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AN EXTREMUM PROBLEM FOR ANALYTIC
FUNCTIONS WITH AREA NORM

EDGAR REICH?!

0. Introduction. ILet . Dbe the class of complex valued, bounded,
measurable functions x(z), ze€ U = {|z| < 1}. Our principal objective
is to attempt to determine whether for a given function x(z), » € 4,
strict inequality holds in the obvious inequality,

[ [ e s dy|
(0.1) sup — < ||#|l, = esssup |x(z)| .

/e_@ d 2eU
[ [y
U

The class % over which the sup on the left side is taken is the Banach
space of functions f holomorphic in U for which

(0.2) WAl = fflf(z)ldxdy < .

28

If equality holds in (0.1) we say » € A% .

Because the norm for # involves |f(z)| to the first power the problem
of determining whether a given x» belongs to #™* or A'\#* turns out to
be rather delicate. We succeed in determining certain useful necessary
conditions as well as certain sufficient conditions. Aside from its function
theoretic interest there exists an intimate connection of our problem with
a problem of the theory of plane quasiconformal mappings that was origi-
nally formulated by Teichmiiller [12, p. 184]: To characterize those quasi-
conformal mappings of U onto U possessing a given boundary corre-
spondence which are “extremal” in the sense of having minimal maximal
dilatation. It is now known [2], [8] that a quasiconformal mapping of U is
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430 EDGAR REICH

extremal for its boundary correspondence if and only if its complex dilata-
tion x(z) belongs to the class #*. This fact allows a “’geometric’’ attack
on our question which we however deliberately choose to avoid in the
present paper precisely in order to try to enlarge the available analytic
techniques for the problem.

The following notation will be followed.

i) = [ [« sedzdy,
U

LIS
Ll = sup :
Tl
f£0

N = {w:neH, L[f] =0 forall feRB},

2
Hp = {Hi%Ef, %:k-l%j'}(T))l where k:const>0,<pe.93}.

It is clear that 'y, ¢ K*. Only if % € #'; can there exist a function
fo€# with ||x||, = |LJf]l ] |Ifell - As was first shown by Strebel [9],
however, x*\x; is nonempty; it is precisely this fact that makes our
problem non trivial.

Example 0.1.2 In
(0.3) Q ={w=u+1v: 0<v<<u*, 0<u<<4d},

(0>1,0<A <)

choose u(w) such that

Let

e-—nw

g, (w) = Tt 1) , WEQ.,

Let w = @(2) map U conformally onto @, and define »(z), f,(2), z e U,
by
dz dw

(0.4) #(2) JZ_ = u(w) Zi;)‘ , (w= D)),

2 The above example is related to an example in [4].



An extremum problem for analytic functions with area norm 431

(0.5) fa2) d2? = g,(w)duw?, (w = D)),
respectively. We obtain

A fflg,, Vdudo 1, L[f,] = ff wyduds > 1,

and
ME)| = @) £1, zeU.

Since ||L,|| = ||#||l, =1 we have » € #*, but if |u(w)| is not constant,
or if u(w) =1 but 4 = oo, » will not belong to ;.

We shall say that a sequence ¢, € # is an extremal sequence for » if
g,/ =1, n =12, .., and

Llp,] — (L]

Since the subclass of # of functions with norm not exceeding a fixed
constant is a normal family we can assume (if necessary by choosing a
subsequence) that

9,(2) — @o(2)  locally uniformly in U .

@, will be called a limit function for x . If @y(z) vanishes identically the
extremal sequence is said to degenerate.
Lemma 0.1. % € ' \A* if and only if there exists a v € A" such that

Proof. (i) If (0.6) holds then |[|L,|| = ||L,_I|| < ||#||l,. Hence
nEAF .

(i) By the Hahn-—Banach theorem and the Riesz representation
theorem there exists » € # with ||%]||, = ||L,|| such that
(0.7) LIf] = L;[f], fe#.

Hence v = x—x e & . So, if ||L,|| < ||#||s , (0.6) will hold.

