ON THE COUNTING FUNCTION FOR THE a-VALUES OF A MEROMORPHIC FUNCTION

SAKARI TOPPILA

1. Introduction and results

1. We use the usual notation of the Nevanlinna theory. We let Σ denote the Riemann sphere. For any function f in the plane let $n(r) = \sup_{a \in \Sigma} n(r, a)$ be the maximum number of roots of the equation f(z) = a in $|z| \leq r$, and let A(r) be the average value of n(r, a) as a moves over the Riemann sphere. Hayman [2] has proved that

$$(1) 1 \leq \liminf_{r \to \infty} n(r) / A(r) \leq e.$$

We shall consider the following problem of Hayman [3, Problem 1.16]: Can e in (1) be replaced by any smaller quantity and in particular by 1? We shall show by an example that e here cannot be replaced by 1.

Theorem 1. Let h(z) = 4(z-1)/(3z), $g_n(w) = 1 - (1/w)^{2^n}$, and

$$f(z) \; = \; \overline{ \prod_{p=1}^{\infty} } \, rac{g_{2p-1}(h(-z \mid 3^{2p-1}))}{g_{2p}(h(z \mid 3^{2p}))} \, .$$

Then f satisfies the condition $\liminf_{r\to\infty} n(r) / A(r) \ge 80 / 79$.

2. Next we shall consider the following problem of Erdös (Hayman [1, Problem 1.25]): Does there exist a meromorphic function such that for every pair of distinct values a, b we have $\limsup_{r\to\infty} n(r,a)/n(r,b) = \infty$? We prove the following theorems.

Theorem 2. There exists a meromorphic function f such that for every pair a, b, $a \neq b$, we have $\limsup_{r \to \infty} n(r, a) / n(r, b) = \infty$.

Theorem 3. There exists an entire function f such that for every pair of distinct finite values a and b, $\limsup_{r\to\infty} n(r,a)/n(r,b) = \infty$.

3. If $a \in \Sigma$ and $b \in \Sigma$, the distance between a and b is defined to be the length of the shorter great circle arc on Σ joining a and b. This distance is denoted by $\delta(a,b)$. If $E \subset [1,\infty)$, we denote the logarithmic measure of E by $m_1(E) = \int_E dt \, / \, t$. If $E_r = E \cap [1,r]$, by the lower logarithmic density of E we mean $\liminf_{r \to \infty} m_1(E_r) \, / \log r$. Hayman and Stewart [4] have proved the following

Theorem A. If f is meromorphic in $|z| < \infty$ and $\varepsilon > 0$, there exists a set E of r-values having positive lower logarithmic density on which $n(r) < (1 + \varepsilon) \ e \ A(r)$.

Miles [5] has proved the following

Theorem B. There exist absolute constants $K < \infty$ and $C \in (0, 1)$ such that if f is any nonconstant meromorphic function in $|z| < \infty$, there exists $E \subset [1, \infty)$ having lower logarithmic density at least C with the property that, if $\varepsilon > 0$, there exists $r_0 = r_0(\varepsilon)$ such that if $a_1, ..., a_q$ are elements of Σ with $\delta(a_i, a_j) \geq \varepsilon$ for $i \neq j$, then

$$\sum_{j=1}^{q} |n(r, a_j) / A(r) - 1| < K$$

for all $r \in E$, $r > r_0(\varepsilon)$.

We shall show by an example that the characterization of the set E in Theorem A and in Theorem B is the best possible in the sense that the exceptional set of r-values may have positive lower logarithmic density.

Theorem 4. Let s > 10 be an integer. The function

$$f(z) = \prod_{n=1}^{\infty} (1 - z \exp \{-(2 s)^n\})^{(-s)^n}$$

satisfies the condition $n(r, 0) / A(r^{1+1/(5s)}) > s/2$ in a set B having lower logarithmic density at least $(2s)^{-4}$.

