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EXTREMAL PROPERTIES OF SOME CLASSES
OF UNIVALENT FUNCTIONS

E. NETANYAHU !

1. Introduction. Let S be the family of regular and univalent func-
tions in the unit disk |z| << 1 with the series development

(1) w = f(z) = 2+ a,2% + ..
and let
(2) d = inf{ |a|: f(z) # «, 2] <1}.

Let S(d), 1/4 <d <1, be the sub-family of S for which d;=d.
Because of the compactness of S(d) there exists, at least one function

f(z) € S(d) for which
(3) Max {[a,|}

feS(d)

is attained, and we denote

(4) a,(d) = Max {[a,|} .
feS(d)

Consider expressions

(5) a,d)d*, 1=0,

AN

d <1,

|

and let d, be a local maximum for such an expression, i.e. there exists
some 7 > 0 such that

(6) a,(do+h) (do+h) =< a,(dy) d

holds for all real 2 with |h| <7 (in case that d, = 1/4 only positive
values of h come in consideration).

There exist always points of local maxima. Indeed, for every real A
consider the functional {|a,|d"} where a, is the nth coefficient of a func-
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tion f(z) €S, and d is the radius of the greatest disk around w = 0
contained in the image of |z| <1 by f(z). We may now ask for

(6") Max {[a,| d"} .
teS

Because of the compactness of S there is, at least, one function which
solves the problem. Let d, of the extremal function be equal to d,. But
then |a,| of this extremal function is equal for a,(d,) ; and for this value
of d, (6) certainly holds.

In this paper we investigate the properties of the extremal function
for which the expression (5) has a local maximum at d, . It will be shown,
among other things, that a,(d) has at such a point a derivative from the
right which is equal to (—24/d,) a,(dy), and when 4> 0 it has
a derivative.

For A = 0 this is an additional information about the Koebe function,
whose nth coefficient is maximal for |a,—2| <e,, [1],[2], or when
0 <d — 1/4 and sufficiently small.

The methods used are variational methods, and part of them were
used in an earlier paper [5].

2. Characterization of an extremal function. Let f(2) =2 +
a, 22 + ... + a,2" + ... be an extremal function of S(d,) . We may assume
that a,> 0, a, = a,(d,) . Otherwise we consider the function e f(z %)
which also belongs to S(d,), and choose ¥ so that the nth coefficient
becomes real and positive.

Let D be the image domain of |z] << 1 by f(z) in the w-plane. This
domain contains the disk |w| < d, . Consider the mapping

a o? a®w ]
w—w, do—wuw

(7) w* = w[l +

where ¢ >0, |a| =1, w,eD and d*/w, eD. We can choose ¢
sufficiently small so that this mapping is regular and univalent on the
boundary C of D. The image of C' by (7) will be a new set of continua
C* which bound a domain D* , very “close” to D .

We observe that for |w| = d,

(8) lw*| = do |1 + 10 R],

where R is real and independent of o . This shows that d,, the greatest
radius such that the disk |w*| < d, is contained in D*, differs from d,
by an amount of order 0(e") .
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Our aim now is to calculate the univalent function f*(z) which maps
|z2] <1 onto D* with f*(0) = 0. In order to do this we first calculate
the Green’s function ¢*(w) = ¢*(w, 0) of D* with the logarithmic pole
at w* = 0.

Let z = @(w) be the inverse function of w = f(z), g(w, ) be the
Green’s function of D with the logarithmic pole of o, and p(w,w) the
analytic function in w whose real part is g(w, w). Using the general
variational formula as developed in [6] we get (on denoting g(w) = ¢(w , 0),

p() =pt,0), p(t,w) = op(t,w)] o)

(9) g*(w) = g(w) + Re{éng fp’(t,w)p’(t) v(t) dt} + O0(e")

where

]_ t = =3 ,'; ! —
(10) v(t) i—w, T wm—w) ™

at at? d;

w,

and I' is an arbitrary smooth closed curve such that wv(f) is regular in
the closed domain bounded by I' and C'.
Taking in account the formulas

