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l. Introduction

Let G be a domain in the euclidean z-space nn and let n > 2 .

A continuous map f : G =--> R* is called quasi,regular if / is ACL' , i.e.

/ is absolutely continuous on lines with -Lio" integrable partial d.erivatives,

and if
(1 .1)

holds a.e. in G for some K ,l < K < a. Here /'(r) is the formal
derivative of f at r, lf'@)l its supnorm, and J(r,f) the jacobian

determinant of f at r. A continuous map f : G->_R* : R* U {oo},
where now G is a domain in the cornpactified space R' , is defined to be

quasimeromorphia by means of the definition of quasiregularity and
auxiliary Möbius transformations (see [5]). The smallest constant K > I
in (l.l) is called the outer dilatation Ko(f) of / and the smallest constant
K>lforwhich

J(*, f) < K,infrlf'@)hl"

holds a.e. in G is called the inner dilatation Kt(f) of f . K(f) :
max (Ko(/) , K,(f)) is the maximal dilatation of /.

Quasiregular and quasimeromorphic maps have in recent years turned
out, to form a natural real z-dimensional generalization of the analytic
and meromorphic functions in the plane. For the existing main features of
the theory we refer to [a; 5; 6].

No systematic study has been mado of value distribution theory of
quasimeromorphic maps in dimensions n > 3 earlier. However, some

treated problems deserve mentioning. It follows from [5, Theorem 4.4]

that a quasimeromorphic map ,f : Rn -->.8-" which omits a set of positive
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conformal capacity must be constant. One of the main open problems is
whether a Picard's theorem is true, i.e. whether a quasimeromorphic map

f : R"-->8" omitting three points (or maybe a number depending on the
dimension) must be constant. On the other hand, it was proved in [9] for
dimension n:3 thatif eachpoint a ir.a countable set AcE" is
attachedanumber d(o) suchthat 0<ö(a) <l and 2"a@) g2,then
a quasimeromorphic map f i n* --> fu can be constructed. which has
defect ö(a) in the point o and no other defects, more precicely, / is
given so that (see Section 2 for notation)

n(r . a\

!:i; : 1- ö(o) ir aeA'

n(r . a\

iY-6 : I ir aeR*"A'

The given construction modified to the case n: 2 gives a rather simple
solution for a restricted" inverse problem of Nevanlinna's second main
theorem for plane quasimeromorphic ma,ps. Such a theorem is given in
12, Satz l7l where e.g. the defect ö(a) at o is defined as

(1 .2)

We point out that "restricted" above actually me&ns moro than ignoring
the indices of multiplicity because a defect definedby (t.2) can benega-
tive for a quasimeromorphic map.

In this paper we shall consider various questions of value distribution
of quasimeromorphic maps / : Rn --+8" wth respect to an exhaustion
byballs B(r) : {reR" I lrl <r}. Almostallresultscanbeconsidered
as to present a balance between some value distribution quantities taken
with respect to balls with two different radii. We work all over with "non-
integrated" concepts, i.e. we do not integrate with respecb to r, and we
do not know if such an integration could give more information as it does
in the Nevanlinna theory.

After preliminaries in Section 2 we start in Section 3 by showing that
a minimum-maximum balance for the counting function n(r , a) always
holds except possibly for a set of capacity zero. Here we also introduce in
a simple form the main tool used in the proofs based on inequalities for
moduli of path families.

The results of Section 4 serve on one hand as examples of relating
a,verages of value distribution over submanifolds. n'or simplicity we consider
only the whole space and (rc- t)-dimensional spheres but it is possible to
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extend the results also to much more general sets. Leaving out an excep-
tional set of the radii r we obtain results well known for n : 2 from the
theory of covering surfaces by Ahlfors. On the other hand, the theorems of
Section 4 are effectively used in Section 5.

As to an analog for Nevanlinna's first main theorem one could hope
that an inequality of the type lim sup"*- N(r , a) I T(r) <,44 is true where
N(r,a) and T(r) are suitable integrals of. n(t,o) and .4(t) respectively
and where J|/ depends only on the dimension n and the dilatation K(f) .

such a result is not even known for n : 2 . Howeyer, it is possible to obtain
in all dimensions relations in this direction on the "nonintegrated level"
which also in a qualitative sense are best possible. This will be shown in
Section 5 where also a more detailed discussion is given.

