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RINGS OF FUNCTIONS IN LIPSCHITZ TOPOTOGY

JOUNI LUUKKAINEN

Introduction

Let X atd,Ibe metric spaces with metrics d and d', respectively. A map f: X-Y
is Lipschitz if there is I>0 such that d'(f(*),-f(y))=Ld(x,y) for all x,yCX.
The smallest such I is the Lipschitz constant lip f of f. These notions make sense

also for pseudometric spaces. If each point of X has a neighborhood on which / is

Lipschitz, f is locally Lipschitz (LIP). Ifl is bijective and both/and f -' are Lipschitz
(resp. LIP), f is a Lipschitz homeomorphisnt (resp. lipeomorphism). See [4] for a

more comprehensive treatment of Lipschitz topology.
This paper is concerned with real-valued Lipschitz arrdLlP functions on metric

spaces. Theorem 1.2 characterizes the pairs (Lip (X),lip) ana (L(X),liplz(x)),
where Lip (X) and L(X) are the sets of all Lipschitz functions and all bounded

Lipschitz functions, respectively, on X and where lip is the funclion .l*lip/ on

Lip (X). In Section 2 we investigate how homomorphisms of rings Z(X) are related

to maps of metric spaces. In particular, we show in 2.23 that L(X) and L(Y) are

isomorphic if and only if the completions of X and Y are LS homeomorphic in the

sense of 2.14; this generalizes a result due to Sherbert [20]. Section 3 is devoted to
the rings l(X) and l* (X) of all LIP functior» and all bounded LIP functions, respec-

tively, on X. In 3.5 a new proof is given for Su's theorem 124,6.4'lthat X and I are

lipeomorphic if and only if l(X) and l(Y) are isomorphic. A similar result holds for
l*(X).In 3.11 we study relations between X and a natural topology on /(X). We

also consider ideals of l(X) and l*(X).In the last section we study ideals in and

charactertze homomorphisms of the rings /o(X) and äo(X) of all LIP functions on a
locally compact metric space X vanishing at infinity or with compact support,
respectively, and obtain analogues of Su's theorem.

We will often use McShane's theorem [15, Theorem 1] stating that if AcX,
then every Lipschitz f: A*R has an extension f: X-R with lipf:lipl If
f,g; X*R are Lipschitz and h is either max(f,g) or min(/g), then liph=
max (lipl lip g). Thus, if / in McShane's theorem is bounded, J can be chosen

to be bounded with the sup norm lllll-:ll"fil-.
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1. A characterization of the set of Lipschitz functions

1.1. The characterization of (I-lp 14, lip) in 1.2 is based on the identity f(x):
supyex (fU)-Qipf)d(x,y)), valid for all f(Lip(x) and x(x (cf. below).
We denote m(S):{fent1f bounded} if ,S is a set and sometimes lipof:tip| i1

fCLip (X). If S is a set, Kc.R§, and max (f,deX for all f,g(K, we say that
K is ntax-closed.

1.2. Theorem. Let S be anorusoid set, let AcRs (resp. Acm(S)) and let
p: Atl), *). Then there is a metric q on S such that A:Lip (5, q) (resp.l:L(5, g))
and p(f):1ipnf for euery f€A if and only if the following six conditions are sat-
isfied, where A,:{feAlpU)=t) and A,(x):{fel,,l1x1:0} for t>0 and x(S:

(l) If fel and t(R, then tf(A and p(tf):ltlp(f).
(2) If fe,q and t(R, then f+tcA and p(f+t):p(f).
(3) If f, g<A and h:max (f, g), then h(A and p(h)<max(p(f), pG)).
(4) If KcA is mqx-closed qnd nonuoid, M:sup {pG)lSeX}-*, and

,f:sup K<.* (resp.f is bounded), then feA and p(f)=M.
(5) There rs x6( S with sup {/(x)l/€,41(xo)}<- for euery x€5.
(6) A separates points of S or, if card,S:l, ls norutoid.