The following two lemmas deal with extremal sequences and a con-
sequence of non-degeneracy; although they are equivalent to closely related
facts found elsewhere we list them explicitly for the sake of completeness.

Lemma 02. If uex* and ¢,€%, |lpll =1, then {p,(2)} 1s
an extremal sequence for w if and only if

333[[/ 2 ol dxdy—llﬂllooffm Ndedy| = o,

for every measurable subset S of U .
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Proof. Since we can put S = U, (0.8) implies that {p,} is extremal
sequence for u . To prove that (0.8) is necessary, consider

lall, = zn+ff¢nudxdy+ 5

UN\S

where 2z, = [[s@,udxdy, and 6, = ||u|l, — [[v g, udedy — 0. Tak-
ing real parts of both sides,

lgll. < Rez, + H/tllw/f \pul dady + Ro 5,

UNS
= Rez, + []un<l —f/[(pnldxdy>+Reén.
s

Rearranging terms and taking into account that

< lello [ [ 1natdwdy,
S

we obtain

Izn — Re zn|2
o = bl = Rez < il [ [ nldedy - Rez, < Res,.
s
Since {z,} is bounded, we see that z, — Rez,— 0, and (0.8) follows.
If % has a non-degenerate extremal sequence a representation for L [f]
is obtained as follows.
Lemma 0.3. Suppose x € A4 hasthelimit function @y(z) = lim, ¢, (2),
[l@oll = 0. Then

(0.9) L[] = HLHff [(p: Ddedy, fed.
0

Proof. Again choose x € # such that
L:[f] = LIfl, fe#, lxll. = [ILll.

In Lemma 0.2 choose S = { R < |z| < 1}. Thus
[ [oideay =131 (1 - f il dvdy ) -
R<|r|<1 lz|<<R

that is
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[[oiwa—imn.(i- [ [inldwy)

R<|z1<<1 ls|<<R

Hinw(l ~liwll + [ I%ldxdy)-

Rz <1

Therefore,

LJp,—9o] = Lzle,— @l

- [ [w-widway + [ [ @-p)7ardy - ur)

lsl<R R< |51
= 0+ 1l (1 - linl +ff|%|dxdy> - [ [wraay.
R<Jz|<1 R<|21<1

Hence, /(R) is independent of R ; in particular, /(0) = /(1 —-0); that is,

e ol = L[l -
This implies (0.9).
An immediate corollary of Lemma 0.3 is the following: Suppose » € #7* .
Then either every extremal sequence for x degenerates or » € A .
If one takes 4 << o0, u =1 in Example 0.1 one obtains » € #"; with
a degenerative extremal sequence. Another example was given in [7].

1. The Class .4°. In order to exploit (0.6) it is necessary to build up an
arsenal of functions of class A4 to be used to “combat” the »’s for the
purpose of trying to reduce the latters’ norms.

Since the functions analytic in the closed disk {|z| < 1} are dense in
% in the norm || ||, and since these in turn can be uniformly approximated
by polynomials it is clear that

(1.1) vEMo/fv(z)z”dxdy =0, n=2012..,.
U
We may interpret (1.1) in terms of Fourier series: Suppose

)~ S e £ S e ™, 0<r<1.
n=1 n=

A necessary and sufficient condition for v to belong to A" is that v e A", and

1

(1.2) fr"“ B,r)ydr = 0, n=0,1,2 ..,.

0
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A function of class 4 may be chosen arbitrarily on a compact subset of
U , subject only to the restriction that it is bounded there. This is a corollary
of the following result.

Theorem 1.1. Let «(z) be a bounded, measurable, complex valued
function, |z] <o, (0 <g<<1). There exists a unique function f(z),
holomorphic for o < |z| < oo, such that

_ a(z) , Izl <o,
(1.9) ") = {mz), e<ll<1,

belongs to N ; namely

1 1 a(C
(1.4) B(z) = — 5;2P@), Pk) = —;ffé%dé’dn, o <l|z|<<o0.