Many of the results of this paper, especially those of Section 5, seem to
be new also for meromorphic functions in plane. f want to thank Sakari
Toppila for constructing simultaneously examples of meromorphic func-
tions in [0] which in a nice way complete the results of Section 5.

2. Preliminary results

2.1. Notati,on and, terminology. We shall mainly use the ter-
minology in [a]. For basic properties of quasimeromorphic maps we
refer to 14, 5]. Eor r e R" and r > 0 we let B(r , r) denote the ball
{y eR" I lr-al <r} and S(r,r) the (n -r)-dimensional sphere

{y eR* I lr-yl : r). We also use the following abbreviations:

B(r) : B(0 , r) , S(t) - S(0,r) , S- S(1)

The Lebesgue measure in R" is denoted by * and the normalized k-
dimensional (k <n) Hausdorff measure by afh . X'or the (n-L)-
dimensional measure /f*-r(B) of the unit sphere we use the notation @n_7 .

The spherical chordal metric in E, is denoted by q .

Since a nonconstant quasimeromorphic map is always discrete, open,
and sensepreserving, a local index d(a , f) > t is defined in the domain of
definition (see l4]). If f : R" ---> R" is a nonconstant quasimeromorphic
m&p, wo use the local index to define for r > 0 and o . R" the counti,ng

function:

n(r,a) :
reft@lnB1t)

With this definition n(r , o) is the number of points of the preimage of
o in the ball B1r1 with multiplicity regarded.
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If E c R" is ffh-measurable, we denote by oa(E) the fr-dimensional
spherical measure, i.e.

rloh(E): 
J A.Wffdtrh(a).

The functio\ y > n(r , A) is upper semicontinuous and we can define the
average of the distribution of values taken in the ball A(r) over the whole

space -8, with respect to the spherical metric, called qtherical, auerage, as

I f n(r.u\A(r): uJ g+ffia*wl
R*

where A,: o"(R") is the total spherical measure of F*. We shall also

need averages over (n -l)-spheres in -8", therefore let I be a sphere

{y e&"l q(y,r): s}. We denote thecorresponding aYerage over I by
t(r,Y),i.e.

a(r,Y): I [--!"'"': V:TE,l *-rrffidtr"-1(u)'
n'or the special case I: B(r) we also denote u(r,t): r(r, B(f)) . n'or
this case we have

u(r,t): -l I nV,tg)d,o?-t(y).. co"_r !

2.2. Mod,ulus of path famili,es anil, quasimeromorph'i,c rna,ps. All our
proofs depend essentially on inequalities of moduli of path faurilies. If J-

is a family of nonconstant paths in E", we define -F(,l-) to be the set of
all nonnegative extended real valued. Borel functions of -B' such that for
overy locally rectifiable y e f we have

f
I pilu > l.i

Tho modulus of -l' is then defined as

MV)

For discussions of inequalities
with quasiregular maps we refer

- inf I n" d,rrL .

aeF(r) J
pn

for moduli of path families in
to [4, pp. 15 - l7], Ul, and [12] .

connection
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Tho basic tool for us will be the inequality in Lemma 2.3 combined with
a result on maximal path lifting stated in Lemma 2.4. We need the following

terminology for path lifting. Let f : G --->.8" be a continuous, discrete,

and open map of a domain G and let B : fa ,bf '-> E" be a path. Suppose

reJ-t(B@)) .W"callapath q,: J-->G apartial /-liftingof p starting
at r if J is an interval such that a e J c la ,bf , x(a) : r , and f " n :
PIJ.A maximal flifting of P starting at r is a partialflifting
a.: J --> G starting at r such that there exists no partial flifting
a'i J' -+G with JcJ', J + J'and u'lJ: oc. Withslightmodifica-
tions Lemma 2.3 follows from Theorem 3.1 in [2] by letting Eo to be the
branch set B, (cf. [+, s.3]) and Lemma 2.4 is Theorem I in [8].

2.3. L
mep, l*
a,nd let n'L

liftings q.L

card

Then

2.4. Lemma.
Let B : la , bl --, P,"

]WQ)

e rn m. a . Let f : G --- Rf be & nonco?Lstant quasimeromorphi,c

afami,tyof gta,ths'in G, f afami,tyof gtaths B: la,bl*R",
be a posit,iae 'i,nteger. Suppose tha,t eaerA P e f ltas partial f-

, ... , &* 'i,n f* sfu,rting et poi,nts i,,n f-'$(a)) such tltat

{i I oi(t): n}

card{j I u,(a): nr} : i(*n,f)
card{ j 1 a1(t): n}

be continrlol,cs , d,'iscrete, a,nd open.

