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ON THE VALUE DISTRIBUTION OF
QUASIMEROMORPHIC MAPS

SEPPO RICKMAN

1. Introduction

Let G be a domain in the euclidean n-space R* and let =» > 2.
A continuous map f: G — R» is called quasiregular if f is ACL», i.e.
f is absolutely continuous on lines with Lj,. integrable partial derivatives,
and if

(1.1) f'@l < KJ(,f)

holds a.e. in G for some K ,1 < K < co. Here f'(x) is the formal
derivative of f at a, |f(x)| its supnorm, and J(x,f) the jacobian
determinant of f at x. A continuous map f: G —R* = R"U {00},
where now G is a domain in the compactified space R”, is defined to be
quasimeromorphic by means of the definition of quasiregularity and
auxiliary Mobius transformations (see [5]). The smallest constant K > 1
in (1.1) is called the outer dilatation K,(f) of f and the smallest constant
K > 1 for which
J(,f) < Kinf |[f'(x)k|"
1h=1

holds a.e. in G is called the inner dilatation K,(f) of f. K(f) =
max (K,(f), K,(f)) is the maximal dilatation of f.

Quasiregular and quasimeromorphic maps have in recent years turned
out to form a natural real n-dimensional generalization of the analytic
and meromorphic functions in the plane. For the existing main features of
the theory we refer to [4; 5; 6].

No systematic study has been made of value distribution theory of
quasimeromorphic maps in dimensions n > 3 earlier. However, some
treated problems deserve mentioning. It follows from [5, Theorem 4.4]

that a quasimeromorphic map f: R*— R” which omits a set of positive
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conformal capacity must be constant. One of the main open problems is
whether a Picard’s theorem is true, i.e. whether a quasimeromorphic map
f: R"— R* omitting three points (or maybe a number depending on the
dimension) must be constant. On the other hand, it was proved in [9] for
dimension 7 = 3 that if each point @ in a countable set 4 c R* is
attached a number d(a) such that 0 << d(a) <1 and >, 6(a) < 2, then
a quasimeromorphic map f: R*—> R" can be constructed which has
defect d(a) in the point @ and no other defects, more precicely, f is
given so that (see Section 2 for notation)

. n(r,a) ‘ .

}gg —;1—(7) = 1—-0( ifaecd,

. n(r,a) .

}112 *2@*’ = 1 if aeRrA.

The given construction modified to the case n = 2 gives a rather simple
solution for a restricted inverse problem of Nevanlinna’s second main
theorem for plane quasimeromorphic maps. Such a theorem is given in
[2, Satz 17] where e.g. the defect d(a) at a is defined as

N(r, a)
T(r)u> ’

(1.2) ola) = lim inf<1 —
We point out that “restricted” above actually means more than ignoring
the indices of multiplicity because a defect defined by (1.2) can be nega-
tive for a quasimeromorphic map.

In this paper we shall consider various questions of value distribution

of quasimeromorphic maps f: R*— R* with respect to an exhaustion
by balls B(r) = {a € R*| |x| < r}. Almost all results can be considered
as to present a balance between some value distribution quantities taken
with respect to balls with two different radii. We work all over with ¢non-
integrated” concepts, i.e. we do not integrate with respect to » , and we
do not know if such an integration could give more information as it does
in the Nevanlinna theory.

After preliminaries in Section 2 we start in Section 3 by showing that
a minimum-maximum balance for the counting function n(r,a) always
holds except possibly for a set of capacity zero. Here we also introduce in
a simple form the main tool used in the proofs based on inequalities for
moduli of path families.

The results of Section 4 serve on one hand as examples of relating
averages of value distribution over submanifolds. For simplicity we consider
only the whole space and (n—1)-dimensional spheres but it is possible to
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extend the results also to much more general sets. Leaving out an excep-
tional set of the radii » we obtain results well known for n = 2 from the
theory of covering surfaces by Ahlfors. On the other hand, the theorems of
Section 4 are effectively used in Section 5.

As to an analog for Nevanlinna’s first main theorem one could hope
that an inequality of the type lim sup,. ., N(r,a)/T(r) <M is true where
N(r,a) and T(r) are suitable integrals of n(f,a) and A(t) respectively
and where M depends only on the dimension n and the dilatation K(f).
Such a result is not even known for n = 2 . However, it is possible to obtain
in all dimensions relations in this direction on the “nonintegrated level”
which also in a qualitative sense are best possible. This will be shown in
Section 5 where also a more detailed discussion is given.