The metric g is uniquely giuen by

Q(x, v) : sup tftrl -f (v)l l/€ AL]r, x, y€ ,s.

Proof. We consider the case of bounded functions only, because the case of
not necessarily bounded functions is similar and simpler. Let q be a metric on .s
and let A:L(S,q) and p:lipsl/. It is easy to see that the conditions (1), ..., (5)
hold and that xo can be chosen arbitrarily. lf x, y(S andf(z):min (g(x, z), p(x, y)),
z(.§, then f€A, and lf@)-f0)l:Q(x,y). Thus (6) is satisfied and, if e(x,y)
is the right-hand side of (1.3), s=q. Since obviously e<q, (1.3) follows.

Now we consider Acm(S) and p: A-[0, -) satisfyinC (l),..., (6). Since
Ar*0 by (6) and (l), one can define a function q: ,SX,S*[O, -] by (1.3). Let
x,y€,S. lf f(Ar, then s:f-f(xo)€lr(xo) by (2) and ls(x)-g(y)l:lf(x)-f0)1.
Thus Q(x, /):sup {lg(r)-g(y)lls€,4r1x.1}. since -Ar(x)cAr(xo) by (l), this
and (5) imply g(x, y)-*. Therefore g is a pseudometric on ^S. If xly, thereis,
by (6) and (l), f(A, with -f(x)*f(y), whence o@,y)=lf(x)-f(y)l>0. Thus s
is a metric.

Let f(A. Weshowthat lipnf=p(f). Letfirst p17;:9. If r=Q, then p(tf):
tpU):O, whence tfeAr, and thus tlf@)-f(y)l=e(r, y) for all x,y€,S. This
implies that f is constant and lipnf:O:p(f). If p(f):I, then lf@)-fj)l=
g(x,y) for all x,y(S, which implies lipnf=l:p(f). The general case now
follows from (l).

The following facts are needed. lf f(m(S) is constant, then, g being any ele.
ment of ,4, f:05*f€A and p(f):gp(S):0 by (1) and (2). If t>0 and f,g(A,,
then min (f, d<A, by (l) and (3).

(1.3)
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Next we show that if c(S, />0, and h(x):p(x,a) for each x(,S, then

/:min (h,t)<Ar. First, we have as above å:sup Ar(a). Thus, if

6 : {min (5, t)le(AJa)},

then KcAr,,f:sup K, and Kis max-closed since Ar(a)is so. Hence fe,q, Ay @).
Finally, letf(L(S, q) and M:lipnf. Then K: {Se,lr@=r} is max-closed.

Using an idea due to the proof of [15, Theorem l], we define gr(m(S) for each

/€,S by sr(x):fj)-min(Ms(x, y), 2llfll*); then gr(x)=/(x):s,(x) and
gy(AM. Thus ;f:5up K, and hence f€Ay by (a). This proves that A:L(§, Q)

and P:liPn1n. n
1.4. Remarks. 1) The uniqueness of the metric p inl.2 is a well-known fact

[9, p.8l].
2) We obtain a similar result for pseudometric spaces (S, S) by replacing (6)

in 1.2 by the condition A*0.
3) It is easy to see that the key condition (4) in 1.2 could be replaced by the

condition that Aris closed in.R§ (resp. ru(S)) with respect to the topology of point-
wise convergence. It is not hard to show that (4) could also be replaced by the follow-
ing condition: There is xr(,S such that if KcAr(xr) is max-closed and nonvoid
and /:sup K is finite (resp. bounded), then f€.,qr. ln (2) we could fix t:1, and
in (l) and (2) we could replace the equality by the inequality =.

1.5. Examples. In 1.2 all the six conditions of each of the two characteriza-
tions are essential. We show this by constructing for every i€{1,...,6} a non-
void set,S, a set Acm(S) and a function. p: A-10, -) with the following two
properties.

(a) If 1 =j=6 and jli, then (7) holds. Here we do not assume/to be bounded
in (s).