... , fih be points 'i,n f-t(fl(")) , and set

i(ro ,f )

.for I <itt

for all n e G q,nd t ela,bf

Let f : G-uE"
be a path, let frL ,

h

p:
,i,:l

Then there are mar'i,mal, fJifti,ngs dt , ... , ep of p starti,ng at r, , ... , frh
such that

(r)

(2)

3. Balance with exceptional set of capacity zero

In this section we shall give in a simple form a principle which turns
out to be fruitful in studying the balance of value distribution between
different sets. The result of this section (Theorem 3.2) can be called a mini-
mum-maximum balance for values taken in balls with different radii.
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The concept of a set of capacity zero is defined in 15, 2.12). We need the
following simple lemma.

3.1. Lemma. Let Ii n"-->8" beoquas'i,meromorphicmaltwi,th a
as o,n essenti,al, si'ngularity. Then there er'i,sts a set E of capacity zero such

that for q,ll, z e E"', E

)r* 
n(r , z) - oo

Proqf. By [5, 4.4f cap Cf (R" r B(r)) - 0

E: U C/(,B'r.' B(r)) - ö
rl} k:L

3,2. T h

ffifrP, let A
a,nd let 0 >

(3.3)

where

forall r>0

Cf (R" \ B(/r))

Then the set

is of zero capacity. If z e R" 
" 

E , there exists a sequence (rn) of points
in n* such that ni + rj if t, + j and' f(rn) : z for all 'i, hence

n(r,z)-->a &s r-->@.

eorem. Let f : R"-->E* beanonconstantquasirnerom,orphic

a,nd, B be d,i,sjoi,nt sets in R" , Iet B haue positiue cagtacity,

lIf
rimsur##

?(r , A) : inf n(r ,Y) ,
yeA

"(0r,8)- supn(|r,2),

then A 'is of zero capacity.
Proqf . We denote the left hand side of (3.3) by , . Suppose first that

/ has an extension to a quasimeromorphic mup "f* , R" _--El . Then for
y + f*(@) n(r,A) is a constant lc for large r and n(r,") <k for all

zeR" and r>0. Hence c< l.Wemaythereforeassumethat co is
an essential singularity of /. By Lemma 3J nrc r , B) -> oo a,s r --> oo .

We choose & sequence rt l rz < ... -+ oo with

,. ryQi ' 
A)

:':n@\J): c'

Let .l bethefamilyof paths y: 10, ll*,8" with Z(0) e A, y(l) eB.
X'ix d, let, y e -l- anddenote A : y(0). If {xr,.'.,nh) : f-t(y) 11 B(ro\,
then
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o : 
Åror*, 

,f, > n(r, , A) .

Let a-1t ... t &p be the maximal f I B(0 rn; -liftings starting at the
points n1t ... t frp given by Lemma 2.4. At most i(0 rr, B1 of these
paths may end. in B(0 rn), hence at least p - n(0 r, , B) > ryQr , A) -
i(0rn,B) : rn.t, of thepaths ar,...,dp haveoneendpointin aB(?rr).
Ler ff be the set of those paths. We set l-* : U { i-,f I y e T }. By
Lemma 2.3

(3.4)
K,( f\

Mg)

On the other hand, by [Il, 7.5]

(3.5) ilIg*) 1 @n-r(og 0)r-' .

If ct l,itfollowsthat n1,i--->@ as i->oo. Hence n[Q):0 by(3.+)
and (3.5). ft follows by [13] thab A is of capacity zero. The theorem is
proved.

3.6. R e m a r k. From the proof it follows that instoad of a fixed
one obtains the same conclusion if we let 0 vary in (3.3) with r , call

fl, such that

lg y(r , A) (log o,)"-' : co

4. Averages of the counting lunctlon

We shall next show how to obtain a balance between a,verages of the
counting function over (ro-l)-dimensional spheres. As a consequence

we get also the relationship to the average ,4(r) . The results will be applied
in the next section to prove connections between the counting function
and the spherical avera,ge. This section serves as an example how it is pos-

sible to relate value distribution averages obtained' by integration over
submanifolds. One can use similar technics to obtain corresponding results
also for more general set's.