1—
: 181<<e

Proof. Suppose pB(z) as required exists. Then for any function f(z)
holomorphic for [z| <1, and any ¢,, 0 <p; <1,

ffﬁ(z)f(Z)dxdy = ff;;(f{ﬂf)dxdy

o<lel<<1 o<<lzl<<1
1 f_ 3 1 /‘_ P
=5:] 7 pfdz — 57 zpfdz
|z]=1 lzl=e,
1-02 dz
=3 Bf— s

C

where C is homologous to {|z| = o;} in {o < |z2] < 1}. Hence

EV R I CCRR VR

o< lz]<<1 lz]<e
0
lrl<e lzl<e
! fP d ! fP d
=~ gy ) DI = —5y ) BT
lzl=¢ c
In view of the arbitrariness of f it follows that
1—p?
— B + PE)

has a holomorphic extension to U . But P(z) is holomorphic for
0 < |2|] £, P(w) =0, and, by hypothesis, f(z) is holomorphic for
o < |2| £ oo . Therefore, by Liouville’s theorem,
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1—p?

B) + Pz) = 0,

and so (1.4) must hold. Conversely, suppose f(z) is defined by (1.4). P(z)
is continuous in the extended plane, P(c0) = 0, and therefore f(z) is
bounded and holomorphic for p < |z| < oo . By reversing the reasoning
used above we conclude that for any f(z) holomorphic for |z| <1,

ffﬂfdxdy = —ffocfdxdy.

o<zl lzl<<e
Thus v e 4.
Remark. One sees from the proof of Theorem 1.1, or directly from
condition (1.2) that to obtain » € 4" it is sufficient to take

1
(1.5) flz) = — 1__szF(z), o< |zl <1,

where F(z) is any function bounded in U such that

az), [z <o,

1. e
(1.6) F; 0, e <lzl <1,

in the sense of distributions. Such functions F(z) differ from P(z) by
a function bounded and holomorphic in U . The following necessary con-
dition for x € s'* follows.

Theorem 1.2. Suppose x(z) e A*. Choose o, 0<p <1, and
choose F € A such that

#z), |z <e,

F—:{O, 0 <l|zl<1.

z

Then for any complex number t satisfying

1—p?
(1.7) Rot > —5 [t
we have
(1.8) sup [x(z) + tz F@)| = [l -
e<<lz|<<1

Proof. By (1.5), the function

(I—p¥)tx(z), Jz]<o,

YO =\ Lt re), o<l <1,

belongs to 4. Therefore
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L,_If1 = Llf], fe%,

and
|L,_,[f]] |L,[f 1]
“”_v[loo Z Sup — 5, = Sup = Hx”oo
g WAl o NIfll
In view of (1.7),
sup [#(z) — »(z)] = |1 — (1—0%) ] sup [x(z)| < sup [x(z)] .
|z]<<e l2l<<e lz]<e
Therefore
sup [x(z) + (2 F@)| = |lx—v|l, = ||%lls -

e<<lsl<1
Note. The qualitative significance of (1.8) is to restrict the absolute
value and argument of x(z), for p << [z| << 1, as related to the behavior
of x(z) for |z| <p. Choosing t = 1/n, n— oo, we obtain the known
[2] result

(1.9) xed*, 0<po<l = sup [x()] = [[x|[, >
o<|z|<1

We shall require a generalization of the class 4" that is obtained by
replacing U by an arbitrary simply connected region 2. We set

A(Q) = {pw): p is complex valued, ||u|l, = esssup |u(w)| < oo}
we R

B(R2) = {g(w) : ¢ is holomorphic in @,

lollo = [ [ low)lduas < oo

Q2

N(R) = {Iu(w): ue%(g),f/y(w)g(w)dudvz 0 for all ge.@(!))}.
2

Transforming 2 onto U by a conformal mapping z<»>w we find that if
dz dw
x(z) — = uw) —,
(2) = p(w) o
then x» € #(U) if and only if we#(2), and fe# = 4U) if and
only if g € #(Q).

fz) dz* = g(w)dw?,

3 Refinements of (1.9) in which the measure of the set
{z: e <RI<1, [#()] > [#lo — I}

is estimated in terms of ¢ from below are also possible.
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If Q,c Q, then clearly %(2,) D #(2,) . Hence, if » € 4(2,), then