(b) Let q be a metric on S. Then, if i*6, it is not true that p:lipelA, or,if
i:6, A*L(.S, q) (and thus llLip (^S, q)).

Let 1:[0, l]cÅ.

i: 1 :,S:1, A:Lip (I), p(.f) :(lip f)r.
i:2: S: {0, l}, A: Rs, p( f): l,f(0), -/(lflr/r.
i:3: s:1, A:Lip(r), p("f):1f(o)-f(t)l+tipf. tf f,g(.t are defined by

f(x):l-l2x-11 and g(x):x, then p(f):p(g):2-3:p(max (f,d); thus (b)

holds.

i:4: Let ,5:L Let I consist of all functions /: 1*R such that there are a
division 0-to<tr<...-tn:l of l and numbers a1,,bp(R, l<k=n, for which

.fllto-r, ro] is given by x+a1,xlb1" or x-auxz+bu, l=k=n. It is easy to see that
p(f):max {laolll=k=n} is well-defined. we prove (b). Define f€A by f(x):2x2
if x=4-r andby /(x):8-. otherwise; rhen p(f):2. Let K:{g(Alg piecewise-

t2l
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linear, g=f,pk)=l\; then 1( is max-closed. Since the derivative /'(x)=l if
x=4-t, it is easy to see that .f:sup J(. Thus, if (b) does not hold, p(f)=I, which

is a contradiction.

i:5: ,S: {0,t\, A:R§, p:0.
i:6: S: {O,l}, A:{"fi"fr S*n constant}, p:0 (or S:{0}, A:0, p:0).

1.6. Example. Let S be a nonvoid set and at: ,SX^S*[0, -). We define

A:Lip (,S, al) and p:lip. as if o were a metric. Then it is easy to see that (,'4, p)
has the properties (l), ..., (5) of 1.2 (the case of not necessarily boundedfunctions)
and that A*A. Thus by 1.4.2 there is a pseudometric q on ,S such that Lip (,S, co) :
Lip(S, q) and lip.:lipr. Johnson 19, l.2l proved directly the corresponding
result for bounded real- or complex-valued functions. The pseudometric g is the

greatest pseudometric on ,S with g<«.r.

1.7 . Four functors. W e define four maps P* , P* , L* , and L* from the category

,Eo of nonvoid sets and surjections into the category ä of sets and maps as follows.

If ,S is a nonvoid set, we let P*(S):P*(S) be the set of all pseudometrics on ,S

and L*(,S):a*(§) the set of all pairs (A,pi) with fr*AcRs and p: A*10,-)
satisfying the conditions (1), ..., (5) of 1.2 (in the case of not necessarily bounded

functions). By 1.4.2 there is a canonical bijection "Is: P*(S)*Z*(S).
Let 

^S 
and 7 be nonvoid sets and let E: ^S* 7 be a surjection. We define maps

P*(E): P*(s)*P*(7), p*(E): P*(7;*p*15;, L*(E): z*(s)-Z+(r), and

L*(E): L*(r}*y1^S) as follows. If q€P*(S), we let P*(E)(q)(x,y) for x,v(T
be the infimum of the sums Zi=ro(E-'(ti-),E-'G)) where n>1, to,...,tn(T,
to:x, znd. tn:y. lf q(P*(T), weset P*(q)(S)(x, y):o(E@),g(y)) for x,y€S.
lf (A,p)(L*(^S), we define Z*(E)(A,p):(A*,p*) by setting A*:{f €RrlfEU}
and p*(f):p(fd for fQ,l'*. If (A,p)€L*(7), we define z*(E)(A,p):(A*,p*)
by setting A*:{fElf€A} and p*UE):p(f) for f CA; since g is surjective, p*
is well-defined. Note that P *(rp) and P* (q) do not generally map metrics into metrics.