4. For $B \subset \Sigma$, we denote $n(r, B) = \sup_{w \in B} n(r, w)$. Rickman [6] has proved the following result.

Theorem C. Given M>1, there exists K>1 such that if f is meromorphic in the plane with at least one asymptotic value a and B is a compact subset of Σ not containing the point a, then

(2)
$$\limsup_{r \to \infty} n(r, B) / A(K, r) \leq M.$$

We shall show by an example that if M < 9 / 5, the constant K in (2) cannot be replaced by 1.

Theorem 5. Let $t_0 = 100$ and for $n \ge 1$ let $t_n = 4^{t_{n-1}}$ and $\log r_n = (t_n / t_{n-1}) \log (6 / 5)$. The entire function

$$f(z) = \prod_{n=1}^{\infty} (1 - z / r_n)^{t_n}$$

satisfies the condition $\limsup_{r\to\infty} n(r, 0) / A(7r/6) \ge 9/5$.

Furthermore, we shall show that the set $\,B\,$ in (2) cannot be replaced by $\,\mathcal{\Sigma}\,$.

Theorem 6. Let $t_1=100$ and $t_n=2^{t_{n-1}}$ for $n\geq 2$, and let $\log r_n=t_n$. The entire function

$$f(z) = \prod_{n=1}^{\infty} (1 + z / r_n)^{t_n}$$

satisfies the condition $\limsup_{r\to\infty} n(r) / A(K|r) = \infty$ for every constant $K\geq 1$.

2. Proofs

5. Proof of Theorem 1. We denote $r_n=3^n$. The function h maps the circle |z-16|/7|=12/7 onto the circle |w|=1. Therefore we see easily that

$$f(z) \rightarrow A = \prod_{p=1}^{\infty} \frac{1 - (3/4)^{2^{2p}-1}}{1 - (3/4)^{2^{2p}}}$$

as $z \to \infty$ outside the union of the discs

$$C_n = \{ z : |z - 16 (-1)^n r_n / 7 | < 25 r_n / 14 \}.$$

Let $n_p(r\,,a)$ be the number of roots of the equation f(z)=a in $C_p\cap\{z:\,|z|\leq r\,\}$. We denote by D_ε the union of the discs $|w|<\varepsilon$, $|w-A|<\varepsilon$ and $|w|>1\,/\,\varepsilon$. Let $\varepsilon>0$. It follows from Rouché's theorem that $n_p(5\,r_p\,,a)=2^p$ for all large values of p and all $a\notin D_\varepsilon$.

From the properties of the function g_n we see that if p is sufficiently large, say $p \ge p_{\varepsilon}$, then

$$n_{2p}(3\;r_{2p}\;,\;\infty)\;<\;(19\;/\;20)\;2^{2p}$$

and if $a \notin D_{\varepsilon}$, then

(4)
$$n_{2p-1}(r, a) - n_{2p-1}(r, 0) < \varepsilon 2^{2p-1}$$

and

(5)
$$n_{2p}(r, a) - n_{2p}(r, \infty) < \varepsilon 2^{2p}$$

for every $\, r > 0$. Let $\, p > p_{\varepsilon} \,$ and $\, r_{2p} \, \leq \, r < r_{2p+1} \, = \, 3 \, \, r_{2p}$. Then we have

$$n(r,0) = \sum_{k=1}^{2p-2} 2^k + n_{2p-1}(r,0) + n_{2p+1}(r,0) + 2^{2p}$$

and for $w \notin D_{\varepsilon}$

$$n(r, w) = \sum_{k=1}^{2p-2} 2^k + n_{2p-1}(r, w) + n_{2p+1}(r, w) + n_{2p}(r, w).$$

Now it follows from (4) and (5) that $n(r, w) \leq n(r, 0) - 2^{2p} + n_{2p}(r, \infty) + 4 \varepsilon 2^{2p}$ and we see from (3) that $n(r, w) \leq n(r, 0) (1 - 1 / 80 + 4 \varepsilon)$ for $w \notin D_{\varepsilon}$. If $r_{2p-1} \leq r < r_{2p}$, we see in the same manner as above that $n(r, w) \leq n(r, \infty) (79 / 80 + 4 \varepsilon)$ for $w \notin D_{\varepsilon}$. Therefore we have $A(r) \leq n(r) (79 / 80 + 4 \varepsilon + 30 \varepsilon^2)$ for all large values of r and we get $\lim \inf_{r \to \infty} n(r) / A(r) \geq 80 / 79$. Theorem 1 is proved.

