DENSITIES OF MEASURES ON THE REAL LINE

PERTTI MATTILA

1. Introduction. Suppose that μ is an outer measure on the real line R such that $\mu(R) > 0$ and all Borel sets are μ measurable. Let $h: (0, \infty) \rightarrow (0, \infty)$ be a nondecreasing function with $\lim_{r\downarrow 0} h(r) = 0$. These assumptions on μ and h will be made throughout the whole paper. The *upper* and *lower h-densities* of μ at $a \in R$ are defined by

$$\overline{D}(\mu, a) = \limsup_{r \downarrow 0} \mu[a-r, a+r]/h(2r),$$
$$\underline{D}(\mu, a) = \liminf_{r \downarrow 0} \mu[a-r, a+r]/h(2r).$$

If they are equal, their common value is called the *h*-density of μ at *a*, and it is denoted by $D(\mu, a)$. We shall also consider one-sided densities of μ . The upper and lower right *h*-densities of μ are defined by

$$\overline{D}^+(\mu, a) = \limsup_{r \neq 0} \mu[a, a+r]/h(r),$$
$$\underline{D}^+(\mu, a) = \liminf_{r \neq 0} \mu[a, a+r]/h(r).$$

The upper and lower left h-densities $\overline{D}^-(\mu, a)$ and $\underline{D}^-(\mu, a)$ are defined similarly as the upper and lower limits of the ratios $\mu[a-r, a]/h(r)$. The results of this paper are usually stated and proved for right densities, but their obvious analogues hold for left densities as well.

The main results are Theorems 8 and 11. They state that if μ satisfies certain homogeneity conditions in terms of *h*-densities, then it is absolutely continuous with respect to the Lebesgue measure L^1 . More precisely, μ is absolutely continuous if either $0 < D(\mu, a) < \infty$ for μ a.e. $a \in R$ or $0 < \underline{D}^+(\mu, a) \le \overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in R$. These results characterize absolutely continuous measures of R through their density properties.

In Corollaries 9 and 13 to Theorems 8 and 11 we obtain results on the densities of measures which are singular with respect to the Lebesgue measure. Similar results for s-dimensional Hausdorff measures, 0 < s < 1, have been proved by Besicovitch in [1] and [2].

2. Remarks. (1) The results of this paper are false if $\lim_{r \neq 0} h(r) > 0$ as the example where μ is a Dirac measure shows.

(2) In the following proofs we shall usually have the situation where some of the densities defined in Introduction is finite μ a.e. This always implies that $\mu \{a\}=0$ for all $a \in R$.

3. Lemma. Let $A \subset R$. If for every $a \in A$ there is r > 0 such that $(a, a+r) \subset A$, then A is a Borel set.

Proof. Let A_n be the set of all $a \in [-n, n] \cap A$ for which $\sup \{r: (a, a+r) \subset A\} > 1/n$. Then $A = \bigcup_{n=1}^{\infty} A_n$. Define

$$b_1 = \sup A_n, \quad a_1 = \inf [b_1 - 1/n, b_1] \cap A_n,$$

$$b_k = \sup (-\infty, b_{k-1} - 1/n] \cap A_n, \quad a_k = \inf [b_k - 1/n, b_k] \cap A_n,$$

k=2, ..., m, where the process terminates when $(-\infty, b_k-1/n] \cap A_n = \emptyset$. For each $k, I_k = [b_k-1/n, b_k] \cap A_n$ is an interval with end points a_k and b_k , and $A_n = \bigcup_{k=1}^m I_k$. It follows that A is a Borel set.

4. Theorem. The densities $\overline{D}(\mu,)$, $\underline{D}(\mu,)$, $\overline{D}^+(\mu,)$, $\underline{D}^+(\mu,)$, $\overline{D}^-(\mu,)$, $\underline{D}^-(\mu,)$, $\underline{D}^-(\mu,)$ are Borel functions.

