Annales Academiz Scientiarum Fennicese Commentationes in honorem
Series A. I. Mathematica Rolf Nevanlinna
Volumen 2, 1976, 565 — 572 LXXX annos nato

ON THE COUNTING FUNCTION FOR THE a-VALUES
OF A MEROMORPHIC FUNCTION

SAKARI TOPPILA

1. Introduction and results

1. We use the usual notation of the Nevanlinna theory. We let %~ denote
the Riemann sphere. For any function f in the plane let n(r) =
Sup,cx n(r , @) be the maximum number of roots of the equation f(z) = a
in [z] <r, and let A(r) be the average value of n(r, a) as a moves over
the Riemann sphere. Hayman [2] has proved that

(1) 1 < liminfa(r) | A(r) < e.

We shall consider the following problem of Hayman [3, Problem 1.16]:
Can e in (1) be replaced by any smaller quantity and in particular by 1 ?
We shall show by an example that e here cannot be replaced by 1 .

Theorem 1. Let h(z) = 4(z—1)/(32), g,w) = 1 — (1 w),
and

= . 2p—1
fla) = =1| 92p—1(h( z[3 )

L Gap(h(z | 3°))

Then f satisfies the condition liminf, | n(r) [ A(r) = 80/179.

2. Next we shall consider the following problem of Erdés (Hayman
[1, Problem 1.25]): Does there exist a meromorphic function such that for
every pair of distinct values a, b we have lim sup, , , n(r, a) [n(r,b) = oo ?
We prove the following theorems.

Theorem 2. There exists a meromorphic functton f such that for
every pair a, b, a # b, we have lim sup,_, n(r, a) [n(r,b) = oo .

Theorem 3. There exists an entire function [ such that for every
pavr of distinct finite values a and b, lim sup, n(r,a)/n(r,b) = .
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3. If @ € X and b € X, the distance between a and b is defined to be
the length of the shorter great circle arc on X joining ¢ and b. This
distance is denoted by d(a,b). If B c [1, o), we denote the logarithmic
measure of B by my(E) = [pdt[t. If E, = E N [1,r], by the lower
logarithmic density of £ we mean lim inf, m,(#,) /log r. Hayman and
Stewart [4] have proved the following

Theorem A. If f is meromorphic in |z| << co and &> 0, there
exists a set B of r-values having positive lower logarithmic density on which
n(r) < (1 + &) e A(r) .

Miles [5] has proved the following

Theorem B. There exist absolute constants K < oo and C € (0,1)
such that if f is any monconstant meromorphic function in |z| < o, there
exists B C [1, ) having lower logarithmic density at least C with the
property that, if &> 0, there exists ry = 14(e) such that if a,, ..., a, are
elements of X with d(a; ,a;)) = € for 1 # j, then

12 7

ilm(r,aj)/A(r) — 1] <

forall rel , r> rye).

We shall show by an example that the characterization of the set &
in Theorem A and in Theorem B is the best possible in the sense that the
exceptional set of r-values may have positive lower logarithmic density.

Theorem 4. Lel s> 10 be an integer. The function

(1 — zexp {— (28}~

fiz) =
1

satisfies the condition n(r , 0) /A PN~ 5 /2 in aset B having lower
logarithmic density at least (2s)7*

H:S

4. For Bc X, we denote n(r,B) = sup,.z n(r,w). Rickman [6]
has proved the following result.

Theorem C. Given M > 1, there exists K > 1 such that of f s
meromorphic in the plane with at least one asymplotic value a and B is a
compact subset of X not containing the point a , then
(2) limsup n(r, B) | A(Kr) < M.

We shall show by an example that if M < 9 /5, the constant K in
(2) cannot be replaced by 1.

Theorem 5. Let t, =100 and for n =1 let t, = 471 and
logr, = (t,]t,_,)log (6 ]5). The entire function

f&) = M1 —z2]r,

n=1
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satisfies the condition lim sup,_ , n(r,0)/ A(7r[6) = 9/5.
Furthermore, we shall show that the set B in (2) cannot be replaced
by 2.
Theorem 6. Let ¢ = 100 and t, = 2»-1 for n > 2, and let
logr, =t,. The entire function

f&) = T(L+2[n)»

1

2
=}

satisfies the condition lim sup,_ n(r) | A(Kr) = oo for every constant
K=1.

2. Proofs

5. Proof of Theorem 1. We denote r, = 3" . The function %2 maps the
circle |z — 16 /7| = 12 /7 onto the circle |w| = 1. Therefore we see
eagily that

71— 3/
f&r >4 = | |
Lll 1— (34"
as z— oo outside the union of the discs
C, = {z:]z2—=16(=1)"r, |7 < 257,]14}.

Let n,(r,a) be the number of roots of the equation f(z) = e in C, N
{z: ]2] <r}. We denote by D, the union of the discs |w| < ¢,
lw — Al <e and |w|>1]e. Let ¢ > 0. It follows from Rouché’s
theorem that n,(57,,a) = 2¢ for all large values of p and all a¢D,.