6. Proof of Theorem 2. Let q_1 , q_2 , ... be the sequence of all rational numbers on the segment $[0, 2\pi]$. We denote by $\varepsilon_n(z)$ a function satisfying the condition $|\varepsilon_n(z)| < 1/n$. We choose a sequence t_n of positive integers such that $\lim_{n\to\infty} t_{n+1}/t_n = \infty$ and set

$$f(z) = z \prod_{n=1}^{\infty} f_n(z)$$

where

$$f_n(z) = \prod_{k=1}^{t_n} \frac{1 - z / r_{n,k}}{1 - z / (r_{n,k} + \delta_n)}.$$

Here $r_{n,\,k}=r_n\exp\left\{i\;k\;/\;(n^2\;t_n)\;\right\}$, $\;k=1,\,...,\,t_n\;,\;\;|\delta_n|=1\;$ and $\;\arg\,\delta_n=\arg\,A_n\,-\,q_n\;$ where

$$A_n = \prod_{p=1}^{n-1} \prod_{k=1}^{t_p} (1 + \delta_p / r_{p,k}).$$

We assume that $r_n \to \infty$ as $n \to \infty$ so rapidly that

(6)
$$f(z) = (1 + \varepsilon_n(z)) r_n A_n(r_{n,k} - z) / \delta_n$$

in every $C_{n,\,k}\colon |z-r_{n,\,k}| < r_n^{-1/2}$, $n\ge 2$, that there exists a finite limit $\lim_{n\to\infty}A_n=A\ne 0$, and that $f(z)\to\infty$ as $z\to\infty$ outside the union of the discs $C_{n,\,k}$.

Let $w \neq \infty$. It follows from Rouché's theorem that if n is sufficiently large, f takes the value w exactly once in every $C_{n,\,k}$. We choose an increasing sequence n_s such that $\lim_{s\to\infty} \arg \delta_{n_s} = \pi$. For large values of s we have

$$n(r_{n_s} - 1/2, w, f) = 1 + \sum_{k=1}^{n_s-1} t_k < 2 t_{n_s-1}$$

and $n(r_{n_s}-1/2, \infty, f) > t_{n_s}$. This implies that

$$\lim \, \sup\nolimits_{r \to \infty} \, n(r \; , \; \infty) \; / \; n(r \; , \; w) \; = \; \infty \; .$$

Similarly, choosing the sequence n_s such that $\lim_{s\to\infty}\arg\delta_{n_s}=0$, we see that $\limsup_{r\to\infty}n(r,w)/n(r,\infty)=\infty$.

Let a and b be finite, $a \neq b$, and $|a| \geq |b|$. For large values of n we choose $a_{n,k}$, $b_{n,k} \in C_{n,k}$ such that $f(a_{n,k}) = a$ and $f(b_{n,k}) = b$. It follows from (6) that

