A CONFORMAL SELF-MAP WHICH FIXES THREE POINTS IS THE IDENTITY

ERNST PESCHL and MATTI LEHTINEN

Recently I. Lieb raised the question of fixed points of conformal self-maps of plane domains with arbitrary connectivity. He conjectured the following

Theorem. Let A be a plane domain and $f: A \rightarrow A$ a conformal map. If f has three fixed points, then f is the identity map.

In fact, this theorem is an immediate consequence of a result by B. Maskit [2], which states that one may associate with A another domain A', conformally equivalent to A, such that all conformal self-maps of A' are Möbius transformations. Maskit's proof is rather elaborate, as it depends heavily on the structure of the group of conformal self-maps of A. In this note we attempt to give a straightforward and relatively short proof of the theorem.

We first remark that there exist domains of arbitrarily high connectivity allowing conformal self-maps with two fixed points, other than the identity. As an example one may consider any domain A obtained from the plane when the origin and an arbitrary closed set of points on the unit circle, symmetric with respect to the real axis and not containing the points -1 and 1, are deleted. Then f, f(z)=1/z, maps A onto itself and fixes -1 and 1.

If A is simply or doubly connected, consideration of all possible standard domains and their conformal self-maps [3, pp. 226—236] shows that the theorem is true in this case. In the sequel, therefore, we may assume that A is at least triply connected. The unit disc D can then be taken to be the universal covering surface of A, and the cover transformation group G of D relative to A is a non-elementary properly discontinuous group of Möbius transformations.

In what follows we let f be a fixed conformal self-map of A and assume that $f(w_0) = w_0$ for some w_0 in A. Denote the projection map of D onto A by h; there is no loss of generality in assuming $h(0) = w_0$. Also, we may fix a lifting $\tilde{f}: D \to D$ of f such that $\tilde{f}(0) = 0$. Denote the *n*-th iterate of \tilde{f} by \tilde{f}^n . We then have

Lemma. There exists a natural number p such that $\tilde{f}^p = id$.

Proof. Evidently $\tilde{f}(z) = \exp(ia)z$ for some real *a*. Choose a g_0 in *G*, $g_0 \neq id$. Then $g_n = \tilde{f}^n \circ g_0 \circ (\tilde{f}^n)^{-1}$ is in *G*. If the number of distinct g_n 's is infinite, a sequence (g_{n_i}) converges to a conformal *g*. The discontinuity of *G* makes this impossible. Consequently $g_n = g_{n+p}$ for some *n* and $p \ge 1$. In particular, then, $\exp(ia(n+p))g_0(0) = \exp(ian)g_0(0)$. But 0 is not a fixed point of g_0 , and we may cancel by $\exp(ian)g_0(0)$ to obtain the assertion of the Lemma.

To proceed in the proof of the Theorem, let us denote by F the set of points zin D, such that h(z) is a fixed point of f, but $h(z) \neq w_0$. Assume F to be non-empty. The set F has a positive Euclidean distance r from 0. Choose z_1 in F such that $|z_1|=r$, and let p be the smallest natural number such that $\tilde{f}^p = \text{id.}$ Set $z_k = \tilde{f}(z_{k-1})$, $k=2, \ldots, p$, and join every z_k to 0 by the line segment $\tilde{\alpha}_k$. Then $\alpha_k = h(\tilde{\alpha}_k)$ is a path joining $w_1 = h(z_1)$ to w_0 . Moreover, α_k is a Jordan arc. For assume $h(t_1) = h(t_2)$, where $t_1, t_2 \in \tilde{\alpha}_k$, and $|t_1| < |t_2|$. Then w_0 and w_1 are joined by $h(\beta)$, where β consists of the segment $(0, t_1)$ and a circular arc congruent modulo G with the segment (t_2, z_k) . The hyperbolic length of β is strictly smaller than that of $\tilde{\alpha}_k$, but the Euclidean distance of 0 from the other end-point of β is at least r. This is in contradiction with the fact that rays issuing from the origin are geodesics in the hyperbolic metric.

A similar argument shows that for $k \neq j$, α_k and α_j cannot meet except at w_0 and w_1 . Assume $h(t_k) = h(t_j)$ with $t_k \in \tilde{\alpha}_k$, $t_j \in \tilde{\alpha}_j$. Because $h(t_k)$ is not a fixed point of f, we may suppose $|t_k| < |t_j|$. It follows that w_0 and w_1 are joined by $h(\gamma)$, where γ is composed of the segment $(0, t_k)$ and a circular arc congruent modulo G with the segment (t_j, z_j) . Again, the hyperbolic length of γ is strictly less than that of $\tilde{\alpha}_k$, while the Euclidean distance of 0 from the other end-point of γ is at least r.

To complete the proof, assume w_2 is a fixed point of f, distinct from w_0 and w_1 . One may join w_2 , which does not lie on any α_k , to w_0 by an arc α which does not meet any α_k . Then α lies in the Jordan domain B (of the extended plane) bounded by, say, α_k and α_j , where α_k and α_j are adjacent segments. Consider the lifting $\tilde{\alpha}$ of α , with initial point 0. Since h is a local homeomorphism at 0, we see that $f(\alpha)$ must emerge from w_0 into the complement of B. Then $f(\alpha)$ must have a point in common either with α_k or α_j . But this is impossible, since f carries the set of arcs α_k onto itself [4].

Remark. Another proof for the Theorem above has been found by K. Leschinger (Bonn) [1].

References

- [1] LESCHINGER, K.: Über Fixpunkte holomorpher Automorphismen. Manuscripta Math. 25, 1978, 391-396.
- [2] MASKIT, B.: The conformal group of a plane domain. Amer. J. Math. 90, 1968, 718-722.

[3] PESCHL, E.: Funktionentheorie I. - Bibliographisches Institut, Mannheim, 1967.

[4] PESCHL, E.: Über das Fixpunktverhalten von Automorphismen beliebiger Bereiche. - Preprint no. 173 (Januar 1978) Universität Bonn (Sonderforschungsbereich 72), 1–10.

Universität Bonn Mathematisches Institut D-5300 Bonn BRD University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

86

Received 24 April 1978