From the properties of the function g, we see that if p is sufficiently
large, say p > p,, then

(3) Nop(3 Ty ) < (19 /] 20) 22f
and if a¢ D,, then

(4) Ngy 1 (1, @) — Mgy 4(r,0) < & 92p—1
and

(5) Ngy(T , @) — Mgp(r, 00) < & 22r

forevery r>0. Let p>p, and ry, < r <<ry,,, = 37,,. Then we have

2p—2
n(r,0) = Z 2" + Nop_1(r 5 0) + Mgy q(r, 0) + b
k=1

and for w ¢ D,
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202
n(r,w) = kzl 2 gy (1, w) + Mgy (T, W) + ng(r, w)

Now it follows from (4) and (5) that n(r , w) < n(r, 0) — 2*% + n,,(r, ©) +
4 ¢ 2 and we see from (3) that n(r,w) < n(r,0) (1 — 1/80 + 4¢) for
we¢D,. If ry , <r<r,, we see in the same manner as above that
n(r, w) < n(r, o) (719 /80 + 4¢) for w¢ D, . Therefore we have A(r) <
n(r) (19 /80 + 4¢ + 30¢2) for all large values of » and we get
lim inf, _ n(r) [ A(r) = 80 /79 . Theorem 1 is proved.

6. Proof of Theorem 2. Let ¢y, qs,, ... be the sequence of all rational
numbers on the segment [0, 27] . We denote by ¢,(z) a function satisfying
the condition |e,(z)| << 1 /n . We choose a sequence ¢, of positive integers
such that lim, f,.,/f, = oo and set

where

~

1— Z/Tn,k

e = | e
Here 7,, =r,exp{ik/(n*t,)}, k=1,..¢, [6,] =1 and args, =
arg A, — q, where
n—1 ‘p
A, = TLTI(L+ 0, /7,

n
p=1k=1
We assume that 7, — o0 as n — oo so rapidly that

(6) f@) = (1 + @), 4,0, —2) ]9,
= 2

—1/2
n b

inevery C, ,: |z — 1, <7 n , that there exists a finite limit
lim, A, = A # 0, and that f(z)— o0 as z-— oo outside the union of
the dises C, .

Let w # oo . It follows from Rouché’s theorem that if # is sufficiently
large, f takes the value w exactly once in every C,,. We choose an
increasing sequence 7, such that lim, ., arg 0, = . For large values of
s we have

ng—1

n(rns - 1/2,w:f) =1 + z tk < 2tns~1
E=1
and n(r, —1/2,c,f) >, . This implies that

lim sup,_,, n(r, ©) [ n(r,w) = ©.
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Similarly, choosing the sequence 7, such that lim ., argd, = 0, we see
that lim sup,_  n(r,w)/n(r, ) = .

Let a and b be finite, @ = b, and |a| = |b] . For large values of n
we choose a,,, b,,€C,, such that f(a,,) = a and f(b,,) =b. It
follows from (6) that

(7) 7.n,k - wn,k = (Sn ’M)/ ((1 + En(wn,k)) An ,rn)
for w =a,b. We denote

o lal— e — b/ (32 Ja)
e 4,17,

We choose an increasing sequence #n; such that lim,_ , ¢, = arga.Then
lim, ., arg (r, , — @, ;) = 0 and we see from (7) that |a, ,| <7, —d,

< |b,, .| for all large values of s . This implies that
lim sup, ., n(r, a)[n(r,b) = .

If the sequence n, is chosen such that lim,, ¢, =7 + arga, then we
have |b, .| <7, +d, <la, ,/ for all large values of s. Therefore

lim sup,_ , n(r, b)/n(r,a) = co. This completes the proof of Theorem 2.

7. Proof of Theorem 3. Let ¢, and ¢,(z) be as in the proof
of Theorem 2. We choose a sequence {, of positive integers such
that lim, ¢, /t._, = co. Foreach n we choose 4,, 1 <, <1+ 1/n,
such that the polynomial

where b, = exp{2nik/&}, k=1,..,1,,and b, = 6, exp{2aik/t}
for k =t, + 1, ..., {; , satisfies the condition g(z) = (1 + ¢, (2)) (1 — #) in

{z:m[8 <arge < 2(¢, +1/2)m /8, 1/2 < |z] < 2}.

"

We set
iz
w0 n

J@) = N f(z) and f,(z) = (1 —=z/7,,)

n=1 k=1

where 7, =r,exp{2(p, + k)mi/l;}, k=1,.,t, and 71 ,=
r,0,exp{2(p, + k)mi [t} for k=t, + 1,.., 6. We denote
n—1 t; n—1

A, =TI T (—r )" and s, = > .
s=1

n
s=1 k=1

Here p, is the smallest positive integer such that arg 4, z» = ¢, for some
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z satisfying the condition 2z p, [ {2 < argz <2z (p, + 1) [t . We assume
that 7, — o0 as m - oo so rapidly that f(z) — co as z— oo outside the
union of the dises C,,: |z —17,,| <1/r,, and for every n =2,
r, |4, > 1 and r, (5, — 1) > 1. Furthermore, we may assume that

(8) f(Z) /fn(z) = (1 + 84”(2)) An 2
inr,/2<]|z]<2r, and
(9) fi2) = (L +6@)1A = (&/r))

== t?‘ (1 + 84%(2)) (rn,k - 2) / rn,k

inC,,, 1<k<t,,6 nx2.
Let a # oo . If # is sufficiently large, say n > n, , there exists exactly
one point a,, , € 0, , such that f(a, ;) = @ . It follows from (8) and (9) that

(10) rn,k - a’n,k = a (1 + En(an,k)) / (IAnI r;n~1 t?p eXp {1' Qn})

for n>mny, k=1,..,t,.