(11) pw) = — log p(w)

and

1 — g(w) g(o)
. w) = log —mmm8 ———
(12) pw , o) og o) — (o)

we obtain from (9) by the calculus of residues, on the assumption that
wy ,w; €D (which is always possible to choose when d, < 1),

(13) g*w) = g(w)

we'(w) 1 N wy @' (wy)? 1
p(w) w—w, p(wy)  @wy) — p(w)

wt ¢ (w)? p(w) ]
+ — —e -

wy p(w)) 1 — g(w)) p(w)
. iiozl:wz ¢'(w) 1 wy? ¢ (W) 1
wy pw) w—w) " wy p(w]) plw) — p(w)

wy @' ) ,
= | + 0(¢").
gw) 1 - q)(w)w(W):I e
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Completing the harmonic functions in (13) to analytic ones we get

(14) p*(w) = p(w)
z[w ¢'(w) 1 wy @' (wy)® 1
OO o) wow, T plw)  plwy) — p(w)
+%%E52 ) ]
wy p(wy) 1 — g(w;) p(w)
_ 2[w2 ¢'w) 1 w? @' (w))? 1
TOC S pw) w—w] T Ty pw]) pwl) — glw)

151 @' (wy)? p(w)
4 + 0 N )
M%)l—ﬂ%WWJ @)
or
(15) p*w) = pw) +ag*M + ae®N + 0%

where M and N stand for the expression multiplying ao* and a2,
respectively, in (14).
From (15)

(16) log p*(w) = log p(w) — ae*M — a ® N + O(p%) .

Taking exponents on both sides of this equation we arrive at

(17) p*w) = gw) (1 —a* M — a@®N) + O(e?) .
Since
(18) z = gw), ¢w) = f'tz)’ w = f(z)

we can express the right hand side of (17) in terms of z and f(z).
Furthermore, on observing that

(19) w = fHe*w) = flpw) = f&),
we get from (17) that
(20) f*() = fz)

f(z) B , wy @' (w,)? 1
" agz[f(z) — wy tef (z)< pwy)  @(w) — 2z
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12 ot fap’ \2
P a—— )<wf¢<wl> !

wy (f(z) — wy) wy p(wy) plwy) — 2

TR S 4
T gy 1= gty z>] + 09

= afz+af + .. +ar + ...

From (20) it follows that

Wy (p,(w1)2] 7 o 7/0_12 @ (“’1)2

1
ot = drae] - o TS wy gl O
and
(22) af = a +a92[———1—<P <i>+a>
" w \" "\ n

wi@'(w ) r ka,  w? e (w])Ee-1

T — ka, p(w ""‘:l
pw)?* = p(w,)** wy p(w;)? kzl » #l0)

<1>+w1¢( )2 i kak
w; i}

wy g(w

+ 592[ “P

Wy

wl @' (w,)2n-1

PSS ka, qT(w")] + 0@,

P(w,)* =1

where P,(x) is the polynomial given by the generating formula (see [7])

f(z) 2
2 - — = P, ()] 2*
(23) e = 20+ B
Normalizing f*(z), we consider
) ) .
(24) fz) = prafi 2+ a2+ ..+ a2+ ..
1
where
N a p? 1 w? ' (w,)2 /-1 ka
@) @ = a,+ | - p,(2) ¢ OWE(CS_Ee ~1a,)
Wy Wy @(w, =1 p(w,)
Wi @ (wy)? =1 :l
+ === ka, pw)
p(w))? Z k(p 1)’
a 92[ _ < 1 > w2 @ (w))? ( "2k, >
+ = =P, (] + T h+ (n=1)a
wy wy P(w;)? kZl 90(“’1) (wy)"
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Observe that f(z) ES(J) where

~ do(1 + O(g%))
(26) d = =
a wl‘P(wl) ao @' (w )2
[”w1< P, 1>+7 «p(w) + 0"
a o [w ¢’ (w a @ (wh)?
- a1 (R ) - |+ 0.

If ¢ is sufficiently small
(27) ld—do| < 7,
and therefore, because of the assumed local maximum property at d,,

it follows that

a 0? 1
a, + —\| —-P,\— )+ %a,
w wy

1

w? o (w2 ("= ka
n 19 ( 1)<Z f,_k—i-(n—l——l)a”)
1

P(wy)?

