary C of D. The image of C by (7) will be a new set of continua
C* which bound a domain D* , vety "close" io D .

We observe that for lwl : do

Iro*l - do 11 + ie'Rl ,

where -B is real and independent of q . This shows that ilt, the greatest
radius such that the disk lw*l < d, is contained in D* , differs from do

by an alnsunt of order O(gn) ,

(8)
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Our aim now is to calculate the univalent function /*(z) which maps

lzl < | onto D* with /*(0) : 0 . fn order to do this we first calculate
the Green's function g*(w) : g*(w ,0) of D* with the logarithmic pole
at u*:0-

Leb z : V@) be the inverse function of w : f(z) , g(w , a) be the
Green's function of D with the logarithmic pole of a , and p(w, co) the
analytic function in trl whose real part is g(w, ar) . Using tho general
variational formula as developed in [6] we get (on denoting S(w) : g(w ,0) ,

p(t) : p(t,0), p'(t,w) : ap$,w) | at)

(e)

where

(r 0)

(l 1)

and

(12)

we obtain from (9)

wl,wlL e D (which

t v(w) v@)

a(t) is regular tn

assumption that'

p(w , @) :- log

Ioz
g*(u:) : g(rr) + *"i * '(t , w) p'(t) u(t) dr][ + O@u)

at atz ta(t) : t_rnL + 6rq:6i wt :

.[ ,

g
,ID 

L

and f is an arbitrary smooth closed curve such that
the closed domain bounded by f and C

Taking in account the formulas

P(tt:) : log V(u;)

by the calculus
is always possible

of residues, on t'he
to choose when do

(13) s* (w)

+Re

- g (rD)

eelw

f wz v'(w)+ o s'L6rr@)
1 *;, v'(za!r)z

r_

w - w; 
-r *, v(w!r)

,n, 9' 1'n S'
t--

v(rn t)

v@)

ffi
q(w)

1 vWv@) ] + o@n)

1 urg'(rrsr)' I
r--
Iu - ur V(w t) V(u: t) V(w)

*;, V,Ufi;),
I
,r,

ut v(n') 1 V(tnt)

I
-' ]v(
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Completing the harmonic functions in (13) to analytic ones we get

(14) p*(w) : p(w)

^f w V'@) I wr.g'(wL)' I
+ aq'L q@) w-q' e@) ,@r) - e@)

-'i'q'@' q@) 
1

qv@!t) r - v@r)q(*)J

- ^f w, g'(w) t *!rr g'@ir), I
+ eQ'Lile@) w:4+ *re@ rW- r@)

wr?'(wr)z v@) I+-+ I +o1s'1,
E(wt) | - q(wr) E(w) r

or

(15) p*(w) : p(w)+aQzM + aQr-M+O(ea)

whero M and i[ stand for the expression multiplying apz and apz,
respectively, in (14).

X'rom (15)

(16) logE*(w) - log V@) - dQz M - op,.l[ + O(pa).

Taking exponents on both sides of this equation we arrivo at

(17) q*(w) : q(w)(r - eQzM - anz.M) + O(qa).

Since

I(18) z:g(w), V'(w)-f\4, w:f(z)

'we c&n express the right hand side of (17) in terms of z and f(z) .

X'urthermore, on observing that

(re) w : f*(v*(w)) : f@(w)) : f(z),

we get from (f7) that

(20) f*(z) : f(z)

^ l- .f(z\ lwrp'(wr)' I* a QzL5:-*, * z f' (z) (ffi *ry
*ir,v'@i), z \-t

1-:rl' qv@i) t - v@t) zl J
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f (r)'
"n'l+

(f (z) wr)I,DL

X'rom

(21) af

and

(22)

where P*(*)

(23)

Normalizing

(24)

where

(25) ån :

+...+aTz"+....
that

I ut g'(rr;r)r1
-r

'r,oL ' g(w,)z J

] + o(su)

+ o(sn) ,

(see t7l )

^ 
ut;, v' (r,a!r)z

+ aQzd,ffi + o(en)

af z + ot"'
(20) it follows

:1+ *rrl

: an+ aQzt - ;tr"å)+ ..)
. rDLp'W + k on 

_u:tz V,@)2"-t+ fP >-h'.i:ha-:s-' g(w)z k,g(usr)-h 
-r 

*,p1*iy, f:,
f I /t\,wir7,(u),r)r{ koo+ " Q'L tP"W) + ävu,;), #,e@;)*-u

.ffiE,koov(*,1.-']
is the polynomial given by the generating formula

f(z)""
f- "7@ 

: 
)lan + Pu@)lzh '

f*("), wo consider

- f*(r) -f(") : d 
: z + år"' +... + ån?n +...