(7)
$$r_{n,k} - w_{n,k} = \delta_n w / ((1 + \varepsilon_n(w_{n,k})) A_n r_n)$$

for w = a, b. We denote

$$d_n = \frac{|a| - |a - b|^2 / (32 |a|)}{|A_n| r_n}.$$

We choose an increasing sequence n_s such that $\lim_{s \to \infty} q_{n_s} = \arg a$. Then $\lim_{s \to \infty} \arg (r_{n_s,\,k} - a_{n_s,\,k}) = 0$ and we see from (7) that $|a_{n_s,\,k}| < r_{n_s} - d_{n_s} < |b_{n_s,\,k}|$ for all large values of s. This implies that

$$\lim \sup_{r\to\infty} n(r, a) / n(r, b) = \infty.$$

If the sequence n_s is chosen such that $\lim_{s\to\infty}q_{n_s}=\pi+\arg a$, then we have $|b_{n_s,\,k}|< r_{n_s}+d_{n_s}<|a_{n_s,\,k}|$ for all large values of s. Therefore $\limsup_{r\to\infty}n(r\,,\,b)/n(r\,,\,a)=\infty$. This completes the proof of Theorem 2.

7. Proof of Theorem 3. Let q_n and $\varepsilon_n(z)$ be as in the proof of Theorem 2. We choose a sequence t_n of positive integers such that $\lim_{n\to\infty} t_n/t_{n-1}^4 = \infty$. For each n we choose δ_n , $1<\delta_n<1+1/n$, such that the polynomial

$$g(z) = \prod_{k=1}^{t_n^2} (1 - z / b_k)$$

where $b_k = \exp\{2 \pi i \ k / t_n^2\}$, $k = 1, ..., t_n$, and $b_k = \delta_n \exp\{2 \pi i \ k / t_n^2\}$ for $k = t_n + 1, ..., t_n^2$, satisfies the condition $g(z) = (1 + \epsilon_{t_n}(z)) (1 - z^{t_n^2})$ in

$$\left\{\;z:\;\pi\;/\;t_{n}^{2}\;\leq\;\arg\,z\;\leq\;2\;(t_{n}\;+\;1\;/\;2)\;\pi\;/\;t_{n}^{2}\;,\quad\;1\;/\;2\;\;\leq\;\;|z|\;\;\leq\;\;2\;\right\}\;.$$

We set

$$f(z) = \prod_{n=1}^{\infty} f_n(z)$$
 and $f_n(z) = \prod_{k=1}^{t_n^2} (1 - z / r_{n,k})$

where $r_{n,k} = r_n \exp \{2 (p_n + k) \pi i / t_n^2\}$, $k = 1, ..., t_n$, and $r_{n,k} = r_n \delta_n \exp \{2 (p_n + k) \pi i / t_n^2\}$ for $k = t_n + 1, ..., t_n^2$. We denote

$$A_n = \prod_{s=1}^{n-1} \prod_{k=1}^{t_s^2} (-r_{s,k})^{-1}$$
 and $s_n = \sum_{s=1}^{n-1} t_s^2$.

Here p_n is the smallest positive integer such that $\arg A_n z^{s_n} = q_n$ for some

z satisfying the condition $2 \,\pi \, p_n \, / \, t_n^2 \leq \arg z < 2 \,\pi \, (p_n + 1) \, / \, t_n^2$. We assume that $r_n \to \infty$ as $n \to \infty$ so rapidly that $f(z) \to \infty$ as $z \to \infty$ outside the union of the discs $C_{n,\,k} : \, |z - r_{n,\,k}| < 1 \, / \, r_n$, and for every $n \geq 2$, $r_n \, |A_n| > 1$ and $r_n \, (\delta_n - 1) > 1$. Furthermore, we may assume that

(8)
$$f(z) / f_n(z) = (1 + \varepsilon_{4n}(z)) A_n z^{s_n}$$

in $r_n / 2 < |z| < 2 r_n$ and

(9)
$$f_{n}(z) = (1 + \varepsilon_{t_{n}}(z)) (1 - (z / r_{n})^{t_{n}^{2}})$$
$$= t_{n}^{2} (1 + \varepsilon_{t_{n}}(z)) (r_{n,k} - z) / r_{n,k}$$

in $C_{n,k}$, $1 \le k \le t_n$, $n \ge 2$.