Many of the results of this paper, especially those of Section 5, seem to
be new also for meromorphic functions in plane. T want to thank Sakari
Toppila for constructing simultaneously examples of meromorphic func-
tions in [10] which in a nice way complete the results of Section 5.

2. Preliminary results

2.1.  Notation and terminology. We shall mainly use the ter-
minology in [4]. For basic properties of quasimeromorphic maps we
refer to [4, 5]. For « e R* and » > 0 we let B(x,r) denotethe ball
{yeR| |[x—y|l <r} and S(x,r) the (n—1)-dimensional sphere
{yeR | |x—y| =r}. We also use the following abbreviations:

B(r)y = B(0,r), S(r) = S0,r), S = S1).

The Lebesgue measure in R* is denoted by m and the normalized k-
dimensional (k& <n) Hausdorff measure by #*. For the (n—1)-
dimensional measure #"~'(S) of the unit sphere we use the notation w, | .

The spherical chordal metric in R* is denoted by q.
Since a nonconstant quasimeromorphic map is always discrete, open,
and sensepreserving, a local index 4(z,f) > 1 is defined in the domain of

definition (see [4]). If f: R*-—> R" is a nonconstant quasimeromorphic
map, we use the local index to define for » > 0 and @ € R* the counting
Junction:

n(r,a) = > i, f).

ref~Ya) N B(r)

With this definition #n(r,a) is the number of points of the preimage of
a in the ball B(r) with multiplicity regarded.
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If B c R* is #*-measurable, we denote by o*(E) the k-dimensional
spherical measure, i.e.

1
HE) = f s d A (y) .
The function y i+ n(r,y) is upper semicontinuous and we can define the

average of the distribution of values taken in the ball B(r) over the whole

space R* with respect to the spherical metric, called spherical average, as

i 1 /‘ n(r,y) P
(r) = Zan 1+ [y m(y)
where 4, = o*(R*) is the total spherical measure of R*. We shall also
need averages over (n—1)-spheres in £R*, therefore let Y be a sphere

{y e R | gty ,x) = s} . We denote the corresponding average over Y by
v(ir, Y), ie.

wr,Y) = ! f ., 9) dA""(y)
T ey S eyt
YNR"
For the special case Y = S(f) we also denote »(r,t) = »(r, S(t)). For
this case we have

1
’V(’I’ 3 t) e a—)“‘l /n(r s t y) deyf”;l(?/) .
"mhs

2.2. Modulus of path families and quasimeromorphic maps. All our
proofs depend essentially on inequalities of moduli of path families. If I
is a family of nonconstant paths in £*, we define F(I") to be the set of
all nonnegative extended real valued Borel functions of I* such that for
every locally rectifiable y € I" we have

f@dszl.

14

The modulus of I' is then defined as

M(I') = inf o dm .
ee F(I)
Rﬂr
For discussions of inequalities for moduli of path families in connection
with quasiregular maps we refer to [4, pp. 15—17], [7], and [12].
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The basic tool for us will be the inequality in Lemma 2.3 combined with
a result on maximal path lifting stated in Lemma 2.4. We need the following
terminology for path lifting. Let f: ¢ — R* be a continucus, discrete,
and open map of a domain G andlet f: [a,bd] — B* be a path. Suppose
z € f1(B(a)) . We call a path «: J— G a partial f-lifting of g starting
at x if J is an interval such that a € J C [a,b], «(a) = x, and fou =
B1J. A maximal flifting of g starting at « is a partial f-lifting
«: J—G starting at x such that there exists no partial f-lifting
«:J -G with JcJ', J#J and « |J = «. With slight modifica-
tions Lemma 2.3 follows from Theorem 3.1 in [12] by letting £, to be the
branch set B, (cf. [4, 8.3]) and Lemma 2.4 is Theorem 1 in [8].

23. Lemma. Let f: G —> R* be a monconstant quasimeromorphic
map, I'* a family of paths in G, I' a family of paths f: [a,b] — R*,
and let m be a positive integer. Suppose that every f € I' has partial f-
liftings oy, ... , &, in I'* starting at points in f~1(f(a)) such that

card {j | oy(t) =@} < i(@,f) forall xe@G and tela,b].
Then

M) < %ﬁ M(T*).

