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ON THE BOUNDARY CONDITION FOR
THE LEGENDRE POLYNOMIALS

AKE PLEIJEL

1. Introduction

After a translation of the eigenvalue parameter, Legendre’s differential
equation is written Swu = 27 u , where

(1.1) S =Dl-a®)D+1, T=1,

and D =i d/dx. The equation is of Weyl’s limit-circle type over the
interval I = {@: —1 <2z <1} so that for any non-real value A all
solutions belong to L*I). According to Weyl’s theory a symmetric
boundary condition must therefore be added to the differential equation
in order to define a selfadjoint operator in Z2(I) . The symmetric boundary
condition under which the Legendre polynomials are the eigenfunctions is
given in Titchmarsh [3], p. 76 — 78, and is elaborated in Akhiezer—Glazman
[1], p. 206 —210.

The author has generalized Weyl’s theory to pairs of differential ex-
pressions

(1.2) S=733Spiagp, T=73
= j=0

j=0 k=0

Di by, D*
0

o

-

on an interval I of arbitrary type. The coefficients «;, and b, shall be
hermitean, a; = a,;, b, =b,, and S shall have a definite order M
on [ which is greater than the order of 7' . Dirichlet integrals

S, o)l = f %kzobjk Dhu Div da
S0 is
J

Ju, v = % i a;, Dku Div da

j=0k=0
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are considered over compact subintervals J of [I. The more direct
generalization of Weyl’s theory is obtained under the condition that (u , u)*
is positive definite. Parallel to this 7-positive theory there is a similar
S-positive in which instead ;(u ,u)S is positive definite.

For the expressions (1.1) both Dirichlet integrals are positive definite
so that in addition to the classical theory also an S-positive theory is
available for Legendre’s equation. But in this theory the equation is of
limit-point type over I = {x: —1 <2 <1}, and Legendre’s poly-
nomials appear as eigenfunctions without any boundary condition.

The aim of this paper is to elucidate how the S-positive theory deter-
mines the symmetric boundary condition in the 7T-positive theory under
which the Legendre polynomials are the eigenfunctions. In studying this
question we shall consider expressions

(1.3) S =DpD+gq and T=r

on an open finite or infinite interval I = {x: a <ax <<b}. Here p, q,r
are sufficiently regular real functions which satisfy p(x) >0 and
0<r(x) <Cqx) ae. on I with a positive constant (. Then the
Dirichlet integrals

(1.4) Ju, )t = ruvde,
/
(1.5) S, v)s = f(pDuﬁi_;-i-qu?’J)dx
J

are positive definite, and
(1.6) Ju,w) = O (u,u).

The expressions (1.3) are real so that Su==8u, Tu="Tu.Itis finally
assumed that Swu = 27T » is in the limit-circle case over I in the 7'-
positive theory, while it is in the limit-point case over I in the S-positive
theory (explanation in Section 4).

The study relies upon general features of the 7-positive and S-positive
theories which are briefly accounted for in Sections 2—5. Generalizations
to more complicated higher order equations Swu = A7 u are accessible
although not deliberated in the text.

2. Fundamentals of the theories for pairs of differential expressions

The 7- and S-positive theories are founded on two Green’s formulae
on a linear space of ordered pairs U = (u,u) of functions » and u
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satisfying Su = T w, i.e. on a linear relation Swu = T u . It is assumed
that « belongs to the class A(I) of complex valued functions » with
locally absolutely continuous first order derivatives. One can let u belong
to the same class A(I) so that the linear relation is

B(I) = {U=(u,uwedl)xAI): Su=Tu}.

The Green’s formulae are

(2.1) s o) =y, 0)) = lg(U, V)1,
(2.2) U (w, 0)S — ju,0)) = U, V)],
where in the out-integrated parts

(2.3) ¢"(U,V) = pDuv +upDv,

(2.4) WU ,V) = pDuv + wp Dv

at points z in I . The formulae are valid when U = (u,u) and V = (v, )
belong to K(I) . The first one is the usual Green’s or Lagrangean formula.
For more general expressions (1.2) similar formulae hold true with more
complicated hermitean forms ¢° and ¢ .

