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1. Introduction

After a translation of the eigenvalue parameter, Legendre's differential
equation is written S u : X,T u, where

(1.1)

(1.2)

E - D(I-r')D +1, T-1,

and D : d d,lil,r . The equation is of Weyl's limit-circle type over the
interval I : {r: -l <tr<f } so that foranynon-realvalue ,1 all
solutions belong to Lr(I) . According to Weyl's theory a symmetric
boundary condition must therefore be added to the differential equation
in order to define a selfadjoint operator in Lz(I). The symmetric boundary
condition under which the Legendre polynomials are the eigenfunctions is
given in Titchmarsh [3], p. 76-78, and is elaborated in Akhiezer-Glazman
[r], p. 206-2t0.

The author has generalized Weyl's theory to pairs of differential ex-
pressions

s- DiapDu, T- Dj bin Dh

on an interval ,I of arbitrary type. The coefficients &ip and b6 shall be
hermitean, d* : aui , 6ip : bpi, and S shall have a definite order M
on 1 which is greater than the order of ? . Dirichlet integrals
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are considered over compact subintervals "I of 1 . The more direct
generalization of Weyl's theory is obtained under the condition that y(u , u)r
is positive definite. Parallel to this ?-positive theory there is a similar
B-positive in which instead ,(u , u)s is positive definite.

X'or the expressions (l.l) both Dirichlet integrals are positive definite
so that in addition to the classical theory also an B-positive theory is
available for Legendre's equation. But in this theory the oquation ls of
limit-point t;,rye over I: {r: -l<n<l}, and Legendre's poly-
nomials a,ppea,r as eigenfunctions without any boundary condition.

The aim of this pa,per is to elucidate how the B-positive theory deter-
mines the symmetric boundary condition in the ?-positivo theory under
which the Legendre polynomials are the eigonfunctions. In studying this
question we shall consider expressions

(1.3) s and T

onan openfiniteorinfiniteinterval I : {r : a 1r <b}. Here P, Q, r
are sufficiently regular real functions which satisfy p(r) > 0 and
0<r(r) <Cq(*) &.e. on I with a positive constant C. Then the
Dirichlet integrals

(1.4)

(r.5)

(1 .6)

J@,a)r -

J(u , ?J)s -

uadr,

Dum) + quulan

1,,
J

l@
T

are positive definite, a,nd

t(u , u)r

Theexpressions (f.3) arerealsothat Su: Su, Tu:T z. Itisfinally
assumed that B u : ). T u is in the limit-circle c&se over I in the T-
positive theory, while it is in the limit-point c&se over .[ in t'he S-positive
theory (explanation in Section 4).

The study relies upon general features of the ?-positive and B-positive
theories which are briefly accounted. for in Sections 2 - 5. Generalizations
to more complicated higher order equations S u : )" T u are accessible

although not deliberated in the text.

2. Fundamentals of the theories for pairs of differential expressions

The ?- and B-positive theories are founded on two Green's formulae
on a linear space of ordered pairs U : (u,u) of functions a and u
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satisfying Su: T u, i.e. on a linear relation Su: T ir.It is assumed

tinal u belongs to the class .4(.I) of complex valued functions u with
locally absolutely continuous first order derivatives. One can let å belong

to the same class z4(/) so that the linear relation is

E(I) : {U : (u,u) eA(IlxA(Il: Su: f ör\ .

The Green's formulae are

(2.r) i-tG(il , a)r - ,(u , a)r) : \WTQ , V)l ,

(2.2) i-t(t(å,o)s - r(u,b)s) : ,Lts,(U,V)1,

where in the out-integrated parts

(2.3) qT(l ,V): pDua+upDu,
(2.4) qs,(J ,V) : gt Duo + up Oa

atpoints z in L Theformulaearevalidwhen U: (u,u) and V: (a,b7
belong to E(I). The first one is the usual Green's or Lagrangean formula.
X'or more general expressions (1.2) similar formulae hold true with more
complicated hermitean forms ql and ql .

If the Dirichlet integral in question is positive, the finite or infinite limits

,(u,u)' : lim /u,u)r ( @,
f-I

,(u,u)t : 
1T /u,u)s S oo,

exist when u belongs fo A() . By square brackets, [ ]t or [ ]s , subspaces

are indicated in which

,(u,u)r < a or ,(u,u)s < a
remain finite for the contained functions. In this way AVf , AVls aro

defined as linear subspaces of A(I) , and.