The followitg result for concentric
applications.

0

ir

spheres will be basic for all later

4.1. T h
R"->W

eorem. Let 0,c)1, let 0{-s,t
be ct, nonconsta,nt guasimeromorphic rLap. Then

cv(0r,t)

a,nd let

f:
(4.2)
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fo,r}0.Furthern?,ore,thereeristsro}0suchthatfo,r>
(4.3) cy(?r,t)

Proof. Wemayassume I <t. Let r) 0 andset

E : {y e 8l cn(?r,tA)1n(r,sy) }.
Then

(4.4) f nrcr,ty)d,.r*-l(A)
as s\E

rf,; J n(r,sy)dt"-t(y)
S\E

-l(f "",^ ^^.\.rdon-rt^.\ 
r \

c \J n(r,s y)dX"-t@) - J "?,sy)dZf"-t@)).SE

To estimate the last integral in (4.4) let

En : {g eE I n(r,sy): lc\, k - 1,2,....

Eor y eB let Fr:fs,tf*R" be thepathdefinedby fr(u):ug. Set

lo: {frl gefro\.

Let y eUo andlet u1,...,dk be the maximal f lB(0 r) -liftings o1 f,
starting at the points of /-r(s y'1 n E@ given by Lemma 2.4. Since A e E ,

at least n(r,sA) - n(r,sg) lc : (l - | lc) fr of the lifts &12...2dp
must end. in aB(0 r) . Let the family of those lifts when gr runs over the
set Eo be ,l-f . Then by Lemma 2.3

k (r - t I c) M(r) < K,(f) MQf) .

On the other hand, MQ*) : 2u MQX) by [rr, 6.7] where l* : Ue lf ,

and

ff"-t(E u)xt(Tu): ffi
by [11, 7.71. Ilence

K,(f) M(/'*)

I llc f: ffi J nV'sY)il/f"-'(Y)'

But M (f *) { @n-1 (log 07r-* and the nåf estimate is then
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K,(f ) @n*L (log (t I s))'-t
(1 L lc) (log 01"-t

may assume that co is an essential singularity for
If F uV) denotes the set of points y e S for which

s)
i-..* @n-t 

/orr) t** @n-L

_ ff*-t(B \ ä)

zero capacity, hence //'n-t(S \ f/) - @m-! . We conclude
r -+ oo . Then (4.3) follows by applyitg (4.2) to a smaller
is proved.

ves
w€

'ial
en v

we

al,
n

a),

(4

; ffl
.I:
bv

lf*

2).

,ye
Fh

3.1

d;

o:.2

lim y(r ,

where H is of
y(r , s) -> co as

c . The theorem

4.5. R, e m a r k. From (4.2) one observes that we may let 0 vary
with r , call it 0,1 such that

!:r(r, 
s) (log 0,)*-' : o ,

and still obtain the conclusion aa(O,r,t) >- u(r,s) correspondingfu (4.3).
A similar observation can be made about the constant' c, in particular,
for all 0> L

v(0r.t\
lim inf :-.-:+ > I .

r+6 y\r , 8)

4.6. R,emark. Inf f : R*-->R" be quasiregularandsetfor r)0
M(r) : max l/(z)l .

lxl:r

Then a simplified version of the proof of Theorem 4.1 gives

(4.7) (log M (0 r))n-'

whenever r>0 and 0>1.
We next use Theorem 4.1 to draw a connection to the spherical a,yerage

a(r).

4.8. Theorem. Let 0,c)1, let Y be an (n-l)-d,imensionatr

sgthere, and, l,et f , R" --8" be a nonconstant quasi,meromorlthic map. Then
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(4.9)
I
;u(r I 0,Y)

K,(f ) "

sn-t llog (t I s)|"-t

fo, r
"fY
(4.10)

fo, r>rs.
Proof. By performing a Möbius transformation

spherical distances if necessary we may assume that Y
t> 0. By (4.2)

I t I"-t(4.11) cy(Tr,t)

for 0<s(co wherewehavedenoted d- Kr(f) (1 I
We multiply (4.11) by sn-t/ (t + s')' and integrate with

(c 1)(log 01"-t

K'(f) r
(l I I t) (log 01"-t

. Iltrthermore, there eti,sts ra ) 0 such that

I
;r(r l0,Y)

cv(or,t) f t'-t=

I 1r a 'zrds
@@

which preserves
_ S(t) for some

I c)-t (log 01t-"
respect, to I :

ds
(1 + s')"