Proof. We prove, for example, that $\overline{D}^+(\mu, \cdot)$ is a Borel function. We first show that given $0 < r < \infty$, $f: a \mapsto \mu[a, a+r]$ is a Borel function. Express the interior of the set $\{a: f(a) = \infty\}$ as $\bigcup_{i=1}^{\infty} I_i$, where I_i 's are open disjoint intervals and set

$$A = R \setminus \bigcup_{j=1}^{\infty} \operatorname{Cl} I_j.$$

Let $\alpha \in R$, $a \in A$ such that $f(a) < \alpha$. Then, by the definition of A, there is $b \in (a, a+r)$ such that $f(b) < \infty$. Hence $\mu[a, b+r] \le \alpha + f(b) < \infty$ and

$$\limsup_{c\neq a} f(c) \leq \lim_{c\neq a} \mu[a, c+r] = f(a) < \alpha.$$

Therefore we can find s>0 such that $f(c)<\alpha$ for $c\in(a, a+s)$. By Lemma 3 the set $\{a\in A: f(a)<\alpha\}$ is then a Borel set. Hence f|A is a Borel function. Since $f(a)<\infty$ for at most countably many $a\in R\setminus A$, $f|R\setminus A$ is also a Borel function. Thus f is a Borel function.

Since h is non-decreasing, the set D consisting of all points of discontinuity of h and of all positive rational numbers is countable. If r>0 and $r\notin D$, then for any $\varepsilon>0$ there is $s\in D$ such that $r< s< r+\varepsilon$ and $\mu[a, a+r]/h(r) \leq \mu[a, a+s]/h(s)+\varepsilon$. Hence

$$\overline{D}^+(\mu, a) = \limsup_{\substack{r \neq 0 \\ r \in D}} \mu[a, a+r]/h(r),$$

from which the assertion follows.

If $E \subset R$ the restriction measure $\mu \sqcup E$ is defined by $(\mu \sqcup E)(A) = \mu(E \cap A)$ for $A \subset R$.

5. Theorem. If $E \subset R$ is a Borel set and $\overline{D}(\mu, a) < \infty$ for μ a.e. $a \in E$ or $\overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in E$, then

$$D(\mu \sqcup (R \setminus E), a) = \overline{D}^+(\mu \sqcup (R \setminus E), a) = 0 \text{ for } \mu \text{ a.e. } a \in E.$$

Proof. We prove the theorem under the assumption $\overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in E$. The case $\overline{D}(\mu, a) < \infty$ can be handled similarly. For n=1, 2, ... let

$$E_n = \{a \in E: \mu[a, a+r] \le nh(r) \text{ for } 0 < r \le 1/n\}.$$

Then $\mu(E \setminus \bigcup_{n=1}^{\infty} E_n) = 0$. The assumption $\overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in E$ implies that $\mu\{a\}=0$ for all $a \in E$; therefore μ almost all of E_n can be covered with countably many open intervals each of finite μ -measure. Let I be one such interval and F a closed subset of $I \cap E_n$. To prove that $D(\mu \sqcup (R \setminus E), a) = 0$ for μ a.e. $a \in E$, it is then sufficient to show that $D(\mu \sqcup (R \setminus E), a) = 0$ for μ a.e. $a \in F$, since any Borel set of finite measure can be approximated from within by a closed subset (see, for example [3, 2.2.2 (1)]).

To do this, let $\varepsilon > 0$ and denote

$$A_{\varepsilon} = \{a \in F \colon \overline{D}(\mu \, \mathsf{L}(R \setminus E), a) > \varepsilon\}.$$

By [3, 2.2.2 (1)] there exists a closed set $C \subset I \setminus E$ such that $\mu((I \setminus E) \setminus C) < \varepsilon^2$. For each $a \in A_{\varepsilon}$, there is 0 < r(a) < 1/2n such that $[a - r(a), a + r(a)] \subset I \setminus C$ and $\mu([a - r(a), a + r(a)] \setminus E) > \varepsilon h(2r(a))$. By Besicovitch covering theorem [3, 2.8.14] we can find a sequence $(a_i, r_i) = (a_i, r(a_i))$ of such pairs such that $A_{\varepsilon} \subset \bigcup_{i=1}^{\infty} [a_i - r_i, a_i + r_i]$ and at most k of the intervals $[a_i - r_i, a_i + r_i]$ may have a point in common, where k is an absolute constant. Letting $b_i = \min[a_i - r_i, a_i + r_i] \cap F$, we have

$$\mu([a_i-r_i, a_i+r_i] \cap A_{\varepsilon}) \leq \mu[b_i, b_i+2r_i] \leq nh(2r_i).$$