E[I]' : {U : (u,u) eAlllrxAVl' : Su : T u),
Z[4t : {U : (u,u) e AlllsxAllls : S u : T'i.r'\

in the ?-positive and B-positive theories respectivoly. If

rQ' : iqTl, rQs : rllls,f

are the right hand sides of the Green's formulae (2.1), (2.2), one obtains by
letting J tend to 1 that

(2.5) ,Q'(U ,V) : i,-'(,(å,a)r - ,(u,b)') on Ellfr ,

(2.6) ,Qt(U ,V) : i,-'(,(å, o)s - ,(u,b)t) on .Opls,
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Here

,Q' : qI qt , ,QS

where qI , qT and gtu , gtn are the finite
and Elllt .

The dimension of a solution space

E^I) : {U : (u, ),u): z regular, Su : ),T u}
equals the order M of Su: ).Tu i.e. is M:2 for B and T in
(1.3). The square bracket solution spa,ces are

E^lIl, : {U : (u,)"u) eETQ): ,(u,u), < oo },
E^lllt : {U: (u,Lu)efr^(I): ,(u,u)t < oo}

in a ?-positive or B-positive theory. As subspaces of E^(I) they are at
most 2-dimensional ( M-dirnensional) but can have lower dimensions
including the dimension 0. Putting it : Lu, b : )"u in (2.5), (2.6)
when U , Z belong t'o EII]r or E^llls, one obtains

rqr ((J , V) - c(1) Å6 , u)r

rQS (U , Y) - c(1) Åu , a)s

: qt, Qso ,

limits of qT and q: on nlll,

on E 
^fll, ,

on E 
^fllt

(2.7 )

(2.8)

with c(,1) :'i-r(1-.1) . Hence, c(1),Q' and c(1),Qs are positive definite
on E^lIl' and on E^lI)t respectively. Similar formulae and positivity
statements are evidently valid for c(),) 1Qr, c(),) 70s on E^(I) when J
is a compact subinterval of 1, and the Dirichlet integrals /. , .), or

r(' , ')t are positive definite.
The T-gtosi,tiae and, B-posi,tiae theories for the pair S , T are essentially

the theori,es for the hermitean forms ,Q, on Elllr and, ,QS on Ellls .

After definition of symmetric boundary conditions in Ellfr and Elllt ,

these theories lead to spectral theorems on the completions {If or
AW with respect to the norm defined by the positive Dirichlet integral
taken over 1. lVhen S , T are given by (f .3) the space AW is the
Hilbert space of functions which are integrable square over 1 with the
weight function r . Under the condition (1.6) the Hilbert *pu"e ,4;/p
has another scalar product but is a subset of the previous one.

Even if not strictly necessa,ry for the theories above it is, however,
natural and advanta,geous to consider pairs U : (u , it) of functions
u , u only defined and regular on intervals

I" : {r: alr {c-0}, Iu : {ni c+0 {r <å}.
More generally the intervals Io, fr are taken adjacent to one endpoint
of / excluding the other one. The previous definitions are adaptod when
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1 is replaced by the interrupted intervaf l: I"U Ib. In this way A(i)
and, E(i) , ELh, , Elflt , E^(t) , E^tf , Eiltlt aredefined. Thespace .E[i]r
in a ?-positive theory is for instance cut out from nQ1 Uy the conditions
for Q : (u,u) that the integrals i(u,u), ( oo, i1å,Qt < a over
i : I" U Iu shall be finite. The hermitean forms

tQ'(t , V) : qTP , V) - q:"(a , V) ,

flt(u,v) : qsr(u,v) - qs.(u,v)

are defined on E(7 when the endpoints r and. y of J belong, one to
Io,trhe other one to Iu. The Green's formulae are of course only valid for
arbitrary compact intervals "f when the functions in U , V are defined
and regular on the uninterrupted interval .I . Otherwise the formulae can
be replaced by

fl(U , V) - tQ(U , V) : i-t(t'-,(å ,u) - ,,-r(u , ö))

with superscripts ? or B, and with the lower and upper endpoints of "I
and "I' , J c J' , lying in 1, and 1, respectively.