24. Lemma. Let f: G — R* be continuous, discrete, and open.
Let B: [a,b]— R* bea path, let x,, ..., x, be points in f1(f(a)), and set

k
P = Z 'i(xi ,f) .
i-1
Then there are maximal f-liftings o, , ..., o, of B starting at ,, ...,
such that
(1) card{j| afa) = a;} = i(x;,f) for 1 <i<k,
(2) card{j| «(t) =2} < i(x,[) Jorall x e G and t ela,b].

3. Balance with exceptional set of capacity zero

In this section we shall give in a simple form a principle which turns
out to be fruitful in studying the balance of value distribution between
different sets. The result of this section (Theorem 3.2) can be called a mini-
mum-maximum balance for values taken in balls with different radii.
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The concept of a set of capacity zero is defined in [5, 2.12]. We need the
following simple lemma.

31. Lemma. Let f: R"— R be a quasimeromorphic map with oo
as an essential singularity. Then there exists a set E of capacity zero such

that for all z € R\ E

limn(r,z) = o.

7 —> 00

Proof. By [5, 4.4] cap Cf(R*\ B(r)) = 0 for all r> 0. Then the set

E = U Cf(R*\ B(r)) = UCf(R*\ B(k))
r>0 k=1
is of zero capacity. If z e R*~ E, there exists a sequence (x;) of points
in R such that a; % a; if ¢#j and f(z;) =2 for all 7, hence
n(r,z)— 0 as r— 0.

32. Theorem. Let f: R"— R* be a nonconstant quasimeromorphic

map, let A and B be disjoint sets in R, let B have positive capacity,
and let 0 >1. If

, n(r, 4)
(3.3) lim sup W’B—) > 1,

¥ >0

where
n(r,A) = infn(r,y),
yed
n(@r,B) = supn(fr,z),
zeB
then A 1is of zero capacity.
Proof. We denote the left hand side of (3.3) by ¢ . Suppose first that

f has an extension to a quasimeromorphic map f*: R* — R* . Then for
y + f*(0) n(r,y) is a constant k for large r and n(r,z) <k for all

zeR and r > 0. Hence ¢ < 1. We may therefore assume that oo is

an essential singularity of f. By Lemma 3.1 n(fr,B)— o0 as r— 0.
We choose a sequence 7, <7y << ...— 00 with
n(r;, 4)

1

n(0r;, B)

lim = ¢.

Let I' be the family of paths y: [0, 1] — R* with y(0)ed, y(1)eB.
Fix i, let y e I' and denote y = y(0). If {x,,..., 2} = fy) N B(r),
then
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k
p = 2, f) = nr,4).

Let oy,..,%, be the maximal f|B(0r; -liftings starting at the
points @, ...,x, given by Lemma 2.4. At most n(0r;,B) of these
paths may end in B(67,), hence at least p — n(0r,,B) = n(r,, 4) —
n(0r;,B) = m, of the paths «,,...,«, have one endpoint in 2B(6r,) .
Let I'} be the set of those paths. We set I = U{I'f| yel'}. By
Lemma 2.3

K
(3.4) M(ry < ;ff) M(I'*).
On the other hand, by [11, 7.5]
(3.5) M(I'*) < o, (log 0)*".

If ¢ > 1, it follows that m; — co as ¢ — co. Hence M(I') = 0 by (3.4)
and (3.5). It follows by [13] that A4 is of capacity zero. The theorem is
proved.

3.6. Remark. From the proof it follows that instead of a fixed 0
one obtains the same conclusion if we let 6 vary in (3.3) with r, call it
0,, such that

v 3

lim n(r , 4) (log 6,)" ' = 0.

7 —>00

4. Averages of the counting function

We shall next show how to obtain a balance between averages of the
counting function over (n—1)-dimensional spheres. As a consequence
we get also the relationship to the average A(r) . The results will be applied
in the next section to prove connections between the counting function
and the spherical average. This section serves as an example how it is pos-
sible to relate value distribution averages obtained by integration over
submanifolds. One can use similar technics to obtain corresponding results
also for more general sets.

The following result for concentric spheres will be basic for all later
applications.

41. Theorem. Let O,c>1, le¢ 0<s,l<<oo. and let
f: R*— R* be a nonconstant quasimeromorphic map. Then

K(f) log (¢ 5)["
S = (121 o) (log )

(4.2) cwBr,t) =
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for r > 0. Furthermore, there exists ry > 0 such that for r > r,
(4.3) cv(Or,t) = »(r,s).
Proof. We may assume s <<t. Let r > 0 and set
E = {yeS|cnlr,ty)<<n(r,sy)}.