This gives

where

cy(0 r ,t)

sn-r llog (t I s)|"-tI d,s(l + s')"
h(t) -

is finite and depends only on
r - h(t) gives the right hand
inequality is proved similarly

[6r'
n and the spherical diameter of Y . With
side inequality in (4.9). The left hand side
by integrating the inequality

I t l"-L
a(r l0,t) dlt"s;lca(r,s)
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with respect to s after multiplication again by s'-t/ (l + "')' . The last
statement is proved as in the proof of (4.3).

4.12. P' e m & r k. A remark corresponding to 4.5 can be made also to
Theorem 4.8.

4.13. Corollary. Let

ilimensiona,I spheres, a,nd let f :

rnap. Then there eri,sts ro ) 0

0,c) l,let YL a,nd Yz betwo (n-L)-
R" --> W be q, nalLconstant quas'i,nxeromarphic

such that

ct(|r,Yr) > v(r,Yr)
for r > ro.

We close this section by considering the question to what extent the
inequalities in Theorems 4.1 and 4.8 hold for 0 : t . We obtain results
similar to Ahlfors's well-known covering theorems, in other words, the
inequalities hold outside a set of finite logarithmic measure. The proofs
depend essentially on the following lemma.

4.14. Lemma. Let l<c<b, |lcr,anill'et E anil' y betwo

functions of the nonnegat'i,ue real aris into i,tsel'f srtch that y i,s i,ncreasing anil,

(4.15) cAQr) > ,p(r) - cr(logl)t-"

foral,l, r)0 and,all,0>1. Then

bE@) > v?)

for aII' r ) 0 outsiile a set E of fi'nite I'ogari,thmic measure, i.e.

fdr
J 7 t *'

E

Proof. We shall apply a standard method, cf. [3, p. 38]. We may assume

,p@L)> 0 for some rL> 0. We choose constants M > 1 and cz> 0

sueh that (1 - c, 4-') I @ M) > I lb .

Set

Bb\ - 
c'v(r)tt@-tt

pr
where p > I is chosen so that for r > /o

/ | \ r
log\t +,p@) > crltvf^*tt'

Let I be the set of all r ) ri such that
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(4.r0) p(r+rlF(r)) <M,p(r)
does not hold. Set 0,r - r + I lp(r). Let r> r; and rt'-E . Then

(4.t7) cEe,r) > rp(r) - ,,(rou(t . #))'-'

> lv1,n '

Wo now define a sequence ,L {rr<r', <rzz-rz E ... inductively as

follows. Let rh be the infimum of all r ) rln-r for which r e E .

If ro 1 oo , we then define rL : rn + 2 | p(r). Then -X' is contained in
the union lJo2rlru,rlol . Let I' be the image of -F under the map
rr->0,r. Suppose Q) O,;ri and Qf E'. Since g isincreasing,itfollows
thatthereexists r>r; suchthat Q:0,r. Thenalso rt'-F and(a.16)
holds. Thus by (4.17) it suffi.ces to show lhab I' is contained in a set of
finite logarithmic measure. To this end we observe that

(4.18) V@n+t) > rp\;): V(rn+zlp(ru\ > Mrp(ro).

The set -t" is contained in the union

u : 
u9['u'nut

where Qn : rL * P 
y'n I @ry(rolttt*-rt1 . Then we estimate

f d,r 
eh

! T = rV,.l + =oi, Q;.;frfu, -,0) t,u
" _ ,h

4-'o(, \ , = p: 
o=I, -ru 

\t + 
"*;n-) 

* 
ra-r"r,t6na

Sinee (ri - rn) lrn : 2p I @zp@o)rt@-tt7, the sums are finite because of
(4.18). The lemma is proved.

4.19. Theorem. Let clL, l,et Y, and, Y, betwo (n-t)-d,i=
mensional sgtheres i,n E" , and, tet f : R" -> E" be a nsnconstant quasi,-

meromorphic rnnp. Then the i,nequaliti,es

(4.20) r(r,Yr)la < A(r) < ct(r,Y.) ,

(4.21) t(r,Yr1 < cv(r,Yr)

hold, for al,[, r > 0 owtsid,e o set of fini'te logari,thmia mea,sure,
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Proof. X'or (4.20) we apply (4.9) and Lemma 4.14. The inequality (4.21)

is a direct consequerrce of (A.20).