The spaces E(I) , ELI)r etc. are considered as subspaces of .E'(.$ , nlil,
etc. Observe for instance that the dimension of E^(i) is 2 M: 4, while
the dimension of E^(I) is M : 2 for the expressions ,S and ? in (f .3).
Later on (Section 5) also notations such as Ellu]s are used. fn the spaces
Ellult , Elluf integrability conditions are imposed only at, r : b since
fr : c*0 is a "regul&r" point.

3. Maximal regular subspaces and symmetric boundary conditions

By extraction of the underlying ideas in Weyl's method with contracting
circles it can be proved that for any non-real ,1 , the direct sums

t,R^lll' - E^lIl' + EilIl,,
R^lllt _ E^lllt +EflI)s

(3.1)

(3.2)

are marimal regular subsqtaces of E|flr and of A;i1s witn respect to ,Q,
and ,Qs . The meaning of this will presently be explained for (general)
?-positive and B-positive theories simultaneously, by observing that these
theories are both concerned with an hermitean form A ( rQ, or ,QS )

on a linear space E ( nlf or .E'tilt ) . The proof itself consists of
a transition to the limit which transfers elementary properties of ,Qr or

18" on E(l and E^(I) into the statements about (3.1), (3.2).
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A finite dimensional subspace R of E is regul'ar with respect to A
if 0 is non-degenerate or "regul&r" on -R.If (p,n) is the signature of
Q on R i.e. if (p , n) is the pair of the positive and negative inertia indices

of Q on .R, then the regularity of -B is equivalent to dim-B : p+n.
The space R is maximal, regular if for any U in E but outside Ä , the
linearhull {U,R} isnotregular. Every U in fr hasaunique @-projection
(J' on a regular space Ä determined by U' eR, Q(U-U' ,R): 0 so

that Q@-a',V1 : g for all V in -8. If R is maximal regular,

8V -U' , E) : 0 . In this case

Q(U , V) : Q(U" V')

for any two elements U, V in E and their projections U' , V' on l? .

The theory of the values of Q on E is in this way reduced to a study
of the values on a finite dimensional space -B . All maximal regular sub-

spaces ,R (if they exist) are isomorphic, and Q has the same signature
(p , n) on all of them.

Tho statements about (3.1), (3.2) tell that maximal regular subspaces

exist for ,Q' on ilfr1r anafor ,Qs on E;i1s . The spaces R^lIl' , R^lllt
are maximal regular for all non-real values of X . According to (2.7),

(2.S) the signatures of c(1) ,Q' and c(1) ,Qs on these spaces &re

(dim Ex[.I]" , dim EilIl') and (dim.&'r[1]s , dim Ezlllt) . An impartant
consequence i,s that dilrn0^llfr and, dim"&x[I]s are 'i'nd,epend'ent oJ )' in
the halfplanes Im (i) > 0 and, Tm (r) < 0 . In general there exist other

maximal regular subspaces than (3.1), (3.2) in .U';?1r and Z[?]t , also such

which are not subspaces of Elllr and .O[I]s as (3.1), (3.2) are.

A linear subspace Z of .0 is a Q-nullsgtace if Q@ , Z) : 0 i.e. if
Q(J,V):0 for all U, V in Z.The Q-projection Z'* ofa Q-nullspace
Z into a maximal regular subspace R is a Q-nullspace in R since

Q(l' , V') : Qg, E) under such projections. If for one .B the sBace Z'*,
as a Q-nullspace in -B is maximal, i.e. if according to Sylvester's inertia
theorem

(3.3) dim Z'o : min (p , n) ,

then the same is truo for any maximal regular subspace. A nullspaco Z
is always contained in EL i Z'^ , where

Er : {U eE t QQ ,D) :0),
and .Er I Z'o is again a Q-nullspace. Under the condition (3.3) the space

DL i Z'a does not allow any proper extension to a larger Q-nullspace in
,E . The extension Er i Z'n is then the same for all choices of the maximal
regular ,B and is called a symmetric bound,ary cond'it'i'on in U . The syrn--

metric boundary condition is uniquely determined by a Z which satisfi.es
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(3.3). Because of this uniqueness, already Z may be called a symmetric
boundary condition. This in particular applies to a @-nullspace Z' in
a maximal regular subspaco R provided dim Z' equals rnin (1t , n) .