() = {z(z), z €2

(1.10) % 0, ze0,\0,.

will belong to A'(2,) . If we choose 2, cU = 2, then (1.10) generates
an element of 4. This remark will be used in Section 3.
In the case of a strip

X =dz:rx+iy, y1 <y <Yy}

a useful criterion for membership in A°(Z) is as follows.
Lemma 1.1. Let »(2) = hyly), vy, <y <y, be a complex bounded
measurable function of the single variable y, y = Imz. Then

Ve
veN(L) < hoty)dy = 0.
Proof. If fe #(X) then

o0

fff(x+iy)1drc < oo, foralmostall y, ¥y, <y <wy,,

- 00

and there exist sequences, z, } co, @, | — oo, such that

flf(fcn+iy)1dy—+ 0, flf(w;+iy)ldy—> 0.

By Cauchy’s theorem there therefore exists a constant €, such that

ff(x—i— iy)de = C;,aay.

Therefore,

Il

[ [ 10 1) dray

Since there exist f e #(2) for which C, # 0, (e.g. for f(z) = e, 0, =
vV 7 ) the result follows.

Va2
0 f ho(y) dy
Y1

2. Extension inward and the class #°,. In contrast with the situa-
tion described in Theorem 1.1 a function of class 4" cannot be prescribed
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arbitrarily in an annulus {g < [2] << 1}. Let f(z) be a bounded, measur-
able, complex valued function, o < |z] <1,

f/fj’(z)z”dxdy, n=20,1,2,...

o<la|<<1
If there exists a function «(z), |z] < ¢ such that (1.3) belongs to A4 we
say that extension inward of p(z) is possible. The following two theorems
give different types of growth conditions on {b,} related to this question.
Theorem 2.1. A mnecessary condition on f(z), o < |2| <1, for
extension tnward to a function of class A is that
(2.1) lim [b,("" < o.

n—>00
A sufficient condition is that

(2.2) lim [b,|""* < o.

N—>00

Proof. If extension inward is possible

—ffoc(z)z”dxdy, n=20,1,2, ...

lz]<<e

Hence [b,| < m¢"sup, _, |«(2)| . This gives the necessary condition (2.1).
On the other hand, if (2.2) holds, then defining

©  n+2 9
(2.3) afre? _2271@"” e, 0=Zr<pg, 0<=<9<2m,

we obtain a continuous bounded function «(z) such that (1.3) satisfies
(1.2).

Alternatively, we also have the following conditions.

Theorem 2.2. A necessary condition on f(z), o << |z| <1, for
extension tnward to a function of class N s that

e b
(2.4) ZW 02,," < .

n=1

A sufficient condition is that
» |b

(2.5) >n
n=1

Proof. We have already seen, above, that (2.5) is sufficient. To show
that (2.4) is necessary, let

) = iakzk

E=0
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Sav - [ [seseaay = - [ [y,

Then

o<|z|<C1 lsl<o
|kzoakbkj2 = f/la(z)lzdxdy //ff(z)lzdxdy
lz]<e |z]<<o
nay?
< ablE > et

Choosing @, = ((k+1)/0%*%) b, the above becomes

no(k+1) 0,2
2 )” < @ ot )%,

which implies (2.4).
Example 2.1. Bz) = (R —2)', o< |z|] <1, where R is a fixed
number, R > 1. Here
7_[(1 _ Q2n+2)

a1 ~0.1,2, ...
b, miy) e P 0L2

By Theorem 2.2, inward extension of f(z) to a function v(z) € N is possible
if and only if o R > 1.