(28) a,dy = |a,|d* =

wlz ‘P’( )2 it —
i k n—=k
” (w1) kzl a;, p(w;) :|

a g? 1 w2 (W) (-1 ka
LB (1) L (g ke
Wy Wy P(w;) =1 p(wy)

w? @ (wy)2n=1
+ (n—1-1) “n> + 1”?;(——1_ ka, (P(w1)"_k:]

p(wy)?* #=1

+ 0% | db.

Hence, taking in account that Re {z} = Re {z}, we get that

IR LTI PR EN

w2 "(w 2 /n—1 ka
+ 19 21) (Z <"*]:rk + koa, p(w,)" k> + (n~1——l)a,,>

p(w,) £=1 \p(wy)

1\ wRewR iy ka,

—P,,< ——— < <:“ k k)
wl>+ p(w))? ,21 )y % i)’

+-1-2a,) ] + 0@} <0

must hold.
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Dividing by g2, letting ¢ — 0 and taking in account that the argument
of a is arbitrary we end up with

(30) Aa, — P, (%)

1

2 7 2 n—1 ka -
wl(pfw(f;; ) [H <¢(wl)ﬁ—% b kg ) + 0-1-2)a, ]

(-2

w)? <p’(wi)2"-1< ka, I )}
; o + ka, pw))" " + mn—1-2A)a,) = 0.
(p(wl)z = p(w)) k x P(wy) ( )

Formula (30) was proved for w, € D with w; € D, otherwise arbitrary.
Letting now w; tend to the boundary of D, (30) will still hold. This
shows that the function f(z) is also analytic on [z| = 1, and it maps the
unit circle on analytic curves.

Denoting by

(31) M(w, 1) =
SIS (o nir) + e ] ()

we get that the extremal function w = f(z) satisfies the functional equation
(written in terms of the inverse function z = ¢(w))

(32) Mw,2) + Mw' ,2) + Aa, = 0.

3. The domain D has no exterior points. As mentioned above
the extremal function f(z) is analytic on |z| = 1, except for some isolated
singularities. We show now that the image domain has no exterior points.

Indeed, suppose to the contrary, that our assertion is incorrect. Then,
there must exist an arc on C', in |w| > d,, whose neighborhood does not
completely belong to D . Let this arc (or a part of it) be the image of an
arc on |z| =1, ¢, <argz <¢,, 0 <¥; <& <27 on which f(2)
is analytic.

Consider the domain 7' whose boundary consists of |z| =1, & =
argz <9, + 27, and an arc given by r =1+ ep(#), where &> 0
and sufficiently small and p(9) satisfies

(33) pdy) = p@y) = 0, p@®) >0 for &, <9 <0,.
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The function

9, _
0 €z 14+ zei? 9 dd
(34) ) = 2ty | s ) d8 + ol
maps [z| <<1 onto 7' and the mapping is univalent (see for example
[4]). By our assumptions, the function f(f(z)) will be regular and univalent
for sufficiently small ¢, and the image domain will contain |w| < d, .

In the development around z = 0 of

(85)  F@) = fi) = f<z+% f T

1

the first coefficient is different from one. Therefore #(z) does not belong
to S(d) .
In order to obtain a near by function to the extremal one in S(d) we
make use of the following auxiliary function.
Let
8(z) 4 2z
(L4 s(z) e = (L+pP (1 + ze )’

(36) 0<y=1-0<1,

0 <9 <2nm.

The function s(z) maps |z] <1 onto |[s| <1 with the radial slit
from 6¢” to 7. Taking 6 > 0 sufficiently small we get from (36) that

g 02 1+ ze™™ 5
(37) ) = E R el

Choose ¢ outside [¥,,d,], very close to @, or #,, and consider
the function

(38) 9 |
poe) = Foe) = (s + 5 [ v o)
() = 2)) = + : + o0
6@ = S+ 5 | e ‘
. 192 l ..
0 1 +4+ze™ ez 1+ z¢ )
= f z_zsz7e it o i‘ ze“‘ﬁp(ﬂ)dﬂ+0(8)+0(6)
Choosing