Then
(4.4) / n(Or,ty)d#""y) = / n(0r,ty)dA"y)
s SNE
1
= — f n(r, sy)d#""(y)
S\E

= ( / n(r,sy)d#""Yy) — f n(r, sy) dffn_l(?/)) .

To estimate the last integral in (4.4) let
B, = {yek| nr,sy)=kk}, k=1,2,...
For yeS let B,: [s,t] — R" be the path defined by g(u) = uy. Set

I'y = {B,|yek,}.

Let y e B, and let «,,..,«, be the maximal f|B(0r) -liftings of B,
starting at the points of f~1(s y) N B(r) given by Lemma 2.4. Since y € £,
at least n(r,sy) —n(r,sy)/c = (1 —1/¢)k of the lifts o, .., «,
must end in 2B(0r). Let the family of those lifts when y runs over the
set X, be I'}. Then by Lemma 2.3

k(1 —1/[c) M(I}) < K,(f) M(If) .

On the other hand, M(I'*) = >, M(I'}¥) by [11, 6.7] where I'* = U, I'},
and
o A" E,)
= og ¢/ 9

by [11, 7.7]. Hence
1—-1/¢

K M(I* e n—1
(f) M(T*) > (log (¢ 8))7;—1% k "= (E,)

1—-1/c¢ .
= Wg/"(hsy)d«?f Yy) .

But M(I'*) <w,_, (log )" and the final estimate is then
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Ki(f) @,y (log (¢ ] s))"
pn—1 I n—1
Ef n(r ’ 33/) d/f (Z’/) < (1 -1 /C) (IOg 6)n—1
This with (4.4) gives (4.2).
To prove (4.3) we may assume that oo is an essential singularity for
otherwise it is trivial. If F,(r) denotes the set of points y €8 for which
n(r,sy) = k, then by 3.1

H"HF()))

lim»(r,s) = lim

r—>0 j—> wn

fkd%”‘l = klim

w,
—1 . —>0 n—1
Fp(h) !

A" Y S\ H)
k S . S

Wy 1

=

where H is of zero capacity, hence #" 'S\ H) = w,_,. We conclude
v(r,s) —o0 as r-—>oo. Then (4.3) follows by applying (4.2) to a smaller
¢ . The theorem is proved.

45. Remark. From (4.2) one observes that we may let 6 vary
with 7, callit 0, ; such that

lim »(r , s) (log 6,)"' = o,

7 —> 00

and still obtain the conclusion ¢ (0,7 ,t) > »(r,s) corresponding to (4.3).
A similar observation can be made about the constant ¢, in particular,
for all 6 >1

v(0r,t)

y(r,8)

lim inf

7 —>0

4.6. Remark. Let f: R"— R" be quasiregular and set for » > 0
M(r) = max |f(z)].

|%|=7

Then a simplified version of the proof of Theorem 4.1 gives

(log 6)""
K (f)

(4.7) (log M(Or))" ' = y(r, 1)

whenever r > 0 and 6 > 1.
We next use Theorem 4.1 to draw a connection to the spherical average

A(r) .

48. Theorem. Let 0,c>1, let Y be an (n—1)-dimensional
sphere, and let f: R*-— R* be a nonconstant quasimeromorphic map. Then
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K,(f) =
(¢ — 1)(log 6)*~! < 4

Ki(f)~
(1 = 1/¢) (log 0)""

(4.9) %v(r/ 0,7) -

< cvbr,Y)+

for r > 0 where 7 €10, o] depends only on n and the spherical diameter
of Y . Furthermore, there exists ry > 0 such that

(4.10) %v(r/@,Y) < A(r) < cv(0r,Y)

for r>r,.