aff

"-rl

q,n+ Xl

+gf
'lDt L

+
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Observe that it"l e 8(Ö where

(26) d :
do\ + O(e*))

_,,1 ,_f(w_,) _x*#l *,,n.,

If g is sufficiently small

(27) fi-a,l I q,

and therefore, because of the assumed local maximum property at d,o,

it follows that

(28) a*d,! z tä,tfr : lo, *N*,1- r-C1,) * 
^""

rffi(f,#r+@-,-^,,)
*-@ft"jroor@r-r1g\wil' h:r J

,H[-"(a).W8,#,
+ (n -, - tl *) .W"E3 or r^r-rf
+ ors^1lai.

Hence, taking in account that Re {r} : Re {r} , we get that

(aozf / I \(2e) R" tA L^o" - ,"\^)

.ffi(:i,(#- + kaor(*')'-o) + @-r- t'ta.)

;H.WE,(#+kao,6"'')
r (n-t-D%))+ o(ea)) 

= 
o

must hold.



Extremal properties of some classes of univalent funetions 351

Dividing by q', letting I * 0 and taking in account that the argument

of a is arbitrary we end up with

(Bo) Aao - ,"(*)

v&DL)*-') + @-L- 1) *-7

(n-r- 
^) "")l 

: o

X'ormula (30) was proved for w, e D with w!, e D, otherwise arbitrary.
Letting now w!, tend to the boundary of D, (30) will still hold. This
shows that the function /(z) is also analytic on lzl : I , and it maps the
unit circle on analytic curves.

Denoting by

(31) M(w , ],) :

rytå(ffi+ käuv(*)-u)+ @-
v(e

we get that' the extremal function w : f(z) satisfies t
(written in terms of the inverse function z - V(w) )

M(w,1) + M(ro',1) + Aao: 0

L-^)*-l ,"(*)

he functional equation

(32)

3. The domaln D has no exteriot points. As mentioned abovo

the extremal function f(z) is analytic on lzl : I , except for somo isolated
singularities. We show now that the image domain has no exterior points.

fndeed, suppose to the contrary, that our assertion is incomect. Then,
there must exist an arc on C , in lwl ) d, , whose neighborhood does not
completely belong to D . Let this arc (or a part of it) be the image of an
&rc on lzl:t, t91 (argz{8r, 0(81182<2n on which f(")
is anal;rtic.

Consider the domain 7 whose boundary consists of lzl : 1 , 8r 3
argz 

=8r+ 
2n, and. a,n &rc given by r: I * tp(8), where e) 0

and sufficiently small and p(8) satisfies

(33)
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The function

(34)

o.

maps lzl < | onto T and the mapping is univalent (see for example
[+]). By our assumptions, the function f(t(z)) wrII be regular and univalent
for sufficiently small e , and the image domain will contain l*l < do.

In the development around z : 0 of

8,

(ss) n@) : f(t(z)) : r(, *y I 
=#p(s)d,o* 

,("))
o,

the first coefficient is different from one. Therefore "F (a) does not belong
to B(d) .

In order to obtain a near by function to the extremal one in B(d) we
make use of the following auxiliary function.

Let

(36)
(1 + s(z) e-o,)z

1Y: l-ö

0 sv
with the radial slit

we get from (36) that
The function s(a) maps lrl

from ö ei? to eis . Taking ö > 0 sufficiently small

s(z) 4z
$+yY@' o

ö2 1+ ze-oq_ z - Z' t - , r-'* + o(å') '

l8, , 8rl , very close to 8 L or B, , and consider

(37) s(e)

Choose V outside
the function

(38)

I*(z) - I(s(z)) -

?9,

+ * [Wp(s)ds+,(,))8,
ri,

ez f t + ze-i$ \
2* J l:;F p@) d8 + o(e) + o(ör) )

I,

I ö2 1+ze*ds:/\' z" +

Choosirg

r(,ct

8,
ö2tf
Z: 2*J p(8)d8

fi,

(3e) + o(e)



Extremal properties of some classes of univalent functions 353

rg,

rr
; J l@ - L) a*-L e-08 + ... + 2 a, s-(n-z)i$ + e-@-tttfl1 p@) d,s

8,

- 1) ar_re-i, + ... + 2 arn-@-2)iv + e-(n-t);v1 p@) dS + o(e) ,

we get that

(40)

where

(41)

af : cl'n +

8,

:lt@
8,

F*(r) : z + at "'+ ... + aX z" + ...

or

where

I 2 a, (n-l) a-_,
(43) Q@ : nr+ €n-z+..*--t' +(n-t)o,-r6+... +8"-7.