We obtain

$$\mu(A_{\varepsilon}) \leq \sum_{i=1}^{\infty} \mu([a_i - r_i, a_i + r_i] \cap A_{\varepsilon}) \leq n \sum_{i=1}^{\infty} h(2r_i)$$
$$< (n/\varepsilon) \sum_{i=1}^{\infty} \mu([a_i - r_i, a_i + r_i] \setminus E) \leq (kn/\varepsilon) \mu((I \setminus C) \setminus E) < kn\varepsilon_i$$

and

$$\mu\left\{a\in E\colon \overline{D}^+(\mu \sqcup (R \setminus E), a) > 0\right\} = \lim_{\varepsilon \downarrow 0} \mu(A_{\varepsilon}) = 0$$

To show that $\overline{D}^+(\mu L(R \setminus E), a) = 0$ for μ a.e. $a \in E$, we may proceed as above, but this time applying the Besicovitch covering theorem to intervals [a - r(a)/2, a + r(a)/2] such that $\mu([a, a + r(a)] \setminus E) > \varepsilon h(r(a))$. This completes the proof.

6. Corollary. If $E \subset R$ is a Borel set and $\overline{D}(\mu, a) < \infty$ for μ a.e. $a \in E$ or $\overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in E$, then $\overline{D}(\mu \sqcup E, a) = \overline{D}(\mu, a)$, $\underline{D}(\mu \sqcup E, a) = \underline{D}(\mu, a)$, $\overline{D}^+(\mu \sqcup E, a) = \underline{D}^+(\mu, a)$ for μ a.e. $a \in E$.

7. Theorem. $\overline{D}(\mu, a) \leq \overline{D}^+(\mu, a) = \overline{D}^-(\mu, a) \leq 2\overline{D}(\mu, a)$ for μ a.e. $a \in \mathbb{R}$.

Proof. To prove the inequality $\overline{D}(\mu, a) \leq \overline{D}^+(\mu, a)$, denote $E_t = \{a: \overline{D}^+(\mu, a) \leq t\}$ for $0 < t < \infty$. Fix t and let $\varepsilon > 0$. For n = 1, 2, ..., set

$$E_{t,n} = \{a \in E_t \colon \mu[a, a+r] \le (t+\varepsilon)h(r) \text{ for } 0 < r < 1/n\} \cap [-n, n].$$

Then $\mu(E_{t,n}) < \infty$ and $E_t = \bigcup_{n=1}^{\infty} E_{t,n}$. Let F be a closed subset of $E_{t,n}$. By Theorem 5, $D(\mu L(R \setminus F), a) = 0$ for μ a.e. $a \in F$. Take such a point a and let $0 < r_0 \le 1/2n$ be such that

$$\mu([a-r, a+r] \setminus F) \leq \varepsilon h(2r) \quad \text{for} \quad 0 < r < r_0.$$

Let $0 < r < r_0$ and $b = \min[a - r, a] \cap F$. Then

$$\mu[a-r, a+r] \leq \mu([a-r, a+r] \setminus F) + \mu[b, b+2r] \leq (t+2\varepsilon)h(2r),$$

whence $\overline{D}(\mu, a) \leq t+2\varepsilon$. By [3, 2.2.2 (1)] this implies that $\overline{D}(\mu, a) \leq t+2\varepsilon$ for μ a.e. $a \in E_{t,n}$. Since this holds for all $\varepsilon > 0$ and n=1, 2, ..., we obtain

$$\mu$$
{ $a: \overline{D}^+(\mu, a) \le t, \overline{D}(\mu, a) > t$ } = 0

for $0 < t < \infty$. Since $\{a: \overline{D}(\mu, a) > \overline{D}^+(\mu, a)\}$ is the union of the sets

$$\{a: \, \overline{D}^+(\mu, a) \leq t, \, \overline{D}(\mu, a) > t\}$$

when t runs through the positive rational numbers, we obtain $\overline{D}(\mu, a) \leq \overline{D}^+(\mu, a)$ for μ a.e. $a \in \mathbb{R}$.