Proof. By performing a Mobius transformation which preserves
spherical distances if necessary we may assume that Y = S(f) for some
t>0. By (4.2)

n—1

(4.11) cv(@r,t) = »r,s) —d log-S—

for 0 <s<< oo where we have denoted d = K,(f) (1 — 1/¢)"* (log 6)* .
We multiply (4.11) by "'/ (1 + s*)* and integrate with respect to s:

o0

y(r,s) s" 1 s"tlog (¢t /s)"!
‘/‘m‘ds—do‘/‘ (1-‘}-82)" dS

cv(fr,t) = A(r) — dh(t)

This gives

where

o]

fSH flog (¢ [ 5) ™

(1 + s

ity = °

7 n—1
/ s ——ds
(1 + s
0

is finite and depends only on » and the spherical diameter of Y . With
T = h(t) gives the right hand side inequality in (4.9). The left hand side
inequality is proved similarly by integrating the inequality

|n—1

t
IOg;I

cev(r,s) = »(r/0,t) —d
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with respect to s after multiplication again by "'/ (1 + s*)*. The last
statement is proved as in the proof of (4.3).

4.12. Remark. A remark corresponding to 4.5 can be made also to
Theorem 4.8.

4.13. Corollary. Let 6,c>1, let Y, and Y, betwo (n—1)-

dimensional spheres, and let f: R" — R be a nonconstant quasimeromorphic
map. Then there exists ry > 0 such that

cv(Br, Y = »r, Y,
for r = r,.

We close this section by considering the question to what extent the
inequalities in Theorems 4.1 and 4.8 hold for § = 1. We obtain results
similar to Ahlfors’s well-known covering theorems, in other words, the
inequalities hold outside a set of finite logarithmic measure. The proofs
depend essentially on the following lemma.

414, Lemma. Let 1 <c¢c<b, 0<cy, and let ¢ and v be lwo
functions of the nonnegative real axis into itself such that v is increasing and

(4.15) cp(fr) = yp(r) — ¢ (log )"
for all r >0 and all 60 > 1. Then

bo(r) = y(r)

Sfor all r > 0 outside a set K of finite logarithmic measure, i.e.

/dr

— < .,
r

E

Proof. We shall apply a standard method, cf. [3, p. 38]. We may assume
p(ry) > 0 for some 7, > 0. We choose constants M > 1 and c, > 0
such that (1 — ¢, i) /(e M) = 1/b.

Set

¢, p(r) 0

= pr

. ’
where p > 1 is chosen so that for » = 7,

1 1
e 1+ mm) = gy pE

Let F be the set of all » > r; such that
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(4.16) p(r + 1/p(r) < My(r)
does not hold. Set 0,7 =7 4+ 1/p(r). Let r > r, and r¢ F. Then

p(r) — ¢ <log 1+ 1(7) >>M

(4.17) c(0,r)

%

=

1
> (1 —c e )yl = JTI(I — ¢y ey ) p(0, 1)
© (0
2 "b"‘l’( rr) *

We now define a sequence 7, <7, <1, <7, <7, < .. inductively as
follows. Let 7, be the infimum of all 7>, ; for which relF .
If 7, < oo, we then define r, = r, + 2/f(r,). Then F is contained in
the union U,~,[r,,r,]. Let F’ be the image of F under the map
ri> 0, r. Suppose p > 0, 7o and o ¢ F' . Since y is increasing, it follows
that there exists r > 7, such that o = 6,7 . Then also r¢ F and (4.16)
holds. Thus by (4.17) it suffices to show that F’ is contained in a set of
finite logarithmic measure. To this end we observe that

(4.18) Y(rgs) = p(m) = i + 2/B() = My(r,).

The set F’ is contained in the union
E = Ulr, ol
E>1
where o, = 7, + p 1y, [ (o p(r,)/* V). Then we estimate

o
dr fdr < , Py >
- — < >\t — e — )T
f r Z r kgl k cz w(rk)l/( 1) k / k

E kzlrk

_ sz—fk<1+_L>+z P
¢y lry) "7 ()"0

p>1 Tk >1%2Y

Since (1, — 1) /7, = 2p/ (cyp(r,)/" V), the sums are finite because of
(4.18). The lemma is proved.

419. Theorem. Let ¢>1, let Y, and Y, be two (n—1)-di-

mensional spheres in R, and let I R*— R* be a monconstant quast-
meromorphic map. Then the tnequalities

(4.20) vir,Y) e < A(r) < cv(r,Y,),
(4.21) r, Y, < co(r,Y,)

hold for all r > 0 outside a set of finite logarithmic measure,
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Proof. For (4.20) we apply (4.9) and Lemma 4.14. The inequality (4.21)
is a direct consequence of (4.20).

