A NOTE ON HURWITZ'S ZETA-FUNCTION

R. BALASUBRAMANIAN

The aim of this paper is to prove an asymptotic formula for the mean square of Hurwitz's zeta-function, defined by

$$\zeta(s; \alpha) = \sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^s}$$
 in Re $s > 1$

and its analytic continuation in Re $s \le 1$. The result is as follows:

Theorem. If $\zeta_1(s;\alpha) = \zeta(s;\alpha) - 1/\alpha^s$, then for $t \ge 30$,

$$\int_{0}^{1} |\zeta_{1}(1/2+it,\alpha)|^{2} d\alpha = \log t + O(\log \log t).$$

This improves the result of Koksma and Lekkerkerker [2] which states that

$$\int_{2}^{1} |\zeta_1(1/2+it,\alpha)|^2 d\alpha = O(\log t).$$

It is very likely that the error term $O(\log \log t)$ of the theorem can be improved.

A modification of our proof gives an asymptotic formula for $\sum_{\chi} |L(s,\chi)|^2$, which improves a theorem of Gallagher [1] in some range of t. It will form the subject matter of another paper.

We prove the theorem by establishing six lemmas.

Lemma 1. We have

$$\zeta_1(1/2+it,\alpha) = \sum_{1 \le n \le T} \frac{1}{(n+\alpha)^{1/2+it}} + O(t^{-1/2}),$$

where T is the nearest integer to t.

Proof. This is well known.

Lemma 2. We have

where
$$\int_{0}^{1} |\zeta_{1}(1/2+it,\alpha)|^{2} d\alpha = \log t + O(|J_{1}+J_{2}+J_{3}-J_{4}-J_{5}-J_{6}|) + O(1),$$
 where
$$J_{1} = \sum_{k \leq T^{1/2}} \frac{(T-k+1)^{1/2}(T+1)^{1/2}e^{-it(\log(T-k+1)-\log(T+1))}}{tk},$$

$$J_{2} = \sum_{T^{1/2} < k \leq T^{1/2}\log^{3}T} \frac{(T-k+1)^{1/2}(T+1)^{1/2}e^{-it(\log(T-k+1)-\log(T+1))}}{tk},$$

$$J_{3} = \sum_{T^{1/2}\log^{3}T < k \leq T} \frac{(T-k+1)^{1/2}(T+1)^{1/2}e^{-it(\log(T-k+1)-\log(T+1))}}{tk},$$

$$J_{4} = \sum_{k=1}^{T} \frac{(1+k)^{1/2}e^{it\log(1+k)}}{tk},$$

$$J_{5} = \frac{1}{2} \sum_{k=1}^{T} \int_{1}^{T-k+1} \frac{v^{-1/2}(v+k)^{1/2}e^{-it(\log v-\log(v+k))}}{tk} dv,$$
 and

$$J_6 = \frac{1}{2} \sum_{k=1}^{T} \int_{1}^{T-k+1} \frac{(v+k)^{-1/2} v^{1/2} \cdot e^{-it(\log v - \log(v+k))}}{tk} dv.$$

Proof. Using Lemma 1, we have

$$\int_{0}^{1} |\zeta_{1}(1/2+it,\alpha)|^{2} d\alpha = \int_{0}^{1} \sum_{n \leq T} \sum_{m \leq T} \frac{1}{(n+\alpha)^{1/2+it}} \frac{1}{(m+\alpha)^{1/2-it}} d\alpha + O(1)$$

and the terms corresponding to m=n give the main term $\log t$, with an error O(1). The terms $m \neq n$ give

$$\int_{0}^{1} \sum_{\substack{n \leq T \\ m \neq n}} \sum_{m \leq T} \frac{1}{(n+\alpha)^{1/2+it}} \frac{1}{(m+\alpha)^{1/2-it}} d\alpha$$

$$= \int_{0}^{1} \sum_{m \leq T} \sum_{n < m} \frac{1}{(n+\alpha)^{1/2+it}} \frac{1}{(m+\alpha)^{1/2-it}} d\alpha$$

$$+ \int_{0}^{1} \sum_{m \leq T} \sum_{n > m} \frac{1}{(n+\alpha)^{1/2+it}} \frac{1}{(m+\alpha)^{1/2-it}} d\alpha.$$