Example 2.1 shows that local smoothness properties are not enough
to guarantee an inward extension from a fixed annulus o < [z| < 1. It
turns out, however, that our general objectives will not be compromised
if inward extension is formulated in terms of a ¢ that is not a-priori fixed.
Accordingly a function f(z) defined in some neighborhood { o5 < |2| < 1}
of oU will be said to belong to the class 4, if there exists a function
v €4 and a number f;, g5 <<{; <1, such that

We) = BE), G<lal<1.
It turns out that if f(z) is sufficiently smooth near oU then B(z) will

belong to 4", . More precisely, a somewhat crude sufficient condition is the

following.
Theorem 23. If

2 |, B* <

n,n =0

for some R > 1, then the function
/3('2) = amnzmzn, 9<]z|<1’

belongs to N, .
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Proof. We have

© ©
N 2 k _
Z Iam,711+k] R " = z lamnl R'n+'? = Z [amnl RHH "= Jl[ << 0 ’
m=0 0=Sm< 0 m, n=0
n=m-+k
k=012
Hence,
2 «° - M
"
Z Ia’m,m-+k‘ g Z [a’m,m-é—k‘ R = —RT’ k = 0’ ]? 2’ e
m=0 m=0

For any t, o <t <1, we have

1 — t2m+2k+2

bk = ffﬂ(z) Zk d.’t'dy = ﬂzam,1n4—kmk+] ) k = 03 1, 2: see e

m=0

1< el <1

Thus,
M

R k=0,1,2,...

I

bl = ”z :a/¢n,m+k1
m=0
If we choose t > 1/R then condition (2.2) is satisfied, and an inward
extension of f(z) from {¢ < |z| <1} to a function of class 4" exists.

Following an important idea of K. Strebel [11] (formulated by him for
the corresponding problem for quasiconformal mappings) the introduction
of ., allows the statement of a simple sufficient condition on » which
implies that x» e A ;.

Theorem 2.4. If » € A andif there exists a v such that x—7v e N,
elly < L1, then L] = Lyigol for some gy €@, |lpgl| = 1. In
case » € A*, then »x € A ¢ .

Proof. We start with a preliminary observation [11]: Suppose x has
an extremal sequence {@,}, ¢,— @, locunif, ||lgy|| < 1. Then x has
a degenerative extremal sequence. If ||g,|| = 0 there is nothing to prove.
If [|pyl| = 0, then, by Lemma 0.3,

Lxli(pn_q)(ll = Lu[qﬁn] - Lnl(p()] - “LxH - HL;{H ' H(pOH .

On the other hand, ||p,—@,l| — 1 — ||gy|| . Hence

Fo = T a0l

is Strebel’s degenerative extremal sequence.
Choose » € 4" such that

rz) = x(z) — T(2), o <[] <1.
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If % had a limit function ¢, , ||g,/| < 1, then if f, is formed as above,

il = Lodfd = [ [enpaeay s [ [ofideay

lzl<e o<lzl<C1
= ffrf”dxdy-ko(l).
o<|a{<1

So we have

Lif,] — [l lim (LI = (17l .

n—>ao0

a contradiction. Thus we conclude that ||g,/| = 1 for every limit function
po of . By (0.9), L[g,] = ||L,||. If »ex*, this implies

i Po®)
Po(2)]

3. Some examples

Example 3.1. #,(2) = y5(z) + v(2) [1 — xs(2)], 2€ U, where yg is the
characteristic function of the set S, Sc U, meas S > 0, and where

sup ly@@)| < 1

z€d
for some annulus 4 = {p << |z| < 1}. We will prove that
(3.1) %, €A < meas (UNS) = 0 < x(z) = 1.
Suppose »; € #*.Then ||L,|| = [|%;||, = 1.Let {g,; beanextremal

sequence for ;. By (1.9), meas (S N 4) > 0. By (0.8),

lim // l@,(z) dedy = 0,

(32) (UN S)NA4

in [ [ [o@day~ [ [ @iy <o
n-—>a0 I

SN N B

If ,¢ 4, then {p,} degenerates. In this case (3.2) implies that
Ifsna l@ul dedy — 1, and hence [[sn, ¢,(2)drdy — 1, and hence
[l 9u(z) dzdy — 1. But, by Cauchy’s formula,

'/‘/‘(pn(z) de dy = #(l—0%) ¢,(0),
4
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where ¢,(0) — 0 since {¢,} degenerates. We have arrived at a contradic-
tion, and must therefore conclude that » € #°, . Since meas § > 0 this is
possible only if x(z) = 1.