In ?-positive or B-positive theories for a pair S, 7 of differential ex-
pressions there exist maximal regular subspaces already in ElIl' and
Elllt , namely (3.1), (3.2). Therefore any symmetric boundary condition
can be defined in ElIf or Ellls and then has a unique extension to one

in ESif or .0;fis.
A sufficient condition for (3.3) is that

(3.4) dimZ n B_ min(p,n)

(4.1)

Similarly the limit t;rye over I in a B-positive theory is the palr (p , n)

of numbers

for one choice of a maximal regular subspace -B . X'or, Z'o ) Z O ,B and
Z n n is a Q-nullspace in -8.

If a nullspace Z salisfres (3.3) and coincides with its maximal extension
to a Q-nullspace in fr , then Z'* and. Z n R are the same for all maximal
regular subspaces -B .

Observe that a symmetric boundary condition in theories for differential
expressions B , ? is a condition for a pair (u , ir) which is natural since

qT(] , Z) and qs,((J , Z) contain u and å . Only exceptionally, when ?
me&ns multiplication by a function as in (1.3), the form qTg ,7) does not
contain u and ö so that symmetric boundary conditions may be formulated
in the classical way.

4. Limit types over an interval

The timit type oaer the interual, I of apair B , T ina ?-positive theory

is the signature (p , n) of ,Q' on a maximal regular subspace of n1?f .

According to (2.7) and the statement about (3.f ) this limit type over 1 is

p : dim E 
^lll' 

for Im (,1)

n _ dim EilI)' for Im (,1)

(4.2)

The pairs in

(4.3)

p - dim E 
^lllt 

for Im (,1)

n : dim EilI)t for Im (,1)

(4.1) and (4.2) evidently satisfy

with M:2 for a secondorderequat'ion Su- ATu
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The pair ,S , 7 is of limi,t-1toi,nt type ouer I in the B-positive theory for
instance, tf for @.2) equality holds to the left in (a.3) i.e. if dim E^llls : 0
for all non-real values of ), . This means that far any non-rea,l, ), the only
sol,uti,anof Bu:)"Tu forwhich ,(u,u)s {@, isthetria'ial,one u
iil,entically 0. If dim E^llls : 0 for all non-real .1, then ArFlt : {0}.
Since ,Qt(U , V) : ,QS(U' , V') under Q-projections on a maximal
regular sp&ce, the form ,Qt(I, Z) vanishes for all U , V in Afls so that

rQS(U , V) : lim Tt(l ,V) - 0 on Elht
J-I

in the limit-poi,nt case oaer I .

Because of (2.8) the vanishing of r@s conversely implies that Zrllls : {0}
for ,1 non-real.

In the other extreme case with equality on the right hand side of (4.3),
the pair S , T is of limit-circle type ouer I. In the ?-positive theory for
instance, this means lhat, E^lllr has the same dimension M (M :2
for a second order equation) as E^(I) so that E^lIl, : E/I) for all non-
real values of ,tr . This is equivalent to the statement tlnat in the Li,mi,t-ci,rcle

case ouer I, /u, u)T < @ fat all regular solutions of S u : ]t T u when
). 'i,s non-real. Between the limit-point and limit-circle cases there is in
general a sequence of intermediate possibilities.

5. Limit types at the endpoints

X'or a detailed study of ,Q, : qT - q[ on Eyilr it is necessary to in-
vestigate the hermitean forms qf and q: on EIIÅ, and ElI"]r, see end
of Section 2. Similarly for ,@s : ql - qj . For the differential expressions
(I.3) the study of qT follows Weyl's original method applied to It :
{r: c-10 1r <b} instead of {r: 0 4u < co }, and the study of
qf, is done in a similar wa,y. X'or more general expressions S (Everitt,
Kodaira, Kimura-Takahasi) and for two general expressions B and f
in a ?-positive or B-positive theory (Pleijel) generalizations &re needed.
If the order of B is even, M : 2m , ttrte result of such a study can be
concentrated in the formulae

(4.4)

(5.1)

(5.2)

dim il 
^lI "l

dim fr^ll* U lul - dim E^II) + M ,

which are valid with superscripts ? or S when .l is non-real. If B is of
odd order in a ?-positive theory, the right hand sides of the formulae (5.1)
are slightly modified. Clearly dtm E^II,U Iuf : dim E^LI,) * dim E^llul .