As 0(f) # 0 on 16l : I we may assume bhat Q(eiq) is monotone and
of constant sign in 18r,8Å. (If necessary we take a part of this interval
to begin with.) If it is monotone increasing we choose g outside 18r,8Å
near r9, and if Q(&) i" monotone decreasing we take g near 8r.

By doing this we get from $2) thab

(44) Re al > a,

in contradiction to the extremal property of a* : a*(do) , and so we have
proved our assertion that D has no exterior points.

Next we prove the following
Lemma. Let a*(il,)d,^ haaealocal,matimumat d,:do, A>0.

Then for euery po'i,nt eiq whose ,i,mage by the ertremal, functi,on f(z) :
z*azzt+...*arzn +..., a*:a,(d,),'i,s at a d,istance from w:0
greater than do,

(45) Re{ (m-L-A)a, -f 2(n-l)a,-re-iq + ... + 2t-@-r)dv } > 0

must hold,, amil, equality occurs at gtoi,nts on lzl : I whose images are tiyts
of slits.

Proof. Let, eie be such that lf@\l ) do. We consider tho function

8,

(42) Re af; : a,,, + * I lQ(rns) Q@cr)l p(S) dS + o(e)

I,
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(46) 7@) : f9-@D- : z*år", + ... +ä,zn * ...

1- 7+o(ö2)

where s(z) is the auxiliary function introduced in (36). This function

belongs to B(å) where

(47) a : r,(, + f+o(ö')) .

By choosing ö sufficiently small

(48) å: il,o+h, o<h<rt .

IIence

(4e) lä.1&,^ t a*d'!.

As

(50)
ö2

ä, : dn - 7U"-L)a* * 2(n-l)a,-r.e-iq + ... + 2r-(n-tltv1* o(ö2) ,

(47), (49) and (50) give (a5).

We note that by letting ede approach dq", whose image is a tip of
a slit, we conclude that (45) holds also for ewo .

Let now wo be a tip of a slit, and consider a part of that slit that starts
from wo not passing a forking point, if such a point exists. Let w : w(t) ,

0 < , < fr, be its equation (ru(0) : too ). By cutting out from the slit the
portion from u(0) to w(t) we get & new domain in the u-plane. The func-

lion f(z,t) which maps lrl < I on this new domain is a solution of
Loewner's differential equation [3]

(6,) ry:: "fwo*ry:
where (by choosing the parameter f in an appropriate manner)

(52) f(" ,!) : et z * ar(t) zz + '.. * a,(t) zn + "'

with the initial condition

(53) f(2,0) : f(z) - z*ar(0)zz +... + a,(0)zi *..., an(0):a*

and ft(f) is a continuous function with lfr(l)l : 1 . In addition the image of
L lk(t) is the tip w(t) .
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X'rom (5r) and (52)

(54) 
"1"@ - Z et lc1t1,-t I 2 ar(t) lc1t1-z + ...

+ 2(n-l)a"_r(t)k(t) + na*(t).
Henco

(55) a"(t) : a, * t(na* * 2(n-l)a,_rk(0) + ... + zk(q'-\ * o(t),

where

(56) k(01 : 
"-iv, 

.

The function

(57) I(z,t) : e-'f(z,t) : z+är1t1z2+...+ä,Q)zn t...,
where

(58) å,@ : &* t t((n-t) an + 2(n-r) a,_rk(O) + ... + zk(O)*-\ * o(t) ,

belongs to B(dr) with
(59) d,, 2 do e-' .

By taking f small enough

(60) d,r:d,o+h, lhl<rt.
Hence, because of the local maximum at do, 1) 0 and because of (5g)

(6r) a,dt > lå,"(t)ldl
2 la* + t((n-l- 1) a, + 2 (n-t) a*_re-b, + ...