If

(3:3) #(z) = 25(2), 8 = {ea <[zl <e:},

[|L, || can easily be calculated. Namely, we have

nif) = [ [r0way - @ [ [raawa, fea,
‘ g

and therefore
1L, [f1l < (3—0D IfI] -
On the other hand, |L,(1/7)| = ¢j—o}. Hence, for case (3.3),

(3.4) 1L, |l = ;Tmeas S

Example 3.2. As a prototype of a problem where the argument of
Example 3.1 fails we consider

+1, 2zeU, = {z:2eU, Imz>0}

(3.5) %y(2) = 1, zeU_ = {z:2eU, Imz<0)}"

Using the connection with quasiconformal mapping, Strebel and the
author have shown ¢ by studying the dilatations of appropriately chosen
mappings that

(3.6) L, |l < 1.

We will now give an analytic proof® of (3.6) using Lemma 0.1 and the
methods of Section 1.

To prove (3.6) by means of Lemma 0.1 it is sufficient to find a function
v € 4 such that

(3.7) Rev(z) = 6 >0, (zeU;), Rewr) = -5, (2zeU_),

for with such a v we get ||xy—tv||, <1 when > 0 is sufficiently small.
(a) Let

1z = —ie? = sind —icosd, zelU.

4 An outline of the proof may be found in the expository notes [5].
5 Another analytic proof has recently been found by A. Harrington and M. Ortel
who kindly allowed me to see their manuscript.
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By (1.1), vy € /. Note that Rew,(z) = 0 for ze U,, and Rewyz) <0
for z € U_ so that (3.7) is “almost” satisfied.
(b) Let @, denote the k" quadrant of U, k=1,2,3 4. Let

w = D(z) map ), conformally onto

A
2 = {w: 0<Imw<-2—}, with @(—-1) = —o0, ®0) = + 0.

If we choose a bounded function A(v), (v = Im w ), such that

72

(;/k(v) dv = 0

then, by Lemma 1.1, 4 € #(X) . Therefore

D'(z .
vy(2) = ,( ) h(v) = €¥°C h(v) € N(Q,), (v =Im D)) .
D'(2)
By considering the boundary behavior of @, @ at z= —1, z=0,
the following is easily verified:
€0 = =+ o(l) = e 4+ o(l), as z2—>0, z€Q,,
vie z+1 .
e = —— | (1) = " +0(1), as z—>—1, 2€Q,,
z+1
¥ = 1 4 o(1), as z->x,, uniformly on every compact subset
of theray Ry = { —1 <2y <0, y=20}.
Choosing

T

h(v) = e + i, 0<v<y,

we therefore find, for z € @y, v = Im D(z),

e 4 ie™™ 4 0(1), 20,
w(2) = 11 +ied £ o(1), z—>—1,

1 +14+ o(l), z-—>x,,uniformlyon every compact subset of Rj.
Due to the conformality of ¢ at z =0,

v
arg z

Thus there exists an ¢ > 0 such that

z2—>0 = — 1, uniformly with respect to argz.

2@y, m—e < argz < @ = Rewf(z) =2d¢ > 0.
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Next, we extend w,(z) to all of U by defining it as 0 in U\Q,. The
resulting function belongs to A" .
(c¢) We define the sister functions

1y(2) = —wy(—2), vi(2) = —v(z), w(z) = —wy(2).

Since », € A it is clear from (1.1) that v, e /", k=1, 3,4, also. The
function

therefore belongs to # and displays the desired behavior (3.7) in the
angular set

—e < argz < &, m@m—e < argz < m+te,

symmetric with respect to the real axis in U . Therefore, if we choose ¢ > 0
sufficiently small, the function

v(z) = wy(2) + ¢ ivk(z) , z2zelU,
k=1

which also belongs to .47, will satisfy (3.7).

Remark. The same function »(z) satisfying (3.7) evidently serves to
determine a considerably more general class of x's, other than just z,,
which belong to s\ % .
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