Let $a \neq \infty$. If n is sufficiently large, say $n \geq n_0$, there exists exactly one point $a_{n,k} \in C_{n,k}$ such that $f(a_{n,k}) = a$. It follows from (8) and (9) that

$$(10) r_{n,k} - a_{n,k} = a \left(1 + \varepsilon_n(a_{n,k})\right) / \left(|A_n| r_n^{s_n-1} t_n^2 \exp\left\{i q_n\right\}\right)$$

for $n > n_0$, $k = 1, ..., t_n$.

Let a and b be finite, $a \neq b$. As in the proof of Theorem 2, we see from (10) that there exist arbitrarily large values of n such that for some ϱ_n , $r_n - 1/r_n < \varrho_n < r_n + 1/r_n$, we have $n(\varrho_n, a, f) > t_n$ and $n(\varrho_n, b, f) < 2 t_{n-1}^2$. Therefore $\limsup_{r \to \infty} n(r, a)/n(r, b) = \infty$, and Theorem 3 is proved.

8. Proof of Theorem 4. We denote $r_n = \exp\left\{(2\,s)^n\right\}$ and $\varrho_n = r_n^{1+1/(2\,s)}$. Let $n\geq 8$ be even. Let $|z|=\varrho_n$. We have $\log|1-z/r_{n-1}|\geq \log r_n-2/r_n$ and $\log|1-z/r_{n-2}|\leq (1+1/(2\,s))\log r_n$. Therefore we get

$$\log \left| \prod_{m=1}^{n-1} (1 - z / r_m)^{(-s)^m} \right| \leq -s^{n-1} (1 - 2 / s) \log r_n.$$

Furthermore, we have $\log |(1-z/r_n)^{s^n}| \leq (3s^{n-1}/5) \log r_n$ and

$$\log \left| \prod_{m=n+1}^{\infty} (1 - z / r_m)^{(-s)^m} \right| \leq 1.$$

Combining these estimates we see that $|f(z)| < 1 / r_n$ on the circle $|z| = \varrho_n$, if n is even, $n \ge 8$. Similarly, if $n \ge 9$ is odd then $|f(z)| > r_n$ on $|z| = \varrho_n$.

Let $p \geq 5$. It follows from Rouché's theorem that $n(\varrho_{2p}, a) = n(\varrho_{2p}, \infty)$ for $|a| \geq 1 / r_{2p}$, and if $|a| < 1 / r_{2p}$ then $n(\varrho_{2p}, a) \leq n(\varrho_{2p+1}, a) = n(\varrho_{2p+1}, 0)$. Therefore

$$A(\varrho_{2p}) \,\, \leq \,\, n(\varrho_{2p} \,\, , \,\, \infty) \,+ \, n(\varrho_{2p} \,\, , \,\, 0) \,\, / \,\, r_{2p} \,\, < \,\, 2 \,\, s^{2p-1}$$

and we see that $n(r_{2b}, 0) > (s/2) A(\varrho_{2b})$. This implies that for all

$$r \in B = igcup_{p=5}^{\infty} [r_{2p} \ , \, r_{2p}^{1+1/(5s)}]$$

we have $n(r, 0) / A(r^{1+1/(5s)}) > s / 2$. Clearly B has lower logarithmic density at least $(2s)^{-4}$. Theorem 4 is proved.

9. Proof of Theorem 5. Let $n \geq 4$. We have $|f(z)| < 1/r_n$ on $|z-r_n|=3\,r_n/4$ and $|f(z)|>r_n$ on the circles $|z-r_n|=11\,r_n/12$ and $|z|=r_n/12$. Then it follows from Rouché's theorem that $n(r_n/12\,,a)=n(r_n/12\,,0)$ for $|a|< r_n$. The function $\log f(z)$, $\arg f(11\,r_n/6)=0$, is analytic in

$$D_n = \{ z : 3 r_n / 4 \le |z - r_n| \le 11 r_n / 12, \operatorname{Re} z \ge r_n \}$$