To prove the inequality $\overline{D}^+(\mu, a) \leq 2\overline{D}(\mu, a)$, denote $E_t = \{a: \overline{D}(\mu, a) \leq t\}$ for $0 < t < \infty$. Fix t and let $\varepsilon > 0$. Let n be a positive integer and F a closed subset of

$$E_{t,n} = \{a \in E_t : \mu[a-r, a+r] \le (t+\varepsilon)h(2r) \text{ for } 0 < r < 1/n\} \cap [-n, n].$$

Suppose that $a \in F$ and $\overline{D}^+(\mu L(R \setminus F), a) = 0$. By Theorem 5 this is true for μ a.e. $a \in F$. Then there is $0 < r_0 \le 1/n$ such that $\mu([a, a+r] \setminus F) < \varepsilon h(r)$ for $0 < r < r_0$. Let $0 < r < r_0$. If there is $b \in [a+r/2, a+r] \cap F$, then

$$\mu[a, a+r] \le \mu[a-r/2, a+r/2] + \mu[b-r/2, b+r/2] \le 2(t+\varepsilon)h(r).$$

Otherwise $[a+r/2, a+r] \subset [a, a+r] \setminus F$, and the same inequality follows. Hence $\overline{D}^+(\mu, a) \leq 2(t+\varepsilon)$. The proof can be completed as in the first part.

To prove the inequality $\overline{D}^{-}(\mu, a) \leq \overline{D}^{+}(\mu, a)$, let

$$E_{s,t} = \{a : \overline{D}^+(\mu, a) \le t < s \le \overline{D}^-(\mu, a)\}$$

for $0 < t < s < \infty$ and let $0 < \varepsilon < (s-t)/3$. Let *n* be a positive integer and *F* a closed subset of

$$E_{s,t,n} = \{a \in E_{s,t} : \mu[a, a+r] \le (t+\varepsilon)h(r) \text{ for } 0 < r < 1/n\} \cap [-n, n].$$

Suppose that $a \in F$ and $\overline{D}^-(\mu L(R \setminus F), a) = 0$, which again holds for μ a.e. $a \in F$. Then there is 0 < r < 1/n such that

$$\mu([a-r, a] \setminus F) < \varepsilon h(r), \ \mu[a-r, a] > (s-\varepsilon)h(r).$$

Let $b = \min[a-r, a] \cap F$. Then

$$(t+\varepsilon)h(r) \ge \mu[b, a] \ge \mu[a-r, a] - \mu([a-r, a] \setminus F) > (s-2\varepsilon)h(r),$$

and $s-t<3\varepsilon$. This contradicts with the choice of ε , and it follows that $\mu(F)=0$. By a similar argument as in the first part of the proof, we obtain $\overline{D}^{-}(\mu, a) \leq \overline{D}^{+}(\mu, a)$ for μ a.e. $a \in \mathbb{R}$.

The opposite inequality is proved in the same way, and the theorem follows.

We say that μ is absolutely continuous if $L^1(A)=0$ implies $\mu(A)=0$, and that μ is singular if there is a set $E \subset R$ such that $L^1(E)=0$ and $\mu(R \setminus E)=0$.

8. Theorem. If $\overline{D}^+(\mu, a) < \infty$ and $\underline{D}^+(\mu, a) > 0$ for μ a.e. $a \in \mathbb{R}$, then μ is absolutely continuous.

Proof. Using [3, 2.2.2 (1)] we find 0 < d < 1, $0 < r_0 < \infty$ and a closed set $F \subset R$ such that $\mu(F) > 0$ and

$$dh(r) \le \mu[a, a+r] \le h(r)/d$$
 for $0 < r < r_0, a \in F$.

Making r_0 smaller if necessary, we use Theorem 5 to obtain $a \in F$ such that

$$\mu([a, a+r] \setminus F) \le (d^3/8)h(r)$$
 for $0 < r < r_0$

Let $r_i > 0$, $0 < \sum_{i=1}^k r_i < s < r_0$. Choose a positive integer *m* such that $s < m \sum_{i=1}^k r_i < 2s$. Then there are points $a_{i,j} \in F$, i=1, ..., k, j=1, ..., m, such that

$$[a, a+s] \cap F \subset \bigcup_{i,j} [a_{i,j}, a_{i,j}+r_i].$$

Then

$$dh(s) \leq \mu[a, a+s] \leq \mu([a, a+s] \setminus F) + \sum_{i,j} \mu[a_{i,j}, a_{i,j}+r_i]$$

$$\leq (d/2)h(s) + (m/d) \sum_{i=1}^{k} h(r_i) < (d/2)h(s) + \left(2s \left| \left(d \sum_{i=1}^{k} r_i\right)\right) \sum_{i=1}^{k} h(r_i),$$