If the Dirichlet integral in question is positive, the finite or infinite limits

S, w) = Tim (0 £ o,
J=>I

I(’lL,’I,I,)S = Iim](uru)s é @0,
J=I

exist when u belongs to A(I) . By square brackets, [ ] or [ ]°,subspaces
are indicated in which

sw, w)T < o or  (u,u)® < o

remain finite for the contained functions. In this way A[I]T, A[I]® are
defined as linear subspaces of A([), and

BIII" = {U=(u,uw) e A[I|"xA[I]": Su =Tu},
BIIS = {U=(u,u) e A[IPSxA[I]S: Su =Tu}
in the 7T-positive and S-positive theories respectively. If
AT = e, @8 = e

are the right hand sides of the Green’s formulae (2.1), (2.2), one obtains by
letting J tend to I that

(2.5) ,QT(U , V) = i_l(l(?l , )T — (u, U)[) on E[IT,
(2.6) QUL V) = i1 (w, v)S — [(u,v)5) on H[I]5.



400 AxE PrEIETL

Here
IQT=Q€_QE’ IQS:qu—Qi’
where ¢}, ¢% and ¢;, ¢ are the finite limits of ¢7 and ¢° on E[I]|T
and E[I]5.
The dimension of a solution space

El) = {U = (u,Au): w regular, Su = AT u }

equals the order M of Su =ATwu ie. is M =2 for § and 7 in
(1.3). The square bracket solution spaces are

EINT = {U = (u,iu) eByI): (u,u) < o),
EjIPS = {U=(u,du) eBy(I): [(u,u) < o0}

in a T-positive or S-positive theory. As subspaces of H,(I) they are at
most  2-dimensional ( M -dimensional) but can have lower dimensions
including the dimension 0. Putting » = 2w, v = 2v in (2.5), (2.6)
when U,V belong to H,[I]* or E,[I]5, one obtains

(2.7) @NU V) = ¢d) (w, o) on HI",
(2.8) @5, V) = o) (u,v)®  on Bl

with ¢(A) = i—l(l—j) . Hence, c¢(1) ;07 and c(2) ,Q5 are positive definite
on Ej[I]T and on K,[I]5 respectively. Similar formulae and positivity
statements are evidently valid for ¢(2) ;@ , ¢(4) ;@5 on K,(I) when J
iIs a compact subinterval of I, and the Dirichlet integrals S0, )T or
7(+, *)° are positive definite.

The T-positive and S-positive theories for the pair S, T are essentially
the theories for the hermitean forms QT on E[I|* and ,Q5 on E[I]S.
After definition of symmetric boundary conditions in E[/]T and E[I]5,

these theories lead to spectral theorems on the completions A[I]T or
Aﬁs with respect to the norm defined by the positive Dirichlet integral
taken over /. When S, 7' are given by (1.3) the space A[I]TV is the
Hilbert space of functions which are integrable square over I with the
weight function r. Under the condition (1.6) the Hilbert space :4@3
has another scalar product but is a subset of the previous one.

Even if not strictly necessary for the theories above it is, however,
natural and advantageous to consider pairs U = (u,u) of functions
w, u only defined and regular on intervals

I, = {z:a<ax=<c-0}, I, = {x:c+0=<a<b}.

More generally the intervals 7,, I, are taken adjacent to one endpoint
of I excluding the other one. The previous definitions are adapted when
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I is replaced by the interrupted interval I=1 . UlZ,. In this way A(f )
and E(f) , E[f]T , E’[f]S , El(f) , EA[IAJT , El[IA]S are defined. The space E[.f]T
in a 7'-positive theory is for instance cut out from E(} ) by the conditions
for U = (u,u) that the integrals (u,u)’ < o, (u,u)T < 0 over
T =1,U I, shall be finite. The hermitean forms

]QT(U, V) = QZ(U’ V) - QZ(U: V) s
ULV = (U, V) - g (U, V)

A

are defined on K(/) when the endpoints « and y of J belong, one to
1, , the other one to [, . The Green’s formulae are of course only valid for
arbitrary compact intervals J when the functions in U, V are defined
and regular on the uninterrupted interval I . Otherwise the formulae can
be replaced by

]’Q(U ) V) - ]Q(Ua V) = i‘l(j’—j@b ,?)) - ]’—j(u 7(0))

with superscripts 7' or S, and with the lower and upper endpoints of J
and J', J c J’, lying in I, and I, respectively.