and if $3 r_n / 4 \le y \le 11 r_n / 12$, then $\arg f(r_n + i y) > \pi t_n / 2$ and $\arg f(r_n - i y) < -\pi t_n / 2$. Therefore f takes every value a satisfying $1 / r_n < |a| < r_n$ at least $t_n / 2$ times in D_n . The disc $|z| \le 7 r_n / 6$ does not contain any point of D_n , and we see that

$$n(7 r_n / 6, a) < t_n / 2 + \sum_{k=1}^{n-1} t_k$$

for $1/r_n < |a| < r_n$. We have $M(2 r_n, f) < \min_{|z| = r_n^2} |f(z)|$ and therefore $n(2 r_n, a) < 2 t_n$ for any $a \in \Sigma$. Combining these estimates we get

$$A(7 \, r_{n} \, / \, 6) \, < \, t_{n} \, / \, 2 \, + \sum_{k=1}^{n-1} t_{k} \, + \, 4 \, t_{n} \, / \, r_{n} \, .$$

Because $n(r_n, 0) > t_n$, we see now that $n(r_n, 0) > (9/5) A(7r_n/6)$ for $n \ge 4$. Theorem 5 is proved.

10. Proof of Theorem 6. Let $K \geq 1$. Let $n \geq 4$ be so large that $s_n = r_n / (8 K) > 9 r_{n-1}$. We denote by D the bounded domain bounded by the lines L_1 : Re $z = s_n$, L_2 : Re $z = 3 s_n$, L_3 : Im $z = s_n$, and L_4 : Im $z = -s_n$. The boundary of D is denoted by Γ . The function $\log f(z)$, $\arg f(1) = 0$, is regular in Re z > 0, and we see that $|\arg f(z)| > s_n t_n / (2 r_n)$ on $(L_3 \cup L_4) \cap \Gamma$, $|f(z)| < f(2 s_n)$ on $L_1 \cap \Gamma$, and $|f(z)| > f(2 s_n)$ on $L_2 \cap \Gamma$. Therefore $\log f(z)$ takes in D all values $\log f(2 s_n) + i y$, $|y| \leq s_n t_n / (2 r_n)$. This implies that

(11)
$$n(4 s_n) \geq t_n / (32 \pi K).$$

We see easily that $f(z)/z \to \infty$ as $z \to \infty$ outside the union of the discs $C_n: |z+r_n| < r_n/12$. If n is large then $n(r_n/2, a) = n(r_n/2, 0) < 2t_{n-1}$ for $|a| < r_n$. Because $M(r_n, f) < \min_{|z| = r_n^2} |f(z)|$,

we have $n(r_n, a) \leq n(r_n^2, 0) < 2 t_n$ for every $a \in \Sigma$. Therefore

$$(12) A(r_n/2) < 2t_{n-1} + 8t_n/r_n < 3t_{n-1}$$

for all large values of n. Combining (11) and (12), we see that $\limsup_{r\to\infty} n(r) / A(K r) = \infty$. Theorem 6 is proved.

References

- [1] HAYMAN, W. K.: New problems. Symposium on Complex Analysis, Canterbury, 1973, Clunie, J. and W. K. Hayman eds., London Math. Soc. Lecture Note Series 12, Cambridge University Press, Cambridge, 1974, 155-180.
- [2] ->- Meromorphic functions. Clarendon Press, Oxford, 1964.
- [3] ->- Research problems in function theory. Athlone Press, London, 1967.
- [4] HAYMAN, W. K., and F. M. STEWART: Real inequalities with applications to function theory. Proc. Cambridge Philos. Soc. 50, 1954, 250—260.
- [5] MILES, J.: Bounds on the ratio n(r, a) / S(r) for meromorphic functions. Trans. Amer. Math. Soc. 162, 1971, 383-393.
- [6] RICKMAN, S.: On the value distribution of quasimeromorphic maps. Ann. Acad. Sci. Fenn. Ser. A I 2, 1976, 447—466.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 29 August 1975