and

(1)
$$\sum_{i=1}^{k} h(r_i) > (d^2/4) h(s) \sum_{i=1}^{k} r_i/s.$$

Take now $0 < r < r_0/4$ and $r_0/2 \le s < r_0$. Write

$$(a, a+s) \searrow F = \bigcup_{i=1}^{\infty} (a_i, a_i+r_i),$$

where the intervals $(a_i, a_i + r_i)$ are disjoint and $r_1 \ge r_2 \ge \dots$. Suppose that $r_1 \ge r$ and let k be the largest integer such that $r_k \ge r$. Since $a_i \in F$ for all i, we have

$$d\sum_{i=1}^{k} h(r_i) \leq \sum_{i=1}^{k} \mu[a_i, a_i + r_i] \leq \mu([a, a+s] \setminus F) < (d^3/8)h(s)$$

Combining this with (1) we get

$$(d^{3}/4)h(s)\sum_{i=1}^{k}r_{i}/s < (d^{3}/8)h(s)$$

and

$$\sum_{i=1}^{k} r_i < s/2$$

Define $b_1=a$, $b_j=\min[b_{j-1}+r, a+s] \cap F$, j=2, ..., n, where the process stops when $a+s < b_j+r$ or $[b_j+r, a+s] \cap F=\emptyset$. Then $(a, a+s) \setminus \bigcup_{i=1}^k (a_i, a_i+r_i) \subset \bigcup_{i=1}^n [b_i, b_i+2r]$, since $r_i < r$ for i > k. Hence

$$s/2 \leq L^1\left((a, a+s) \setminus \bigcup_{i=1}^k (a_i, a_i+r_i)\right) \leq 2nr,$$

and $n \ge s/4r$. This is true also if $r_1 < r$. Thus we have

$$h(s)/d \ge \mu[a, a+s] \ge \sum_{i=1}^n \mu[b_i, b_i+r] \ge n \, dh(r) \ge s \, dh(r)/4r,$$

which gives

$$h(r) \leq 4rh(s)/(d^2s) \leq (8h(r_0)/(d^2r_0))r.$$

Since this holds for all $0 < r < r_0/4$, the assertion follows from the assumption $\overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in \mathbb{R}$.

9. Corollary. If μ is singular and $\overline{D}^+(\mu, a) < \infty$ for μ a.e. $a \in \mathbb{R}$, then $\underline{D}^+(\mu, a) = 0$ for μ a.e. $a \in \mathbb{R}$.

Proof. If this is not true, there exists a Borel set $E \subset R$ such that $\mu(E) > 0$ and $\underline{D}^+(\mu, a) > 0$ for $a \in E$. By Corollary 6, $\underline{D}^+(\mu \, \mathsf{L} \, E, a) > 0$ for μ a.e. $a \in E$, and Theorem 8 implies that $\mu \, \mathsf{L} \, E$ is absolutely continuous. This is impossible, since μ , and hence $\mu \, \mathsf{L} \, E$, is singular.

10. Theorem. If $E \subset R$ and $\underline{D}^+(\mu, a) = 0$ for μ a.e. $a \in E$, then (with the agreement that $0 \cdot \infty = \infty$)

$$\underline{D}(\mu, a) \leq (\limsup_{r \to 0} h(r)/h(2r))\overline{D}(\mu, a) \quad for \ \mu \ a.e. \quad a \in E.$$

This can be proved with the help of Theorem 5 by the same method as Theorem 5 in [1]. We omit the details.

11. Theorem. If $0 < D(\mu, a) < \infty$ for μ a.e. $a \in R$, then μ is absolutely continuous.

Proof. Suppose μ is not absolutely continuous. Then there is a Borel set $E \subset R$ such that $\mu(E) > 0$ and $\mu \sqcup E$ is singular. Hence by Corollary 6 we may assume that μ is singular. To simplify the notation, we write g(r) = h(2r).