* 2 e_@_tttpo) + o(il at.
X'rom (61) it follows that

(62) Re{ (n -l-X)a, + 2(n-l)o*_re-den + ...+ 2r-(n-Ltdvo } < 0

must hold, (45) and (62) prove our assertion.
As a by-result from the lemma follows that a local mari,mum at a poi,nt

ilo can occur only u.ti,th one erponent )r:l(dd. We summarize the results
obtained in the last two paragraphs in the following theorem

Theorem l. Let a,(d,)d,^ haaeal,ocal,mati,mumot il,o wi,th 1>0,
and, let w:f(z):z*&zz2+,..*anzn +.,,, &r:a,(do), be an er-
tremal functi,on sol,aing Max1.r1r"y laol .

Then the ertremal, functi,on ma,ps lzl q l on the whole w-pl,ane sli,t alanq
analytic sl,i,ts anil, satisfies the functi,onal equati,an

(63) M(w,D + a@\l) * ).a, : s

where M(w , ).) i,s gi,aen i,n (3t).
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Ior euery gtoi,nt de whose image by the entremal functöons has a il'i'stance

frorn w :0 greater than d,o

(64) Re{(z-I-h)a*+2(n-l)an-te-i'+...+ 2r-@-L'tie } > 0

u)i,th equality hold,ing for those points on lzl
the slits.

Moreouer tltere 'i,s a unique %on-negatiue

a local martmurn fo, a*(d) d^ ai do .

If the extremal function is such that it maps l"l < | on the whole
to-plane with slits which havo only isolated points on lul : do , then (6a)

will have a double zero at each point whose image is a tip of a slit situatod
on lwl: itro. But then M(w,X) + ]'a*12 will be regular on lwl: ilo,
and, because of (63), will be pure imaginary there. Hence by the reflection
principle will be regular in the whole to-plane, and therefore equal to a

constant. Calculating the value of this expression aut w : 0 we find that
it is equal to - I o* | 2 , or that the extremal function satisfies the dif-
ferential equation

M(t:,1) + Ta*: 0,

which in the case of 1 : 0 is the Schiffer differential equation [6].
If the extremal function is such that it maps lrl < I on the whole

plane with slits such that one of them contains an arc of lwl: do whose

end points al.e wr,wz (wr+ wz) and the other slits have only isolated
points on lwl: do then

- 1 u;hose 'i,mages q,re ti,ps "f
enponent 1 fo, which there is

lon I(66) i 2

(65')

(67')

(u.(;) + ,.(*)) + t-t: (#=+ kåuv@).-r)

+ (n - L - 1) o,1 
*' v'(*-)'

'J -r@ : I{(''u ' 1)

will be real on the arc on lwl: do betweon lDL and w, and will be pure
imaginary outside this arc, on lrul - do.

Hence N(w ,1)z will be real on lwl : d, with simple poles at ut
and wr. Theref,ore the extremal function satisfies the differential equation

Awz + Bus + C
IV(w , 1)' :

(u: - wt) (ut - wz) '

with :4 , B , C , such that the expression on the right is real for lwl : do .

We summarize this in
Theorem 2. Let il,o bealocal,marimumof a*(it)d^. Thentheer-

tremal, function maps lzl < | an the whole w-plane sl'i,t along analyti,c slits.
If no arc of lwl : ilo i,s a part of the sl,i,ts then the ertremal functi,on sati,sfies
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the il,i,fferenti,al equation (65'). If only one arc of lwl : d, i,s a part oJ some
slit then the ertremal, function sati,sfies the ili,fferenti,al, equation (67'). Other-
wtse, at least two separate atcs on lwl : ilo are parts of the sl,i,ts.

4. The function a*(d) . We prove now that a,(d) , ll4 < d < I ,

is a continuous function of d . Lef f@) be an extremal function of B(d)
whose nth coefficient is a*(d) . By considering the function introduced in
(46) we get a function of S1i1 , i,: d,(r + ö, la + o@2)1, with the nth
coefficient å* given by (50). So we constructed a function belonging to
B(d) , d > d, whose nth coefficient is arbitrary close to a,(d) if d is
chosen small enough.

fn order to find a function belonging to
nth coefficient is arbitr ary close to e*(d)
proceed in the followirg way.

We first construct the function f (z) introduced in Q\. If for some
choiceof a, Ial:t,and'preD the coefficient af from(2f)issuch
that laf | > I then our aim is achieved.

ff however this is impossible then it follows that

(65)
wz (p'(w)' u)'2 V'(w')'
--r---.-^-+------:-- I :0,

v(ta)z v(w'),

s(Ö with
if d a

pure lmagrnary

Ll4<A<ilwhose
is small enough we

d2
'l-D' : : ,w

forevery wru' eD.
From (65) we also deduce that

(66)
wz v'(*)'

e@)'

I
2

on lrul : il, andhence the tips of the slifs are on lwl : il.
If the number of slits is greater than one then by taking the function

F(z,t), introduced in (57), we obtain a function belonging to B(dr) with

(67) ilt : il e-' ,

which is smaller than d. By taking / small enough, the nlh. coefficient
å,1t1 of this function, as given by (58), is very close to e*(d).