It is sufficient to consider one of the terms. We obtain

$$\int_{0}^{1} \sum_{m \leq T} \sum_{n=1}^{T} \frac{1}{(n+\alpha)^{1/2+it}} \frac{1}{(m+\alpha)^{1/2-it}} d\alpha$$

$$= \sum_{k=1}^{T} \sum_{n=1}^{T-k} \int_{0}^{1} \frac{1}{(n+\alpha)^{1/2+it}} \frac{1}{(n+k+\alpha)^{1/2-it}} d\alpha$$

$$= \sum_{k=1}^{T} \sum_{n=1}^{T-k} \int_{n}^{n+1} \frac{1}{v^{1/2+it}(v+k)^{1/2-it}} dv$$

$$= \sum_{k=1}^{T} \int_{1}^{T-k+1} \frac{1}{v^{1/2}(v+k)^{1/2}} e^{-it(\log v - \log(v+k))} dv$$

$$= -i \sum_{k=1}^{T} \frac{1}{kt} \int_{1}^{T-k+1} v^{1/2}(v+k)^{1/2} d(e^{-it(\log v - \log(v+k))})$$

$$= -i \sum_{k=1}^{T} \frac{1}{kt} \left[v^{1/2}(v+k)^{1/2} e^{-it(\log v - \log(v+k))} \right]_{1}^{T-k+1}$$

$$+ i \sum_{k=1}^{T} \frac{1}{kt} \int_{1}^{T-k+1} ((1/2)v^{-1/2}(v+k)^{1/2} + (1/2)(v+k)^{-1/2}v^{1/2}) e^{-it(\log v - \log(v+k))} dv$$

$$= -i (J_{1} + J_{2} + J_{3} - J_{4} - J_{5} - J_{6}).$$

This proves the lemma.

Lemma 3. If J_4 and J_2 are as defined in Lemma 2, then,

$$J_4 = O(1), \quad J_2 = O(\log \log T).$$

Proof. Trivial.

Lemma 4. If J_5 and J_6 are as defined in Lemma 2, then

$$J_5 = O(1), \quad J_6 = O(1).$$

Proof. The result follows, using Lemma 4.3 (p. 61) of Titchmarsh [3].

Lemma 5. If J_1 is as defined in Lemma 2, then $J_1 = O(1)$.

Proof. In J_1 , $\log (T-k+1) - \log (T+1)$ can be replaced by -k/(T+1) with a small error. Hence

$$J_1 = \sum_{k < T^{1/2}} \frac{(T - k + 1)^{1/2} (T + 1)^{1/2} \cdot e^{itk/(T + 1)}}{tk} + O(1).$$

Since the partial sums of $\sum_{k} e^{itk/(T+1)}$ are bounded, the result follows from Abel's partial summation formula.

Lemma 6. If J_3 is as defined in Lemma 2, then

$$J_3 = O(1).$$

Proof. We apply Theorem 5.9 (p. 90) of Titchmarsh [3] to get a good bound for the sums

$$\sum_{X \le k \le Y} e^{-it \log (T - k + 1)}$$

where $Y \le X$; and $T^{1/2} \log^3 T \le X \le T/100$, and use Abel's partial summation formula to prove that

$$\sum_{T^{1/2}\log^3T < k \leq T/100} \frac{(T-k+1)^{1/2}(T+1)^{1/2}e^{-it(\log(T-k+1) - \log(T+1))}}{tk}$$

is O(1). We observe that

$$\sum_{T/100 < k \le T} \frac{(T-k+1)^{1/2} (T+1)^{1/2} e^{-it(\log(T-k+1) - \log(T+1))}}{tk}$$

is O(1). This proves the lemma.

The theorem follows from Lemmas 2 to 6.

Acknowledgement. The author wishes to express his thanks to Prof. K. Ramachandra for his encouragement and for checking the manuscript.

References

- [1] GALLAGHER, P. X.: Local mean value and density estimates for Dirichlet L-functions. Indag. Math. 37, 1975, 259—264.
- [2] Koksma, J. F., and C. G. Lekkerkerker: A mean-value theorem for $\zeta(s, w)$. Indag. Math. 14, 1952, 446—452.
- [3] TITCHMARSH, E. C.: The theory of the Riemann zeta-function. Clarendon Press, Oxford, 1951.

Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400 005 India

Received 21 February 1978