0,
02 :
(39) rills ; fp(z?) di + o(e)
9,
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we get that

(40) F*z) = 24+ af2® + ... +af2" + ...
where

(41)

9,
& ) . A
a¥ = a, + - f [(n—1)a, e + ... + 2a, =2 4 o=0-0i% 509) @9
9,

9,
N 1 —ip 2 o e~ L o=0=Diny 1oy B9

—— J =D, e o+ 2ay e g e p(3)dD + ofe)

9,
or

&,
£ ) .
42 Read — o, + o [ Q") — Q@ p(3) d0 + ofe)
9,
where
1 2 ay (n—1)a,_,

(43) Q&) = poit et t +m-1)a, &+ ...+ &L
As Q) %0 on |£] =1 we may assume that @(¢”) is monotone and
of constant sign in [#,,d,]. (If necessary we take a part of this interval
to begin with.) If it is monotone increasing we choose ¢ outside [9;, O]
near &, and if Q(¢?) is monotone decreasing we take ¢ near 9, .
By doing this we get from (42) that

(44) Reaf > a,

in contradiction to the extremal property of a, = a,(d,), and so we have
proved our assertion that D has no exterior points.

Next we prove the following

Lemma. Let a,(d)d* have a local maximum at d = d,, 1 >0.
Then for every point €7 whose tmage by the extremal function f(z) =
2+ + o+, + .., a,=a,d), is al a distance from w = 0
greater than d, ,

(45) Re{(n—1-N)a, + 2(n—1)a, ;e + ..+ 2 V71 > ¢

must hold, and equality occurs at points on |z| = 1 whose images are tips
of slits.
Proof. Let ¢” be such that |f(¢”)| > d,. We consider the function
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(46) fl) = — s T At @m@ 4t a,? + ..

where s(z) is the auxiliary function introduced in (36). This function

belongs to S(d) where
. ok
(47) d = d, (1 +4t 0(62)>.

By choosing ¢ sufficiently small

(48) d =dy+h, 0<h<n.

Hence

(49) a,| & < a,di.

As

(50)

- o A .

a, = a, = (n=1)a, + 2(m—1)a,_ ;e + ... + 2e 70 4 o(5),

(47), (49) and (50) give (45).

We note that by letting e approach e, whose image is a tip of
a slit, we conclude that (45) holds also for e .

Let now w, be a tip of a slit, and consider a part of that slit that starts
from w, not passing a forking point, if such a point exists. Let w = w(?),
0 <t <t,, be its equation (w(0) = w, ). By cutting out from the slit the
portion from w(0) to w(t) we get a new domain in the w-plane. The func-
tion f(z,f) which maps |2] <1 on this new domain is a solution of
Loewner’s differential equation [3]

ofz,t) 1+ k()z ofe,1)
ot =zl—k(t)z oz

(51)

where (by choosing the parameter ¢ in an appropriate manner)

(52) flz,t) = €z + ayt)2® + ... +a,0)" + ...

with the initial condition

(63) f(z,0) = f2) = z+ ay(0)2% + ... + ,(0)2" + ..., a,0) =a,

and k(f) is a continuous function with |k(t)| = 1. In addition the image of
1/ k(t) is the tip w(t) .
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From (51) and (52)
(54) a,t) = 26 k@)1 + 2ay(t) k()" + ...
+2(n—1)a, () k) + na,t).

Hence
(55) a,(t) = a, + tna, + 2(n—1)a,_; k0) + ... + 2k0)") + o(t),
where
(56) k(0) = e,
The function
(57) F(z,t) = e'flz,t) = 24+ ay(t) 22 + ... + a,(t) 2" + ...,
where
(58) a,(t) = a, + t(n—1)a, + 2(n—1) a,_; k(0) + ... + 20" 1) + o),
belongs to S(d,) with
(59) dy = dye.
By taking ¢ small enough
(60) dy = dy+h, b <79.
Hence, because of the local maximum at d,, 42 > 0 and because of (59)
(61) a,dy = |a,t)| di

= la, + {(n—1-2A)a, + 2(n—1)a, ;e + ..