1.8. Theorem. The maps P* and L* are couariant functors and the maps P*
and L* &re contrauariant functors Eo-E. The family of the bijections J, defi.nes

natural equiualences P*tL* and P*-L*. If q is a surjection, tlrcn P*(<p)P*(E):id
and L*(E)L*(q):id.

Proof. The proof is a straightforward verification. If 1.4.2 is assumed, the

natural equivalence of P* and I* also follows from [2, 1.9-1.11]. tr

1.9. Finally we give a version of 1.2 for S a topological space. We say that
AcRs separates pointsfrom closed sets if, whenever f'cS is closed and x€S\4
there is f e A wittt f (x)Qf @). Let C(S) be the set of all real-valued continuous
functions on 

^S. 
It is easy to see that a metric q on S is compatible with the topology

of S if and only if Lip (,S, q)c C(,S) and Lip (S, q) separates points from
closed sets.
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1.10. Theorem. Let S be a norutoid topological space, let AcRs and let

p: A-lO,*). Then there is a compatible metric q on S such that .4:Lip(,S, S)

and p :lipn if and only if the conditions (l), Q), Q), and (6) in 1.2 as well as the follow'
ing four are satisfied:

(4a) Let KcA, be max-closed and nonuoid, let f :51t, K be Jinite and con-

tinuous, and suppose that if f'c§ rs cornpact and e=0, there is g(K with g(x)=

f(x)-u for each x(F. Then f €lr.
(5a) There are xs(S andadense set DcS with sup {/(x)l/€Ar(xo)}<* for

euery x(D.
(7) There is xzQS with Ar(xr) equicontinuous.

(8) A separates points from closed sets.

Proof. We prove only the sufficiency. Since by (7) and (2) Aris equicontinuous,

(5a) implies (5). Let KcA, be max-closed and nonvoid and let .if:5upf<-.
Then ./€K in the topology of pointwise convergence. Since K is equicontinuous,

this implies thatf is continuous. If r'cS is compact and e -0, it is easy to find

C€( with g(x)>/(,x)-e for each x€F. Thus feA, Ay (4a), whence (4) holds.

Now 1.2 gives a metric g on S such that A:Lip (,S, q) and p:lipn. Since

AcC(S), by (8) S is compatible. !
1.11. Remarks. 1) Theorem l.l0 has obvious modifications for the cases of

bounded functions, of compatible pseudometrics, and of continuous pseudometrics.

2) We can replace (4a) in 1.10 by the condition that ,4, is closed in C(S) with
respect to the topology of compact convergence. If S is connected, then (7) implies

(5), and hence (5a-) can be omitted. If 
^s 

is compact, (8) can be omitted and (4a) can

be replaced by the following condition: If a sequence qn€Ar, 9t182=-..' , converges

uniformly to /e C(S), then f (Ar.

2. Rings of Lipschitz functions

2.1. In this section we study the rings L(X),bnt as an application we also obtain

the result that X and Y are Lipschitz homeomorphic if and only if there is a homeo-

morphism of Lip (X) onto Lip (f) in the topologies of pointwise convergence (or

compact convergence) that defines an- isomorphism of Z(X) onto Z(y) (this follows

from2.27). The set Lip(X) itself is a ring only if X is bounded or equivalently

Lip(X):t (y). By homomorphism we always mean ring homomorphism (homo-

morphisms of rings with unity are not assumed to carry unity to unity).

2.2. Lemma. Let A be an algebra oDer R (with or without unity and possibly

nonassociatiue) and let ei A-R be a ring homomorphism. Then <p is linear.

Proof. Let x(A and r(Ä. If E@)*0, define a: R*Å bY a(s):E@x)lE@).
Then a is a nonzero ring homomorphism, whence the identity 16,0.221. Thus 9(lx):
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tq(x). If E(x):O, then EQx):O:tE@), because otherwise t*0 and hence by
the above E@):t-'E(tx)*g. tr

2.3. Function rings. This paragraph is preliminary. The carrier space Ao of
a ring A is the set of all nonzero homomorphisms E: A-R with the weakest
topology in which every function *: E*E(x), xCA, on this set is continuous.