The spaces K(I), E[I]" etc. are considered as subspaces of E(l§ , E[f}T
etc. Observe for instance that the dimension of ¥ A(f ) is 2. M = 4, while
the dimension of H,(/) is M = 2 for the expressions S and 7 in (1.3).
Later on (Section 5) also notations such as E[,]° are used. In the spaces
E[1,]5, E[I,]* integrability conditions are imposed only at a = b since
x = c¢+0 is a “regular” point.

3. Maximal regular subspaces and symmetric boundary conditions

By extraction of the underlying ideas in Weyl’s method with contracting
circles it can be proved that for any non-real 1, the direct sums

(3.1) BT = B[IT + BAI)7,
(3.2) RIIP = B + BiI)

are maximal reqular subspaces of H [ﬂT and of K [f ]S with respect to Q7
and ;0°. The meaning of this will presently be explained for (general)
T-positive and S-positive theories simultaneously, by observing that these
theories are both concerned with an hermitean form @ (,Q7 or ,Q5)
on a linear space F/ (E[j]T or E[f]s). The proof itself consists of
a transition to the limit which transfers elementary properties of Q7 or

;@° on E(f) and J/,(I) into the statements about (3.1), (3.2).
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A finite dimensional subspace R of E is regular with respect to @
if @ is non-degenerate or “regular’” on R . If (p,n) is the signature of
Q on R ie.if (p,n) is the pair of the positive and negative inertia indices
of Q on R, then the regularity of R is equivalent to dim R = p+n .
The space R is maximal regular if for any U in E but outside R, the
linear hull {U , R} is not regular. Every U in E has a unique @-projection
U’ on a regular space R determined by U’ e R, QU —-U",R) = 0 so
that QU-U',V) =0 for all V in R. If R is maximal regular,
QU -U'",E) = 0. In this case

Q(U’ V) = Q(U’ s V,)

for any two elements U, V in E and their projections U’, V' on R.
The theory of the values of @ on E is in this way reduced to a study
of the values on a finite dimensional space R . All maximal regular sub-
spaces R (if they exist) are isomorphic, and ¢ has the same signature
(p,n) on all of them.

The statements about (3.1), (3.2) tell that maximal regular subspaces
exist for Q7 on E[}]T and for ;05 on E[IA]S . The spaces R,[I]", R,[I]°
are maximal regular for all non-real values of 1. According to (2.7),
(2.8) the signatures of ¢(4),Q7 and c¢(4),Q°5 on these spaces are
(dim E,[I17, dim E;[I]7) and (dim E,[I]5, dim E;[I]5). An important
consequence s that dim E,[I]T and dim E,[I]5 are independent of A in
the half-planes Im (1) > 0 and Im (1) < 0. In general there exist other
maximal regular subspaces than (3.1), (3.2) in E[}]T and K [} 1%, also such
which are not subspaces of E[I]T and E[I]5 as (3.1), (3.2) are.

A linear subspace Z of K is a @Q-nullspace if Q(Z,Z) = 0 ie. if
QU ,V)=0 forall U, V in Z.The @-projection Z% of a @Q-nullspace
Z into a maximal regular subspace R is a @-nullspace in R since
QU , V') = QU , V) under such projections. If for one R the space Zj,
as a @-nullspace in R is maximal, i.e. if according to Sylvester’s inertia
theorem

(3.3) dim Z, = min (p,n),

then the same is true for any maximal regular subspace. A nullspace Z
is always contained in K } Z, where