+ 270Dy 4 oo(t)] df
From (61) it follows that

(62) Re{(n—1-AN)a, +2mn—-1)a, e + ..+ 2 @V} <

must hold, (45) and (62) prove our assertion.

As a by-result from the lemma follows that a local maximum at a point
dy can occur only with one exponent A=A(d,). We summarize the results
obtained in the last two paragraphs in the following theorem

Theorem 1. Let a,(d)d" have a local maximum at d, with 2 >0,
and let w = f(z) =2+ ay22 + ... + a,2" + ..., a, = a,d,), be an ex-
tremal function solving Max, gy, |a,| .

Then the extremal function maps |z| << 1 on the whole w-plane slit along
analytic slits and satisfies the functional equation

(63) Mw, 1) + Mw',A) + Aa, = 0
where M(w , 2) s given in (31).
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For every point €7 whose image by the extremal functions has a distance
from w = 0 greater than d,

(64) Re{(n—1—Na, +2m—1)a, e+ ..+ 2 V7} >0

with equality holding for those points on |z| = 1 whose images are tips of
the slits.

Moreover there is a unique non-negative exponent A for which there is
a local maximum for a,(d)d* at d, .

If the extremal function is such that it maps |z| <1 on the whole
w-plane with slits which have only isolated points on |w| = d, , then (64)
will have a double zero at each point whose image is a tip of a slit situated
on |w| =d,. But then M(w, 1) + Aa, /2 will be regular on |w| = d,
and, because of (63), will be pure imaginary there. Hence by the reflection
principle will be regular in the whole w-plane, and therefore equal to a
constant. Calculating the value of this expression at w = 0 we find that
it is equal to —Aa, /2, or that the extremal function satisfies the dif-
ferential equation

(65) Mw, i) + Aa, = 0,

which in the case of 4 = 0 is the Schiffer differential equation [6].

If the extremal function is such that it maps |z] <1 on the whole
plane with slits such that one of them contains an arc of |w| = d, whose
end points are w,,w, (w; # w,) and the other slits have only isolated
points on |w| = d, then

o 23D [E o)
+ (n—1-=2) an] %)—2 = Nw, 1)

will be real on the arc on |w| = d, between w; and w, and will be pure
imaginary outside this arc, on |w| = d, .

Hence N(w, A)? will be real on |w| = d, with simple poles at w,
and w, . Therefore the extremal function satisfies the differential equation

Aw* + Bw + C

(w—wq) (w—w,)

(67") Nw, 1)? = ,
with 4 , B, C, such that the expression on the right is real for |w| = d, .
We summarize this in
Theorem 2. Let dy, be a local maximum of a,(d)d*. Then the ex-
tremal function maps |z| <1 on the whole w-plane slit along analytic slits.
If no arc of |w| = d, is a part of the slits then the extremal function satisfies



Extremal properties of some classes of univalent functions 357

the differential equation (65'). If only one arc of |w| = d, is a part of some
slit then the extremal function satisfies the differential equation (67'). Other-
wise, at least two separate arcs on |w| = dy are parts of the slits.

4. The function a,d). We prove now that a,d), 1/4 <d <1,
18 a continuous function of d. Let f(z) be an extremal function of S(d)
whose nth coefficient is a,(d) . By considering the function introduced in
(46) we get a function of S(J) ,d=4d (I + 6%/ 4 + o(6?), with the nth
coefficient @, given by (50). So we constructed a function belonging to
S(cz), d>d , whose nth coefficient is arbitrary close to a,(d) if § is
chosen small enough. N B

In order to find a function belonging to S(d) with 1/4 < d < d whose
nth coefficient is arbitrary close to a,(d) if d — d is small enough we
proceed in the following way. B

We first construct the function f(z) introduced in (24). If for some
choice of a, |a| =1, and w, € D the coefficient af from (21) is such
that |af| > 1 then our aim is achieved.

If however this is impossible then it follows that

wg'(w)r  w? g (W)
+
p(w)? P(w')?

Il

2 &

(65) -1 =0, w

for every w,w’ €D .
From (65) we also deduce that

wrg'(w)2 1
(9%6) pw)r 2

= pure imaginary
on |w| = d , and hence the tips of the slits are on |w| = d.