4.22. Corollary. If Yr, Yr,anil' f cl'rea,sin4.79,then

A(r\rii:nr ,v,'fi
v(r - Y., )

t1,,..'*nf-/r|-

,,1*'f#3
Proof. One applies 4.19 to a sequence

to t.

t

)

ct , cz , .,. of constants c tending

5. Relations between the counting function and the spherical average

In this section we shall study inequalities of the type n(r , a) 3 a A(0 r)
where c and 0 are constants greater than I . For a nonconstant mero-

morphic function f : Rz -> Rz it follows trivially from the Ahlfors-
Shimizu form of Nevanlinna's first main theorem that

if a eFz. X'or quasimeromorphic maps /: Rn--->E" the left hand side
of (5.1) may exceed I , but it is not known whether it must be finite and
hence whether it has an upper bound which does not depend on a . How-
ever, one ca,n prove (Theorem 5.16) that for each c ) l there exists 0 > I
such that

(5.1)

(5.2)

(5.3)

n(r r a)rii:ntiv) -

- ^n(',a)t'lft 
t1e 4

It is interesting not only from the point of view of quasimeromorphic
maps but also of meromorphic functions in the plane to study the validity
of inequalities of type

That (5.3) need not hold in the general case even for meromorphic functions
no mattor how the constants c and 0 are chosen follows from a modifica-
tion of an example of a meromorphic function given by Toppila [I0, Theorem
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4]. However, at the presence of an asymptotic value ao, fot each c > I
there exists 0 > I such that, whenever o lies in a compact set not contain-
ing ao, (5.3) holds for a fixed ro (Theorem 5.11). For the general case one

canshowthataninequality n(r,a) 
=cz4(ro) 

holdswhere a) I (Theorem
5.22). According to [10, Theorem 4] a power of r is the best one c&n hope for.

The proof of the following lemma contains the basic idea to obtain the
various results in this section.

5.4. Lemma. Let f 1 ftn--sftn be a nonconstant quasimeromorphic
map, l,et l<c', l{u<a, t}0,and, r}0. Set

Then

where cn ) 0 is the co%stant in [11, (10.11)] ilepend,ing only on lL .

Proof. Let, 0 { so < t be such that

H(r,t) : { l elr,urf I 8(i) O/-tCB(t) + g},

g(r,t): I +
H(r , t)

(5.5) a(ur,t) u))"-
ft
(rl

(KI
G n(r,0) ,,)L

(

V
t)

I
,

K
(,

@n-L

) c"9I(c'

,0)g
)

l?,

J
1

(,
Q)n

"9

(f)
c

Ko

We claim that there exists s' e [so , f] such that

y('ur,s') > n(r,0)

(5.6)

(5.7)

(5.8)

holds. We choose I e ]so , l[ such that

Ko$) ,"-Ln(r, 0)

crg(r,t) '

We consider separately two cases: _
Case l. X'or every n ef-t(0) n B@) the o-component of /-l.B(s) is

contained in B(u r) .

Cnse2. There exists r ef-1(0) n E6 such that the r-component of
f-18(s) intersects CB(u r) .

Assume Case I and let D be an r-component of /-18(s) with
u ef-t(0) n f1"1 . Then D is a normal domain 14,2.51and. hence

zeft(soy) fl D eel-t(0) i D

for all y e B . Summing over all sueh D gives
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n(ur,soy) = >D' zel-l(siy)OD D re|.tQ)nD

for all g e S . Hence (5.7) is satisfied with s' : so .

Assume Case 2 and suppose

(5.9) a(ur, s') < n(r ,01

for all s' e [so, f] . Let -l' be the family of paths joining 
"f-rC.B(l) ana

/-18(s) in B(u r) . Lel D be an #-component of /-lB(s) which intersects

CB(u r) and where * . 8111. Since every B(.X) intersects D for r < ]' <
It,r , we obtain by integrating [], (10.10)] the estimate

(5.10) Mg) r t- I+ : c*E(r,t).
H(t,t)

We define a non-negative function g of -8" by

e@):-= irs< lzlst,
lzl log -

P(z) :0 elsewhero'

Then p eFff\. Wenowuse (5.9), [4,8.3,8.4], andtheproof of 14,3.21
and obtain

Mg) < Koff) [ e@"n(ur,z)d,m(z)
Rn

- u",r) i V #tffi d,*,-,s1) a,

:Koff)jreUno,=ffiffP
Combined witfr (s.Siand (5.r0) this gives a contrad.iction. Hence also in
this case (5.7) holds for some s' e [so , i] .