Ef = (UeE: QU,E) =0},

and E' } Z) is again a @-nullspace. Under the condition (3.3) the space
EL 1+ Z, does not allow any proper extension to a larger @-nullspace in
E . The extension E! } Z} is then the same for all choices of the maximal
regular R and is called a symmelric boundary condition in K . The sym-
metric boundary condition is uniquely determined by a Z which satisfies
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(3.3). Because of this uniqueness, already Z may be called a symmetric
boundary condition. This in particular applies to a @-nullspace Z’ in
a maximal regular subspace R provided dim Z' equals min (p,n).
In T-positive or S-positive theories for a pair 8, T of differential ex-
pressions there exist maximal regular subspaces already in K[I]T and
E[I15, namely (3.1), (3.2). Therefore any symmetric boundary condition
can be defined in E[I]T or E[I]° and then has a unique extension to one
in E[f]T or E[ﬁs.
A sufficient condition for (3.3) is that

(3.4) dimZ N R = min (p,n)

for one choice of a maximal regular subspace R . For, Z, D Z N R and
Z N R is a @-nullspace in R .

If a nullspace Z satisfies (3.3) and coincides with its maximal extension
to a @Q-nullspace in E , then Z; and Z N R are the same for all maximal
regular subspaces F .

Observe that a symmetric boundary condition in theories for differential
expressions S, 7' is a condition for a pair (w,u) which is natural since
q" (U, V) and ¢5(U, V) contain w and v . Only exceptionally, when 7'
means multiplication by a function as in (1.3), the form qI(U , V) does not
contain % and v so that symmetric boundary conditions may be formulated
in the classical way.

4, Limit types over an interval

The limit type over the interval I of a pair S, T in a 7T-positive theory

is the signature (p,n) of ;7 on a maximal regular subspace of E’[?]T .
According to (2.7) and the statement about (3.1) this limit type over I is
@.1) p = dim E,[I]" for Im (1) > 0,

' n = dim B;[I]T for Im(2) > 0.
Similarly the limit type over I in a S-positive theory is the pair (p, n)
of numbers

= dim E,[I]° for Im (1) > 0,
(4.2) P im B,[1] (4)
n

= dim E;{I}]5 for Im (1) > 0.
The pairs in (4.1) and (4.2) evidently satisfy
(4.3) 0,0 = (p,n) = (M, M),

with M = 2 for a second order equation Su = AT u .
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The pair S, T is of limil-point type over I in the S-positive theory for
instance, if for (4.2) equality holds to the left in (4.3) i.e. if dim #,[I]5 = 0
for all non-real values of . This means that for any non-real 2 the only
solution of Swu = AT w for which (u,u) < oo, is the lrivial one u
tdentically 0. If dim E,[I]5 = 0 for all non-real 1, then R,[I]S = {0}.
Since ,@5(U,V) = ,Q5U",V’) under @-projections on a maximal
regular space, the form ,Q5(U, V) vanishes for all U, V in E’[?]S so that
(4.4) U,V = lim@U,V) = 0 on B

J—=I
m the limit-point case over I .

Because of (2.8) the vanishing of ,@° conversely implies that K,[I]5 = {0}
for 2 non-real.

In the other extreme case with equality on the right hand side of (4.3),
the pair 8, T is of limit-circle type over I . In the 7T-positive theory for
instance, this means that #,[I]” has the same dimension M (M = 2
for a second order equation) as H,(I) so that E,[I]T = E,(I) for all non-
real values of 1. This is equivalent to the statement that in the limit-circle
case over I, (u,u)T << oo for all regular solutions of Sw = AT u when
A 18 non-real. Between the limit-point and limit-circle cases there is in
general a sequence of intermediate possibilities.

5. Limit types at the endpoints

For a detailed study of ,QT = ¢ — ¢ on E[I]* it is necessary to in-
vestigate the hermitean forms ¢ and ¢/ on E[I,]7 and E[I,]7, see end
of Section 2. Similarly for ,Q5 = ¢; — ¢, . For the differential expressions
(1.3) the study of ¢/ follows Weyl’s original method applied to I, =
{o:c+0 <o <b} instead of {x: 0 <o < o0}, and the study of
g, is done in a similar way. For more general expressions S (Everitt,
Kodaira, Kimura—Takahasi) and for two general expressions S and 7T
in a T-positive or S-positive theory (Pleijel) generalizations are needed.
If the order of § is even, M = 2m , the result of such a study can be
concentrated in the formulae