X'or the expressions (1.3) lW : 2 and m : L
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Observe that for instance dim.Erffis is the number of linearly in-
depend.ent solutions of S u : ), T u for which b(u, u)s < a is finite
when integrated over any interval adjacent to b , but excluding e , h
particular over It : {r: cl0 {r<b}. When the number above
equals m , or is I for the expressions (1.3), the pair B, ? is of li,mi,t
point type at the end,point r : ö in an B-positive theory. A consequence
of (5.r), (5.2) is

Remark 5.1. Thepai,r S,T isof l,i,mi,t-poi,nttypeoaer I i,nan
S-positiae theorg if and, only i,f it is of l,i,mit-ltoi,nt type at both end,poi,nts a

and, b . In the l,imi,t-poi,nt case riim.E ;?is : M whi,ch for the ergtressions
(1.3)is M:2.

A corresponding remark holds true in a ?-positive theory and is well
knownwhen f :1.

The limit-circl,e case at an endpoint, b for instance, occurs when all
solutions of S,u : lT u give finite values to ru(u,u)r or ru(u,u)s
respectively, so that dtmJ'^lluF: M or dim"Urflr]s - M. The pair
S , T is of li,mi,t-ci,rcle type oaer I i,f and, m,Iy if it is of li,mi,t-ci,rcle type at
both endpoi,nts a and, b .

Interestingforourpuposesisthataccordingto(5.2)dimZx[,fr>
dim (.8^[] + n;,t1lr with superscripts T or B . This is an immediate

consequence of M ) dim EilIl. Hence E^lil can be maximal regular
only if dim E{Il : M . For reference we state

R,em ark 5.2. Xor the ergtressions (1.3) the sTtace Efif)r i,s actual,Iy

a ma*,imal, regul,ar subsgtace of nTiy in the l,imi,t-ci,rcl,e case oaer I in
a T-ltositi,ae theory.

In[3],Chapterll,thesolutions g and r] of Bu: ).Tu give abase
@ : (q,18), 6 : (0, )"8) of E^llul' (r:0 and n : @ in [3]
correspond to r: c*0, r:b ). Computation of qT(@,@), qT(A,@)
and qT@ , @) shows that in the limit-circle case qfl has the signature
(f , f ) on E^lluf', henco is regular on this 2-dimensional space. As a

consequence ,Q, : qT - qf is regutar on fr^lllr. The discussion makes
use of Weyl's criterion for the limit-circle case in terms of his formula
for the radii of the contracting circles. This formula is valid for the real
expressions (1.3). X'or general expressions (r.2) the corresponding discussion
is more complicated.

6. The original question. A nullspace

Recall the assumption in Section I that the pair S, 7 is of limit-
point type in an S-positive theory and that
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(6.1)

(6.2)

0 S J(u,u)r 5 CJ(u,u)s

with a positive constant C . The last inequality implies that Z;?]s c nyif .

Consider Sn : B * aT for a real positive value a . By the definitions
of the Dirichlet integrals, in the actual case (1.4) and (1.5), it follows that

.r@ , a)to - /Ir , a)s + q' /u , a)'

(6.3)

so that

Ilence also S" has a positive definite Dirichlet integral. The equation
Su: ).Tu canbewritten B u: (]t + a)Tu,wherethevalues 1,,),+u
&re non-real simultaneously. It follows that if the pair S, ? is of limit-
point tlpe in the B-positive theory, the same holds true for B" , T in
an B"-positive theory. On account of (6.1) it is easy to see that lf U : (u ,'ir)
belongs to .O;fis , then (" : (u ,'it") with u" : it * q u belongs to
g[i]t". Let U:(u,u), V:1a,b) be elements of Elllt and put
U" : (u,u+xu), V" : (a,'u+uo) . Accord.ing fo (a.! flt(U, Z) and
gs"17J" , V") tend to 0 when .I tends to I . The form ,Qt"{(}" , V")

equals iq|"(J" , V")f , and a computation based upon (2.3), (2.4) shows

that

q:"(Uo,V")- q:((l ,V) + oqT(l ,V),

t}t" (uo , v") - I?t (l , v) + e Jqr ((J , I/)

Letting here J tend. to 1 it follows from the previous statements that if
U and Z belong to ily-ils, then

,Q'(u ,v) : fifl,<u ,v) : o.