Now we use Theorem 4.1 and (5.7) to conclude

a(u r,t1, ) r@r,s') - 
K'(f) o2s? I s'))l-r

u \c' - r) (log (o I u))*-t

I K'(,f) (log (r / "o))'-t>7n(r,O)-9.
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Since this holds for all choices so in (5.6), we obtain (5.5). The lemma is
proved.

5.11. Theor em, Let f : R"---8" beanarrconstantquas,i,mc,romorpthia
malt anil let f h,aae an asymptotic aalue ao. Then for ea,ch c> I there eri,sts
0 > L, d,egtend,ing only on h, c, and, the ili,l,atatton K(f), such that wheneaer

E c R" r{ao} ,is a comgta,ct set, there erists ro} 0 such, that

(5.L2) sup n(r , d,)

far r 2 ro.
Proof. Let, o : c'a ) I . Since oo is an asymptotic value, there exists

a path a : [0 , l[ * -8, such that a(z) -> oo and f("(r)) --> o0 as z -> I .

Let ö be the spherical chordal d.istance between ao and il . To prove
(5.f 2) let a e E . By performing a Möbius transformation which preserves
spherical distances we may assume a : 0. Let B(t) be a ball whose
spherical radius is ö / 2 . Thero exists z, e [0, l[ such that /(a(z)) e-8" r
B(t)itrtsr{1. Let r>lu(rr1l ,14u{u, andset a,:a|[zr,1[.

Since a, is contained in f-rCB(t1, every S(,1; intersects /-rCB(t1 fot
)' > r . Then in Lemma 5.4 H(r,t) : V,urf and.hence g(r,t) : logu .

We get then by 5.4

(5.13) v(ar,t)
@n-L K(f)'

) nv' o)(t' L) c,log u (log (o I u))*-t

Now we choose 1) : 'u,2 and. u so that the factor in front of n(r , O)

(5.13) equals a'lc. Let then 0 : 2a. By Theorem 4.8 there exists ro

l"("r)l such that

I
A(0r) 2 7t(ur,t)

for r > ro. Then n(r,O) < cA(0 r) for r 2 ro, where 0 depends only
o:n n , c , and K(l) . It follows from (4.9) that ro can be chosen to depend
on ö but not on the particular point a e D chosen. The theorem is proved.

5.14. Corollary. Let f : R*--->R, be a qunsi,meromorphi,cmap
which has at least two asgmptotic aalues. Then Jor eanh c ) | there eri,sts
0> l, d,epenili,ngonl,gon %, c,and, K(f),suchthat

sup n(r , a)
e eTn

in

,f r > ro fo, sorne ra
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5.15. R, e m a r k. Toppila has shown by examples of meromorphic

functions in plane [I0, Theorem 4, Theorem 6] that the assumptions of the

existence of the asymptotic values cannot be left out in 5.ll and 5.14. He

has also shown that g cannot be chosen arbitrary near I even in the

meromorphic case [0, Theorem 5]'
X'or the general c&se we have the following result.

5.16. Theorem. Let f : R"->E* bea,

rnap. Then for ea'ch c > I there er't,sts 0 >
a,nil K(f) , such that fo, eaery a, e E"

nb.al,tipö < c.

Proof. Let c: s,tl;, I and oaE". Wemayassume d,:0. Weare
going to show that for a given ro ) 0 an inequalitY n(rt,a) < cA(9rr)
is true for some rr 2 ro. We may &ssume n(rs , O) > 0 and by 4.8 that ro

is so large that for Q 2 ro

(5.r7) A(2 et . J rk , r) .

In order to apply Lemma 5.4we define first z ) f by the formula

1 3 ,u*-, K(f )': 7 1c' - t1 cio*Y'
With the notation of 5.4 let

q,(t) : 
:ylJ(r ,t).