(5.1) dim B,[1,] = m, dimE,[l,] = m,
(5.2) dim £,[I, U I,] = dim H,[1] + M,

which are valid with superscripts 7' or § when 1 is non-real. If S is of
odd order in a 7'-positive theory, the right hand sides of the formulae (5.1)
are slightly modified. Clearly dim E,[I, U I,] = dim E,[I,] + dim E,[I,] .
For the expressions (1.3) M =2 and m = 1.
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Observe that for instance dim ,[/,]° is the number of linearly in-
dependent solutions of Swu = AT u for which °®(u,u)’ << co is finite
when integrated over any interval adjacent to b, but excluding a, in
particular over I, = {x:c¢+0 <2 <b}. When the number above
equals m, or is 1 for the expressions (1.3), the pair S, 7T is of limat
point type at the endpoint x = b in an S-positive theory. A consequence
of (5.1), (5.2) is

Remark 5.1. The pair S, T s of limit-point type over I in an
S-positive theory if and only if it is of limit-point type at both endpoints a
and b . In the limit-point case dim Ea[} 15 = M which for the expressions
(1.3) is M = 2.

A corresponding remark holds true in a 7'-positive theory and is well
known when 7' = 1.

The limit-circle case at an endpoint, b for instance, occurs when all
solutions of Sw = AT w give finite values to , (u,u)" or ,(u,u)
respectively, so that dim E,[I,]T = M or dim E,[I,]°5 = M . The pair
S, T s of limat-circle type over I if and only if it is of limat-circle type at
both endpoints a and b .

Interesting for our purposes is that according to (5.2) dim El[ﬁ >
dim (E,[I] + E;[I]) with superscripts 7' or S . This is an immediate
consequence of M > dim Kj3[I]. Hence Ez[f] can be maximal regular
only if dim Hj[I| = M . For reference we state

Remark 52 For the expressions (1.3) the space EA[IA]T s actually
a maximal regular subspace of E[f]T in the limit-circle case over I in
a T-positive theory.

In [3], Chapter II, the solutions ¢ and ¢ of Su = AT uw give a base
D= (p,Ap), ©@=@,19) of EJI]T (x=0 and 2 = oo in [3]
correspond to « = c+0, x=>b). Computation of ¢/(D, D), ¢/ (D, O)
and ¢/ (@, ©) shows that in the limit-circle case ¢/ has the signature
(I,1) on K,[I,]7, hence is regular on this 2-dimensional space. As a
consequence Q7 = ¢7 — g7 is regular on H,[I]7. The discussion makes
use of Weyl’s criterion for the limit-circle case in terms of his formula
for the radii of the contracting circles. This formula is valid for the real
expressions (1.3). For general expressions (1.2) the corresponding discussion
is more complicated.

6. The original question. A nullspace

Recall the assumption in Section 1 that the pair S, 7' is of limit-
point type in an S-positive theory and that
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(6.1) 0 < j(u,u)t £ 0O (u,u)

with a positive constant C . The last inequality implies that & [} SckE [f 7.
Consider 8* = § + a7 for a real positive value « . By the definitions
of the Dirichlet integrals, in the actual case (1.4) and (1.5), it follows that

(6.2) S0 =, 0)S + e p(u, 0)T

Hence also S* has a positive definite Dirichlet integral. The equation
Su = AT u can be written S*u = (4 + «) 1" u , where the values 1, 1+«
are non-real simultaneously. It follows that if the pair §, 7' is of limit-
point type in the S-positive theory, the same holds true for §*, 7' in
an S*-positive theory. On account of (6.1) it is easy to see that if U = (u , u)
belongs to E[1]5, then U* = (u,u") with @* =u + au belongs to
E[I]S*. Let U= (u,u), V =(v,v) be elements of E[I}5 and put
U* = (w,u+ou), V= (v,v+av). According to (4.4) ,@5(U, V) and
QS (U*, V*) tend to 0 when J tends to I. The form ]QSQ(U“, V)
equals J[qj'm(U“, V%], and a computation based upon (2.3), (2.4) shows
that

(6.3) ¢ (U V) = U, V) +ag (U, V),
so that
SN0, V) = QUL V) + a ,QUU V).
Letting here J tend to { it follows from the previous statements that if
U and V belong to K[I|%, then
LTU V) = lim ,@7(U, V) = 0.