Let @ and b be finite, @ # b. As in the proof of Theorem 2,
we see from (10) that there exist arbitrarily large values of = such
that for some o, , 7, — 1/r, <o, <7, + 1/7r,, wehave n(o,,a,f)>1,
and n(o,, b, f) < 2_,. Therefore lim sup,_, n(r,a)/n(r,b) = oo, and
Theorem 3 is proved.

8. Proof of Theorem 4. We denote 7, = exp {(2s)"} and o, = ri7V/®) .
Let n > 8 be even. Let |z| =p,. We have log |1 —z/r,_,| = logr, —
2/r, and log |1 —z/7,_,] < (1 + 1/(2s))logr,. Therefore we get

log —s" 11 - 2/s)logr,.

n—1
IO (1 —z/r,)"
m=1

Furthermore, we have log [(1 — z [ 7,)"| < (35"*/5)log 7, and

Inm (1 - z/rm)("s)

m=n-1

"< 1.

log

Combining these estimates we see that |f(z)| < 1 /7, onthecircle |z| = o, ,
if n» is even, m > 8. Similarly, if n > 9 is odd then |[f(z)] > r,
on |z| =p,.

Let p > 5. It follows from Rouché’s theorem that n(g,, ,a)
n(gy, , 0) for |a| = 1/ry,, and if |a] <<1/[r,, then (g, ,a)
(0sp415 @) = (0241, 0) . Therefore

Al

A(sz) =< n(@zp , 00) + n(@2p ,0)/ Top < 2 571
and we see that n(ry, , 0) > (s [ 2) A(gy,) - This implies that for all
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reB = U [ry,, 1)
p=b
we have n(r, 0) | A(r**Y®)) = s [ 2. Clearly B has lower logarithmic den-
sity at least (2s)~*. Theorem 4 is proved.

9. Proof of Theorem 5. Let n > 4. Wehave |f(z)] <<1/r, on
|z —r,| =3r,/4 and |f(z)| > r, on the circles [z — r,| = 117, /12 and
|z| = 7,/12. Then it follows from Rouché’s theorem that n(r,/12,a) =
n(r,[12,0) for |a| < r,. The function logf(z), argf(11r,/6) =0, is
analytic in

D, = {z:3r,/4 < |z—1,] < 117, /12, Rez =7,}

and if 37r,/4 <y < 1lr, /12, then argf(r, +iy)> =i, [2 and
arg f(r, —1y) < — xt, 2. Therefore f takes every value a satisfying
1/r, < |a| <r, atleast t,/2 timesin D,. Thedisc [2| < 7r,/6 does
not contain any point of D, , and we see that

n—1
w(ir,|6,a) <t,]2+ >t
=1

for 1/r, < |a| <r,. Wehave M(2r,,f) < min,_, . |f(z)| and therefore
n(2r,,a) < 2t, forany a € 2. Combining these estimates we get
n—1
A(Tr, [6) < b, ]2+ 2 b+ 4L, /[7,.
E=1
Because n(r,,0) > t,, we see now that n(r,,0) > (9/5) A(7r, [ 6) for
n > 4. Theorem 5 is proved.

10. Proof of Theorem 6. Let K > 1. Let n > 4 be so large that
s, =1,/ (8K)>9r, ,. We denote by D the bounded domain bounded
by the lines L;: Rez=3s,, Ly,: Rez =3s,, Ly: Imz=s,, and
L,: Imz = —s,. The boundary of D is denoted by I'. The function
log f(2) , arg f(1) = 0, isregularin Rez> 0, and we see that |arg f(2)| >
syt [ (27,) on (LyUL)NTI, [fz)] < f(2s,) on L NI, and |f(z)| >
f(2s,) on L, N I'. Therefore log f(z) takes in D all values log f(2s,) +
iy, |yl <s,t,/(2r,). This implies that

(11) nds,) > t, | (32aK).

We see easily that f(z)/z-> o as z->oco outside the union of the
dises C,: |z 47| <r,/12. If = is large then n(r,/2,a) =
= n(r,/2,0)<2t,_, for |a|<r,. Because M(r,,f) < minm,__,n2 lf),
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we have n(r,,a) < n(r2,0) < 2¢, for every a € X . Therefore
(12) A(rn / 2) < 2tn—1 + 8 tn/rn <3 tn-—l

for all large values of . Combining (11) and (12), we see that
lim sup, ,, n(r) | A(K r) = oo . Theorem 6 is proved.
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