If $\limsup_{r \neq 0} g(r)/g(2r) < 1$, we derive a contradiction from 7, 9 and 10. Therefore we assume that there is a sequence $r_i \neq 0$ such that $\lim_{i \to \infty} g(r_i)/g(2r_i) = 1$. Setting $E_k = \{x \in E: 1/k \leq D(\mu, x) \leq k\}$ for k = 1, 2, ..., we fix k such that $\mu(E_k) > 0$. Let $0 < \varepsilon < 1/k$. We use the notation B(x, r) = [x - r, x + r]. There are $1/k \leq \lambda \leq k$, $0 < r_0 < \infty$ and a closed set $F \subset E$ such that $\mu(F) > 0$ and

$$(\lambda - \varepsilon)g(r) \leq \mu B(x, r) \leq (\lambda + \varepsilon)g(r)$$
 for $x \in F$, $0 < r \leq r_0$.

By Theorem 5 there are $x \in F$ and *i* such that $2r_i \leq r_0$, $g(2r_i) \leq (1+\varepsilon)g(r_i)$ and

$$\mu(B(x,r_i)\backslash F) < \varepsilon g(r_i).$$

Then

$$\mu(B(x, 2r_i) \setminus B(x, r_i)) = \mu B(x, 2r_i) - \mu B(x, r_i)$$

$$\leq (\lambda + \varepsilon)g(2r_i) - (\lambda - \varepsilon)g(r_i) \leq ((1 + \varepsilon)(\lambda + \varepsilon) - (\lambda - \varepsilon))g(r_i) < (3 + k)\varepsilon g(r_i)$$

Denote

$$a = \min [x - r_i, x] \cap F, \quad b = \max [x, x + r_i] \cap F,$$

$$c = \max [a, (a+b)/2] \cap F, \quad d = \min [(a+b)/2, b] \cap F,$$

$$r = b - a, \quad s = c - a, \quad t = b - d.$$

We may assume, without loss of generality, that $t \leq s$. Then

$$B(a, r-t) \cap B(b, r-s) \subset (B(x, r_i) \setminus F) \cup \{c, d\},\$$

whence

$$\mu(B(a, r-t) \cap B(b, r-s)) \leq \varepsilon g(r_i)$$

and

$$\mu(B(a, r-t) \cup B(b, r-s)) = \mu B(a, r-t) + \mu B(b, r-s)$$

$$-\mu(B(a, r-t) \cap B(b, r-s)) \ge (\lambda - \varepsilon)g(r-t) + (\lambda - \varepsilon)g(r-s) - \varepsilon g(r_s)$$

On the other hand

$$(B(a, r-t) \cup B(b, r-s)) \setminus B(a, r) \subset (B(x, r_i) \setminus F) \cup (B(x, 2r_i) \setminus B(x, r_i)),$$

whence

$$\mu(B(a, r-t) \cup B(b, r-s)) \leq \mu B(a, r) + \mu((B(a, r-t) \cup B(b, r-s)) \setminus B(a, r))$$
$$\leq (\lambda + \varepsilon)g(r) + (4+k)\varepsilon g(r_i).$$

Since $r-s \leq r-t$, we obtain combining the above inequalities

$$2(\lambda-\varepsilon)g(r-s) \leq (\lambda-\varepsilon)\big(g(r-s)+g(r-t)\big) \leq (\lambda+\varepsilon)g(r)+(5+k)\varepsilon g(r_i).$$

From the inclusion

$$B(a, r) \setminus B(c, r-s) \subset (B(x, r_i) \setminus F) \cup (B(x, 2r_i) \setminus B(x, r_i))$$

we deduce

$$\begin{aligned} (\lambda - \varepsilon)g(r) &\leq \mu B(a, r) \leq \mu B(c, r - s) + \mu \big(B(a, r) \setminus B(c, r - s) \big) \\ &\leq (\lambda + \varepsilon)g(r - s) + (4 + k)\varepsilon g(r_i). \end{aligned}$$

 $2(\lambda - \varepsilon)g(r - s)$

Hence

$$\leq (\lambda + \varepsilon)^2 (\lambda - \varepsilon)^{-1} g(r - s) + (4 + k) \varepsilon (\lambda + \varepsilon) (\lambda - \varepsilon)^{-1} g(r_i) + (5 + k) \varepsilon g(r_i)$$