We now exclude the case that there is only one slit. Indeed, if such
were the c&se we would have gotten from (66), by the reflection principle,
that

usz V'(*)'
v@Y

I Aw + B
(68) 2 w-uo )
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where lwol: d and (Aw + B) l(w-wo) is pureimaginary on lwl: il,.
Bysubstituting w:0 and It):@ in(68)weget B:wol2 and.

A : _t12.
Finally

wz g'@)' ua
(6e)

V(za)' wo- w

Solving this differential equation we get that

(70)

(7r )

( 73)

(76)

,) : f("): "(, + il-' ,

and hence, because of the existence of a singularity on l"l : I ,

14wol - I

must hold. But this is in contradiction to l*ol : d > U4 .

The continuity of o,(d) follows now by arguments of normal families,
and our assertion is established. At points of local maxima we ca,n say
more about a,(d). We prove the following

Theorem 3. Let d,o beapoi'ntof local,mari,mumfor a*(il)iil,
). > 0 . Then the functi,an a*(il) has a right hanil, ileriuati,ae at ils, and' i'f
1> 0 i,t has a (l,eriuat'i,ae there. The aal,ue 'i'n both cases is ( - X l dr) a*(do) .

Proof. X'rom the local maximum at do we have

(72) a,(ilo )- h) (do + h)^ { a*(ilo)il!, o <h <rt.
Ilence

lim sup
h-->o *

log a*(do+lt) log u*(do)

On the other hand for any e ) 0 we have

(74) a,(do+h)(do+h)^+" > a*(do)d!+", 0 <h <ro.
This we see by aid of the function" i1"'1 introduced in (a6). Take eiq

very close to eqn, with lf@t')l ) do , so that

(75) Re{ (ro- L-},.) a, + 2 (n-l) an-te-ry + ... + 2"-@-t)iv ) I t an,

(the left hand side of (75) though positive is very close to zero).
fn accordance ö is taken small enough so that

d: o,(t + ++r(ö')) : do+ h.

Ilsing (50) we get that



(77) a?(do+h) 1do+h)^+" > lä,1d^*"
| ä2 

l-),-e)a,+2(n-) z-@-L)ief: 
1"" - n l(n-l-1-t)an + 2(n-l)&,_ta-@ + ... + 2t

+ o(ö2) lrt*",
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and because of (75) the desired result (74) follows.
X'rom (74) it follows that

(78) ttil;itry
As this last result holds for every e > 0, it holds also for e : 0 .

Together with (73) the assertion of the theorem follows.
Next, if ). > 0, we show that also the left hand derivative exists and

is again equal to (- X I do) a*(di .

Take the function introduced in (57). This function I(z,t) eB(dr)
with d1 satisfying(59). Forany e20, ).-e )0, weget,byusing(58)
and (59), that

(7e) a,(ilr) il!-" > lä-(t)l (do e-')^-"

la* + t((n - | - ), * e) a, I 2 (n - L) &o-t e- iEo + ... + 2 
"-(n-L)ivo1

+ o(t)l d'!-" ,

from which it follows that

(S0) a*(itr)d,!-" > a,dl-" .

By taking f arbitrary small the valuo of dt is very close to do . Because

of the local maximum property at d,6 and (80) it follows that

(81) dr:ilo-h, h>0.
It now follows from (80), (81) and

(s2) a*(ilr) il! < a* d,( ,

in a similar way to that used before for the right hand derivative, that the
left hand one also exists and is agai,n equal to (-11 d,o) a,(dr) .

We conclude with the following remark. It is easy to see lhat ar(il,)

is a monotone decreasing function. Otherwise there would exist a local
maximum at a point d,s, do> ll4, and the extremal function will satisfy
the Schiffer differential equation. It will then follow, because of tho double
zero of llz*az+z on lzl:1, that a2:a2(d,s):2, and hence
do : ll4 against our assumption.



360 E. I{TTANYAHU

We conjecture that a*(il,) is monotone decreasing for every n , from
which the Bieberbach conjecture would have followed.
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