J—1

The subspace E[f}s of E’[i]T s a nullspace for Q7 .

This statement remains true also for higher order expressions S and 7'
under the only condition (6.1) combined with the assumption that the pair
S, T is of limit-point type in the S-positive theory. As a matter of fact
the identity (6.3) is valid also for the forms ¢, ¢© which appear in the
theory of the expressions (1.2).

7. The nullspace is a symmetric boundary condition

To see that the nullspace Z = E[f]S for @7 is a symmetric boundary
condition in E[f 17, it is sufficient to verify (3.4) for one maximal regular
subspace R . According to Remark 5.2 we can take R = El[j]T when the
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pair S, T in (1.3) is in the limit-circle case in the 7-positive theory.
With Z = E[}]S the intersection Z N El[f]T , where in the limit-circle
case El[f]T = E’A(I’\), equals E’,l[IA]S . But according to Remark 5.1 the
space E,,[f]S is 2-dimensional which is the right dimension in (3.4) since
the limit type of S, 7' in the 7'-positive theory is (p,n) = (2, 2) . Thus
the T-positive theory inherits 7 = E[f 15 from the S-positive theory as a sym-
metric boundary condition. In concentration this is our final result.

8. Concluding remarks

The aim of the 7- and S-positive theories is to connect the pair S, T
with a Hilbert space H in a useful way. In the 7'-positive theory for the

expressions (1.3), H = A[I]T is the function space with scalar product
Jorwv dw. Also for more general pairs (1.2) the Hilbert space is similarly
determined before the introduction of symmetric boundary conditions.
The signature (p,n) of QT or @5 on a maximal regular space serves as
a pair of deficiency indices. Only when p = n (as for the real operators
(1.3)), there exist selfadjoint operators or relations on H connected with
the pair S, 7T . According to (2.5), (2.6) a symmetric boundary condition,
i.e. a maximal nullspace for Q7 or ,° considered in H[I]" or E[I]°,
is a symmetric relation

I(u ;0) = f(u ,0)

(superscript 7' or S), and can be shown to have a selfadjoint extension
in the Hilbert space if p = n . The essential feature of the spectral theorem
for the selfadjoint extension is the expansion or representation of an
arbitrary element « of H in terms of eigenfunctions, or in general in terms
of H-projections on eigenspaces which can be arranged to belong to finite
intervals of the spectral axis. The eigenfunctions and the elements of such
eigenspaces can be proved to be regular functions » for which S« and
T w have their straight forward meaning. The simplest case is when the
spectrum is discrete. According to a classical theorem, recently extended to
general differential expressions (1.2) by Bert Karlsson, this is certainly the
case when the pair S, 7' is of limit-circle type. When the spectrum is
discrete, a symmetric boundary condition together with Su =T u
(o eigenvalue, real) characterizes the eigenfunctions i.e. the expansion
terms. For the expressions (1.3) the condition that U = (u,u) belongs to
Z = E[I1S ( € E[I7)isthat ,(u,u)S < o0, [(u,u)S < . In the actual
case of an eigenfunction w, w = ou, the condition that w satisfies
Z = E[I]° reduces to the one condition that
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f(p D ul + g luf?) do

is finite over meighbourhoods of x = a and x = b. For the Legendre ex-
pressions (1.1) the condition that an element » in H = L*—1,1) also
belongs to Z = E[I]° is that

(8.1) f (I —2% |u'|2do

is finite over neighbourhoods of # = —1 and x = 1. In this form the
symmetric boundary condition inherited from the S-positive theory has
since long been used by the physicists to select the Legendre polynomials
as eigenfunctions. It is given in Akhiezer—Glazman’s book.

Other equivalent forms of (8.1) can be deduced as in Akhiezer—Glazman
[1] because of the simple form of ¢; when M = 2. They are difficult to
generalize to cases when M > 2, and are at least for selection purposes of
minor interest.
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