If the number of slits is greater than one then by taking the function
F(z ,t), introduced in (57), we obtain a function belonging to S(d,) with

(67) d, = de™',

which is smaller than d . By taking ¢ small enough, the nth coefficient
a,(t) of this function, as given by (58), is very close to a,(d) .

We now exclude the case that there is only one slit. Indeed, if such
were the case we would have gotten from (66), by the reflection principle,
that

w? @' (w): 1 Aw + B

(©8) PR T2 T wow,
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where |w,| = d and (4w + B) [ (w—w,) is pure imaginary on |w| = d .
By substituting w = 0 and w = oo in (68) we get B = w,/2 and
A= -1/2.
Finally
w? @' (w)? Wy

9 T

Solving this differential equation we get that

2 \—2
(70) w = fz) =z(1+4w) :

and hence, because of the existence of a singularity on |z| =1,
(71) 4wy = 1

must hold. But this is in contradiction to |w,| = d > 1/4.

The continuity of a,(d) follows now by arguments of normal families,
and our assertion is established. At points of local maxima we can say
more about a,(d). We prove the following

Theorem 3. Let d, be a point of local maximum for a,(d)d",
A = 0. Then the function a,(d) has a right hand derivative at d,, and if
A > 0 it has a derivative there. The value in both cases is (—A [ dy) a,(d,) .

Proof. ¥From the local maximum at d, we have

(72) @,y + B) [y + B = a,(dp) di, 0<h<n.
Hence
log a,(d,+h) — log a,(d A
(73) Bm gup g a,(dy+h) g a,(dy) < -2,
h—>0+ h do

On the other hand for any ¢ > 0 we have
(74) a,(do+1) o+ R+ = a,(do) diTe, 0 <h <7,

This we see by aid of the functions f~(z) introduced in (46). Take &'
very close to ¢, with |f(e”)| > d,, so that

(75) Re{(n—1-ANa, +2(n—-1)a, ;e + ..+ 2"V} < ¢q,,
(the left hand side of (75) though positive is very close to zero).

In accordance ¢ is taken small enough so that

~ &2
(76) d = d0<1 +Z+o(52)> = dy+ h.

Using (50) we get that
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(T7) ay(do+h) do+h)** = [a,| &
2
= |&,— [ [(n—1-2-¢)a, + 2 (n—1)a, ;e + ... + 2¢- D]
o(8?) | d*,

and because of (75) the desired result (74) follows.
From (74) it follows that

718) T log an(do—i-hib log a,,(d,) > /1;—8.
h—>0+ 0

As this last result holds for every &> 0, it holds also for ¢ = 0.
Together with (73) the assertion of the theorem follows.

Next, if 12> 0, we show that also the left hand derivative exists and
is again equal to (—21/d,) a,(d,) .

Take the function introduced in (57). This function I(z,t) e S(d,)
with d; satisfying (59). For any ¢ > 0, A—e > 0, we get, by using (58)
and (59), that

(719) a,(d) di™° = [a,()] (do ey
= la, + t{(n—1—A+e)a, + 2(n—1)a, ;e % + ... + 2¢ ""Dim)
+o(t) dy™*
from which it follows that
(80) a,(dy) di™ > a,d;°.

By taking ¢ arbitrary small the value of d, is very close to d, . Because
of the local maximum property at d, and (80) it follows that

(81) diy = dy—h, h>0.
It now follows from (80), (81) and
(82) a,(d) di = a,dy,

in a similar way to that used before for the right hand derivative, that the
left hand one also exists and is again equal to (—2 [ dy) a,(d,) .

We conclude with the following remark. It is easy to see that a,(d)
is a monotone decreasing function. Otherwise there would exist a local
maximum at a point d,, d, > 1/4, and the extremal function will satisfy
the Schiffer differential equation. It will then follow, because of the double
zero of 1/z + ay, +2 on |z =1, that a, = ay(dy,) = 2, and hence
dy = 1/4 against our assumption.
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We conjecture that a,(d) is monotone decreasing for every =, from
which the Bieberbach conjecture would have followed.
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