The subsytace Elht of E71f is a null,sqruce for ,Qr .

This statement remains true also for higher order expressions B and ?
under the only condition (6.r) combined with the assumption that the pair
S , T is of limit-point type in the B-positive theory. As a matter of fact
the identity (6.3) is valid. also for the forms q: , € which appear in the
theory of the expressions (1.2).

7. The nullspace is a symmetric boundary condition

To see that the nullspace Z : nyils for ,Qr is a symmetric boundary

condition in Uyif , it is sufficient to verify (3.4) for one maximal regular

subspace ,E . According to Remark 5.2 we c&n take -R : E^lll' when the
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pair B , T in (f .3) is in the limit-circle case in the ?-positive theory.

With Z : nft\s the interseclion Z n E^li)r, where in the limit-circle
case D^tl' : E^€), equals E^lht. But according to Remark 5.1 the

space .Or[?]s is 2-dimensional which is the right dimension in (3.4) since
the limit type of S , T in the ?-positive theory is (? , n) : (2, 2) . Thus

the T-gtosi,ti,ae theory inheri,ts Z : nfy fram the S-Ttositi,ae theory e,s (L synx-

metrtc bound,ary cond,iti,on. In concentration this is our final result.

8. Concludlng remarks

The aim of the ?- and B-positive theories is to connect the pair S , T
with a Hilbert space .Fl in a useful way. In the ?-positive theory for the

expressions (1.3), H : AW is the function space with scalar product

[b"rua ilr. Afso for more general pairs (f.2) the Hilbert space is similarly
determined before the introduction of symmetric boundary conditions.
The signature (p , n) of ,Qr or rQs on a maximal regular spa,ce serves as

a pair of deficiency indices. Only when p : n (as for the real operators
(1.3)), there exist selfadjoint operators or relations on H connected with
the pair S , T . According to (2.5), (2.6) a symmetric boundary condition,
i.e. a maximal nullspace for ,Qr or ,Qs considered in frlIlr or Ellls ,

is a symmetric relation

,(u , o) : ,1u ,'a)

(superscript ? or B ), and can be shown to have a selfadjoint extension
in the Hilbert space if g : n. The essential feature of the spectral theorem
for the selfadjoint extension is the expansion or representation of an
arbitrary element u of H in terms of eigenfunctions, or in general in terms
of ä-projections on eigenspaces which can be arranged to belong to finite
intervals of the spectral axis. The eigenfunctions and the elements of such
eigenspaces can be proved to be regular functions z for which B u and
T u have their straight forward meaning. The simplest case is when the
spectrum is discrete. According to a classical theorem, recently extended to
general differential expressions (1.2) by Bert Karlsson, t'his is certainly tho
case when the pair B , T is of limit-circle type. When the spectrum is
discrete, a symmetric boundary condition together with $q:qTu
( p eigenvalue, real) characterizes the eigenfunctions i.e. the expansion
terms. X'or the expressions {1.3) the condition lhat A : (u ,ä) belongs to
z: Ellls ( c ElIf )isthat ,(u,u)s < oo, ,('i,u)t < co. Intheactual
cq,se of q,rl ei,genfuncti,on u,u:gu, the cond'itian tllet u sati,sfies

Z : Ellls reiluces to the one cond,i'ti'on that
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I @ lD ul'+ q lulz) d,n

is fini,te ouer nei,ghbourluoods ,f fr _ a and fr
pressions (1. 1) the condition that an element

belongs to Z, - Elllt is that'

b . For the Legendre ex-
in H_L2(-1,1) alsou

(8.1) I G - r') lu'lz d,r

is finite over neighbourhoods of r: -I and r : I. fn this form the
symmetric boundary condition inherited from the B-positive theory has

since long been used. by the physicists to select the Legendre polynomials
as eigenfunctions. It is given in Akhiezer-Glazman's book.

Other equivalent forms of (8.1) can be deduced as in Akhiezer-Glazman

f ll because of the simple form of qf when M : 2. They are difficult to
generalize to cases when M; 2, and are at least for selection purposes of
minor interest.
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