Suppose first rp(f ) > (log u) 12 . Let r, > ro be such that g(r1,I) >
(log z)i 3 . We epply 5.4 with 1) : 't'12 and get

3 otn-, K(f )'

tuonconstant quclsårner ornor phi,c

I , d,,epend,i,ng only on n, c,

(5.18)
I
t,

a(u rr, l) )"0 t,0)(c' L) c* (log u)*

Putting Q: art and 0:2a (5.17) and (5'r8) give then n(rt,o) <
c's A(0 rrl 1c A(0 rr) .

Suppose next that ,p(1) < (logu) 12. We observe that for every

r>O tr->g(r,l) isdecreasingand E(r,t)*logz as t->0, hence

t,,:inf{t<IIy(t)

is positive. We may &ssume,,,ar. Assume 0< ö <min{ t'",I - t,,\

andset tr:t,o- 6, t|- t,,* ö. Then ,!(tt)> (logz) 12. Lef rr) ro
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be such that V(r t , t r)
the estimate

Then Lemma 5.4 gives for a _ u,2

(5.1e) a(u r, , tr)
2 ,*-, K(f)'

(;

I
t,
0,

n(r t, 0)

Since n(r t, 0)

so small that

(c' L) cn (log u)"

n(r t, 0) .

we may by Theorem 4.1 choose ö originally

(5.20) y(us r, , t!r)

if u)

Q c 12 a rt, 2 u a rrl such that ,S(q) n f-rcB(t) -
of f-tCE@ which meets fte) is a normal

14, 2.5f. Ilence n(y , g) - n(z , Q) for all A , ?

(5.21) y(a , t'L) _ y(Q ,l) .

We choose w_ glrt and 0-4us
(5.2L) give the desired inequality n(rt, 0;
proved.

We obtain a lim sup result also for the general case if we replace 0 r
by a power of r , uniformly with respect to the point a :

5,22. T heor em. Let f t R"--->R" beanoncanstantquasimerarnorphic
map. Then for ea,ch c > L there er,i,sts u 2 I, il,epenili,ng only an n, c,
and, K(f 1 , such that

n(r)l'-*oPl(rd) < c

where n(r) : supo.fiz n(r , a) .

Proof. The idea of the proof is to find a substitute for the estimate
(5.I0) of IIQ) in the proof of Lemma 5.4.Let the balls Br : B(sr) and
B, :_CE|,l,r) have both spherical chordal radius l/4 . Then for each point
a e R'the spherical chordal distance q(a , Bt) is greater than Il4 for at least
one'rl. There exist ge)0 and balls Ur, Urc B(p) suchthat fUrc Br,
'i,:1,2. Letnow ae-8" andsuppose q(a,Br)>114. Let T beaMöbius
transformation preserving spherical distances such that T(a) : g . Let
B(t) have spherical chordal radius r/4. Then T(fUr) n .B(r) : 0. Set
g : T of .

, tt)

g . Then every component,

domain contained in B(e)

e CE|l. . It follows that

Then (5. f 7) and (5.19) -
c A(0 r,) . The theorem is
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We shall use almost the same argument as in the proof of Lemma 5.4
forthe map g andinasituationwhere c'8:c, tlQo, ,u:2, and.
u <a . If fr is a family of paths joining U, and a continuum which
connects B(r) and B(2 r) in B(2 r), then from an n -dimensional version
of [, Theorem 4] it follows that

(5.23)

if r > ro for some r0 ) pe where d, ) 0 is a constant which depends
only on n. In the proof of 5.4 we now replace in (5.6) and (5.8) c,EQ,t)
by the right hand side of (5.231. Consider the Case 2 in the proof 5.4. If -l.
has the corresponding definition, i.e. it is the family of paths joining
g-LCB(t) and g-18(s) in B(2r) , then LIQ) > M(lr). Then we obtain
for r>r,

0)n_r K(f )t (log r)n-L
(5.24) (c' L) d* (log (u I \1n-r

where we now have used a subscript g to indicate the map. By Theorem
4.8 there exists rr ) m&x (r, ,2) such that

vs(a r , t) ) *,,' o)

(5.25) At(2a11 _ Ar(2ar1

if r > r, and where r, does not depend on the point a . We choose o

so that the factor in front of nr|, 0) in (5.241 is I I c', . Then 2 ?) r < rn
for r>r, where ot>l isaconstant,dependingonlyon %, c,arrd K(f),
and (5.24) and (5.25) give the desired result nr(r , a) < c A7?") for r > r, .

The proof for q(a , Br) ) f/  is similar.
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