4.22. Corollary. If Y,, Y,,and f are as in 4.19, then

lim inf A(r) .
im in —— < 1,
7 —>0 'V( ) Yl)
L v, YY)
hixiionf A) < 1,
L Yy)
11:2;nf v, 1,) < 1.
Proof. One applies 4.19 to a sequence ¢, , ¢, , ... of constants ¢ tending

to 1.

5. Relations between the counting function and the spherical average

In this section we shall study inequalities of the type n(r,a) < ¢ A(0r)
where ¢ and 6 are constants greater than 1. For a nonconstant mero-
morphic function f: R*-— R? it follows trivially from the Ahlfors—
Shimizu form of Nevanlinna’s first main theorem that

n(r, a)

(5'1) lim lnf-m‘ <

if @ e R?. For quasimeromorphic maps f: R"— R* the left hand side
of (5.1) may exceed 1, but it is not known whether it must be finite and
hence whether it has an upper bound which does not depend on a . How-
ever, one can prove (Theorem 5.16) that for each ¢ > 1 there exists 6 > 1
such that

n(r, a)
(5.2) liminf ———— < c.

A0 r)

7 —>00

It is interesting not only from the point of view of quasimeromorphic
maps but also of meromorphic functions in the plane to study the validity
of inequalities of type

(5.3) n(r,a) < cA@r) if r=>r,.

That (5.3) need not hold in the general case even for meromorphic functions
no matter how the constants ¢ and 6 are chosen follows from a modifica-
tion of an example of a meromorphic function given by Toppila [10, Theorem
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4]. However, at the presence of an asymptotic value a,, for each ¢ > 1
there exists 6 > 1 such that, whenever a lies in a compact set not contain-
ing a,, (5.3) holds for a fixed r, (Theorem 5.11). For the general case one
can show that an inequality #n(r , @) < ¢ A(r*) holds where « > 1 (Theorem
5.22). According to [10, Theorem 4] a power of 7 is the best one can hope for.

The proof of the following lemma contains the basic idea to obtain the
various results in this section.

54. Lemma. Let f: R*—> R* be a nonconstant quasvmeromorphic
map, let 1 <c¢', l<u<v, t>0,and r>0. Set

H(r,t) = {Ae[r,ur]| SQA)NfICBE) + O},
di
(p(r 1) = 7 .
H(r,t)
Then
1 w, 1 Ko(f) Ki(f) )
(5'5) V(U r ) t) Z (? - (C’ . 1) Cn (p(r s t) (log (’U / u))n—l n(r 2 O) 9

where ¢, > 0 is the constant in [11, (10.11)] depending only on n .
Proof. Let 0 < s, <<t be such that

( t>"“1 Ko(f) 0,y n(r , 0)
oe) = 7 ety

We claim that there exists s" €[s,, ] such that

(5.6)

(5.7) viur,s) = n(r,0)
holds. We choose s €]s,, {[ such that

(l i)n—l KO(f) Wy 1 n(r ’ 0)
%8s - c,pr,t) 7

(5.8)

We consider separately two cases:

Case 1. For every « €f~10) N B(r) the a-component of f—1B(s) is
contained in B(ur) . -

Case 2. There exists « € f~1(0) N B(r) such that the z-component of
f1B(s) intersects CB(u 7).

Assume Case 1 and let D be an a-component of f~1B(s) with
x € f~10) N B(r). Then D is a normal domain [4, 2.5] and hence

z€f N se¥) N D xef~0)ND

for all ¥y € §. Summing over all such D gives
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nur,sy) = > > ik f) =2 2> i@.f) = nr,0)
D zefs,y) N D D xef0)ND
for all y € S. Hence (5.7) is satisfied with s" = s, .
Assume Case 2 and suppose

(5.9) vur,s) < n(r,0)

for all s €[sy,t]. Let I' be the family of paths joining f~CB(f) and
f1B(s) in B(ur). Let D be an a-component of f-1B(s) which intersects

CB(ur) and where x € B(r) . Since every S(1) intersects D for r < 1 <
wr, we obtain by integrating [11, (10.10)] the estimate

da
(5.10) MI) = ¢, 7= O p(r,t).

Hir, 1)

We define a non-negative function ¢ of R" by

o(z) = b if s < |z ¢,
2] log
o(z) = 0 elsewhere .