Since $r/2 \le r-s$, $1/k \le \lambda \le k$ and k does not depend on ε (whereas λ may), we obtain

$$g(r/2) \leq o(\varepsilon)g(r_i),$$

where $o(\varepsilon) \to 0$ as $\varepsilon \downarrow 0$. Finally, we use the inclusion $B(x, r_i) \cap F \subset B(a, s) \cup B(b, t)$ and the inequalities $s \leq r/2$, $t \leq r/2$ to obtain

$$\begin{aligned} (\lambda - 2\varepsilon)g(r_i) &\leq \mu B(x, r_i) - \mu \big(B(x, r_i) \setminus F \big) = \mu \big(B(x, r_i) \cap F \big) \\ &\leq \mu B(a, s) + \mu B(b, t) \leq (\lambda + \varepsilon)g(s) + (\lambda + \varepsilon)g(t) \\ &\leq 2(\lambda + \varepsilon)g(r/2) \leq 2(\lambda + \varepsilon)o(\varepsilon)g(r_i), \end{aligned}$$

and

$$1/k - 2\varepsilon \leq \lambda - 2\varepsilon \leq 2(\lambda + \varepsilon)o(\varepsilon) \leq 2(k + \varepsilon)o(\varepsilon)$$

which gives a contradiction when $\varepsilon \downarrow 0$.

12. Corollary. If $0 < D(\mu, a) < \infty$ for μ a.e. $a \in R$, then the limit $l = \lim_{r \neq 0} h(r)/r$ exists, $0 < l < \infty$, and

$$u(A) = l \int_{A} D(\mu, x) \, dL^1 x$$

for all L^1 measurable sets $A \subset R$.

Proof. Since μ is absolutely continuous, there exists an L^1 integrable function f such that $0 < f(x) < \infty$ for μ a.e. $x \in R$ and $\mu(A) = \int_A f dL^1$ for all L^1 measurable sets $A \subset R$. By Lebesgue's theorem

$$\lim_{r \to 0} \mu[x - r, x + r]/(2r) = f(x) \text{ for } L^1 \text{ a.e. } x \in R$$

Thus

$$\frac{h(r)}{r} = \frac{\mu[x - r/2, x + r/2]}{r} \cdot \frac{h(r)}{\mu[x - r/2, x + r/2]} \to \frac{f(x)}{D(\mu, x)} \quad \text{as} \quad r \downarrow 0,$$

and

$$f(x) = lD(\mu, x)$$

for μ a.e. $x \in R$.

13. Corollary. If μ is singular and $0 < \overline{D}(\mu, a) < \infty$ for μ a.e. $a \in R$, then $\underline{D}(\mu, a) < \overline{D}(\mu, a)$ for μ a.e. $a \in R$.

14. Remark. It follows as in the proof of 12 that if μ is absolutely continuous, then $0 < \underline{D}^+(\mu, a) = \overline{D}^+(\mu, a) = D(\mu, a) < \infty$ for μ a.e. $a \in \mathbb{R}$ with h(r) = r. Thus the sufficient conditions in Theorems 8 and 11 are also in a sense necessary.

If φ is an outer measure over \mathbb{R}^n such that Borel sets are φ measurable and $0 < \lim_{r \neq 0} \varphi\{y: |x-y| \leq r\}/h(r) < \infty$ for φ a.e. $x \in \mathbb{R}^n$, then there exist a positive integer *m* and a countably (H^m, m) rectifiable (see [3, 3.2.14]) set $E \subset \mathbb{R}^n$ such that φ is absolutely continuous with respect to $H^m \sqcup E$. Here H^m is the *m*-dimensional Hausdorff measure.

This conjecture is true by the results of Marstrand [4] and Moore [5] in the case where $h(r)=r^s$ for some 0 < s < 2. Then it follows that m=s=1. For $s \ge 2$ the question is open.

References

- BESICOVITCH, A. S.: On linear sets of points of fractional dimension. Math. Ann. 101, 1929, 161-193.
- [2] BESICOVITCH, A. S.: On linear sets of points of fractional dimension II. J. London Math. Soc. 43, 1968, 548—550.
- [3] FEDERER, H.: Geometric measure theory. Springer-Verlag, Berlin—Heidelberg—New York, 1969.
- [4] MARSTRAND, J. M.: The (φ, s) regular subsets of *n*-space. Trans. Amer. Math. Soc. 113, 1964, 369–392.
- [5] MOORE, E. F.: Density ratios and (φ , 1) rectifiability in *n*-space. Ibid. 69, 1950, 324-334.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 21 April 1978