Then o € F(fI') . We now use (5.9), [4, 8.3, 8.4], and the proof of [4, 3.2]
and obtain

M) < Kof) f o2 n(ur , 2) dmfz)

R”
nwr, vy) —r
= Kolf >f (f (log (¢ )" = % 1@/)) i
0, Wur, ) Ko(f) 0, n(r , 0)
- 5 | (log (t/s)" v ™ = (og ()

N

Combined with (5.8) and (5.10) this gives a contradiction. Hence also in
this case (5.7) holds for some s € [sy, 1] .
Now we use Theorem 4.1 and (5.7) to conclude

: . Kif) (og (¢ ] sy
vor,t) = o vur,s') — @ — 1) (log (v] u))n'!i'
1 n—1
> S 0) Ki(f) (og (¢ ] s))""

¢ (¢ = 1) (log (v ] w)"t
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Since this holds for all choices s, in (5.6), we obtain (5.5). The lemma is
proved.

5.11. Theorem. Let f: R*— R* be a nonconstant quasimeromorphic
map and let f have an asymptotic value a,. Then for each ¢ > 1 there exists
0 > 1, depending only on n, ¢, and the dilatation K(f), such that whenever

Ec R\ {ay} is a compact set, there exists ry > 0 such that

(5.12) supn(r,a) < cA(6r)
acE

for r =nr,.

Proof. Let ¢ = ¢®*> 1. Since @, is an asymptotic value, there exists
a path «: [0, 1] — R” such that «(7)— o0 and f(x(7)) —a, as 7— 1.
Let 6 be the spherical chordal distance between a, and E . To prove
(5.12) let a ek . By performing a Mobius transformation which preserves
spherical distances we may assume @ = 0. Let B(f) be a ball whose

spherical radius is 6 / 2. There exists v, € [0, 1[ such that f(x(7)) € R\
B(t) if 7, <v<1. Let r > |a(7y)]|, 1 <u<<v, andset o; = « |[7,, 1].

Since «; is contained in f-1CB(f), every S(A) intersects f-1CB(t) for
A=z r. Then in Lemma 5.4 H(r,t) = [r,ur] andhence ¢(r,t) = logu .
We get then by 5.4

( 1 W, _q K(f)2
(5.13) (wr,t) = (- — (¢’ — 1)c,log u (log (v [ u))"~*

>n(r,0).

Now we choose v = u? and w so that the factor in front of n(r, 0) in
(5.13) equals ¢’ [c. Let then 6 = 2v. By Theorem 4.8 there exists r, >
le(7,)| such that

1
Abr) = ?’V(?)’I‘,t)

for r > ry. Then n(r,0) < cA(6r) for r > r,, where 6 depends only

on n, ¢,and K(f). It follows from (4.9) that r, can be chosen to depend
on ¢ but not on the particular point @ € £ chosen. The theorem is proved.

5.14. Corollary. Let f: R"— R be a quasimeromorphic map
which has at least two asymptotic values. Then for each ¢ > 1 there exists
0 > 1, depending only on n, c,and K(f), such that

supn(r,a) < cA4(0r)

aeR"

of v = ry for some 1y .
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5.15. Remark. Toppila has shown by examples of meromorphic
functions in plane [10, Theorem 4, Theorem 6] that the assumptions of the
existence of the asymptotic values cannot be left out in 5.11 and 5.14. He
has also shown that 6 cannot be chosen arbitrary near 1 even in the
meromorphic case [10, Theorem 5].

For the general case we have the following result.

5.16. Theorem. Let f: R — R be a nonconstant quasimeromorphic
map. Then for each ¢ > 1 there exists 6 > 1, depending only on n, ¢,

and K(f), such that for every a eR

n(r, a)

A0 r)

lim inf

Proof. Let ¢ =c¢*>1 and a € R*. We may assume a = 0. We are

going to show that for a given 7, > 0 an inequality n(r;,a) < ¢ A(0ry)

is true for some 7; > r,. We may assume n(r,, 0) > 0 and by 4.8 that 7,
is so large that for ¢ = r,

1
(5.17) A29) = ;vle,1).

In order to apply Lemma 5.4 we define first « > 1 by the formula

2
5.15) L1 3 KY)

c'? ¢ (¢ = 1)c, (logu)’

With the notation of 5.4 let
p(t) = supg(r,1).
r>7,

Suppose first (1) > (logu)/2. Let r, = r, be such that ¢(ry, 1) >
(logu) /3. We apply 5.4 with » = u* and get

1 3w, K(f) >
’l/(U 715 1) = <2;_r - (C' _ I)Cn (lOg u)n (71 ’ O)

Putting o = vr; and 6 = 2v (5.17) and (5.18) give then n(ry,0) <
¢ A0r) <cA(bry).

Suppose next that (1) < (logu)/2. We observe that for every
r>0 t>q(r,t) is decreasing and ¢(r,t) —logu as t—0, hence

t, = inf{¢t <1| p¢) < (logu)/2}

is positive. We may assume f, << 1. Assume 0<<d<<min{¢, ,1 — 1}
and set f; =f, — &, t; =t, + 6. Then y(t;) > (logu) /2. Let r; =7,
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be such that ¢(r,,¢) > (logu)/2. Then Lemma 5.4 gives for v = u?

the estimate
1 2 K f 2
<_ W, _q ( ) ) >,n(rl s 1))

(5.19) vwryt) =\ (¢ — 1)c, (log u)*
1
> (?‘2‘72/(7’1 ) O) .

Since n(ry, 0) = n(ry, 0) > 0, we may by Theorem 4.1 choose d originally
so small that

1
(5.20) vwr, ) = ()

if w=>2v. Let t, <t< t' Since y(t) < (logu) /2, there exists
e€l2vry, 2uvr] such that S(p) N f1CB(¢) = O . Then every component
of f—lCB(t) which meets B( ) is a normal domain contained in B(p)
[4, 2.5]. Hence n(y,p) = n(z,p0) forall y,ze CE(t) . It follows that

(5.21) o, t) = v, 1).

We choose w =g /r, and 6 = 4u® > 2w . Then (5.17) and (5.19)—
(5.21) give the desired inequality n(r,,0) < ¢ A(6r,). The theorem is
proved.

We obtain a lim sup result also for the general case if we replace 6 r
by a power of r, uniformly with respect to the point a :

5.22. Theorem. Let f: R"— R» be a nonconstant quasvmeromorphic
map. Then for each ¢ > 1 there exists o > 1, depending only on n, ¢,
and K(f), such that

li i
TR A =
where n(r) = sup, .zn n(r, a) .

Proof. The idea of the proof is to find a substitute for the estimate

(56.10) of M(I") in the proof of Lemma 5.4. Let the balls B, = B(s,) and

By, = CB(SZ) have both spherical chordal radius 1/4. Then for each point

a € R* the spherical chordal distance g(a, B,) is greater than 1/4 for at least
one ©. There exist g,> 0 and balls U,, U, C B(g,) suchthat fU,c B,,
i =1,2. Let now a e R and suppose q(a,B;) > 1/4. Let T be a Mobius
transformation preserving spherical distances such that 7'(a) = 0. Let
B(t) have spherical chordal radius 1/4. Then 7T(fU,) N B(t) = @ . Set

g="Tcf.
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We shall use almost the same argument as in the proof of Lemma 5.4
for the map ¢ and in a situation where ¢3 =c¢, r>p,, u = 2, and
w<<v. If Iy is a family of paths joining U, and a continuum which
connects S(r) and S(27) in B(2r), then from an n-dimensional version
of [1, Theorem 4] it follows that

(5.23) M(I'y) = d, (logr)™"

if r > r, for some 7, > p, where d, > 0 is a constant which depends
only on 7 . In the proof of 5.4 we now replace in (5.6) and (5.8) ¢, ¢(r, {)
by the right hand side of (5.23). Consider the Case 2 in the proof 5.4. If I’
has the corresponding definition, i.e. it is the family of paths joining
g 1CB(t) and ¢~'B(s) in B(2r), then M({") = M(I')). Then we obtain

for » = r,

(1 ,_1 K(f)* (log r)"~*

(5.24) v(vr,t) = P © — 1)d, (log (0/2));1_1) ng(r, 0)

where we now have used a subscript ¢ to indicate the map. By Theorem
4.8 there exists r; > max (r,, 2) such that

1
(5.25) A2vr) = A,2vr) = C—,vg(vr,t)

if » = r, and where r; does not depend on the point a. We choose v
so that the factor in front of n,(r,0) in (5.24)is 1/¢2. Then 2vr < o*
for r > r; where o> 1 is a constant, depending only on 7, ¢, and K(f),
and (5.24) and (5.25) give the desired result n,(r, a) < ¢ A,(r*) for r = r, .
The proof for q¢(a, B,) > 1/4 is similar.
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