Let ,S be a set and let A be a subring of Rs which contains constants and is
inuerse-closed,i.e.,if f€A with l/l=e forsome e=0, then llf(A. If feA and

EeAo, then, because E is linear by 2.2, it is easy to see that E(/)(/(s); hence

IEU)l=ll J'll- provided thatlis bounded.
Let A be a subring of C(X) that is completely regular, i.e., if FcX is closed

and x€X\F, therc is f(A with /lf':0 and f(x)to. It is easy to see that if
one defines e*(Ao for x€X by E-(f):f(x), then x-e, is a topological embedd-
ing of X into r4o. Therefore we may consider X as a subspace of Ao andf as a con-
tinuous extension of fQA to Ao. Let C*(X):C(X)arz(X). Suppose now that
AcC*(X) and that,4 contains constants and is inverse-closed. Then llEll:l for
each E €Ao if we consider A with the sup norm. Thus it can be proved as in [13,
Theorem l9B and Corollary 19Dl that Ao is a Hausdorff compactification of X.

Let A and B be rings with unities I and l'. Then every homomorphism T: A* B
with 7(1):l' induces a continuous map Ta: Bo*Ao by T1(E):ET. Let P and

Q be sets. Then every map t: p*Q induces a homomorphism t': RQ*RP by
t'(f):ft, and t'(1): l; we denote by t' also all homomorphisms that t' defines
between subrings.

2.4. The ring L(X) is in fact an algebra, with the constant function I as unity,
and by 2.2 the homomorphisms Z(X)* L(Y) are algebra homomorphisms. Sher-
bert [20] studied the algebra L(X, C) over C of all bounded complex-valued Lipschitz
functions on -f,. Since L(.X,C) is inverse-closed, E(t(X))cÄ if E: L(X,C)*C
is an algebra homomorphism. This implies that every algebra homomorphism
T: L(X,C)*L(Y, C) definesahomomorphism 7^: L(X)*11y). Themap T*T^
is a bijection of the set of all algebra homomorphisms I(X, C)*L(Y, C) onto the
set of all homomorphisms L(X)-L(Y). Thus in studying homomorphisms the
real and complex cases are not essentially different.

2.5. The carrier space

of X, because L(X) is a
With the norm

(2.6)

sX - L(X)" of L(X) is a Hausdorff compactification
completely regular, inverse-closed subalgebra of C*(X).

ll/ll - ll/11"" +tip f

L(X)is aBanach algebra, and lllll:1 if X*A. 8y2.3 sX lies ontheunitsphereof
the dual L(X)* of L(X). This gives a metric o=2 on sX. The carrier space topology
of sX is weaker than the metric topology.
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2.7. Sherbert considered the (complex) carrier space .E of the Banach algebra

L(X,C);2.5 is a real analogue of the corresponding points of [20]. By 2.4 q*:
EIL(X) belongs to sX for each EQE and e*en is a bijection Z-sX. This

bijection is an equivalence of the compactifications ^I and sX of X and it is an iso-

metry. The nontrivial inequality in llE-rlrll:llE*-rlsll, E,rlt€2, follows from
the fact that if f<L(X,C) and (E-rlt)(fl<n, then (E-lr)(f):@-,lt)(Pef)
and llRe/ll=ll,rll.

Next we investigate properties of sX.

2.8. Let.t be the completion of X. The inclusion map /: X*-f induces an

isometric isomorphism j': L(N)-L(X) (cf. [20, p. 1387D, and then j'o: sX*sX
is a homeomorphism (in the carrier space topologies) as well as an isometry and

keeps the points of X fixed. Thus we may identify sX and s.3 both as compactifica-
tions of X and as metric spaces. Then XcIcsX.

In the following theorem we generalize this result.

2.9. Theorem. Let AcX. ThenthecompactificationssAand ÄcsX of Aare
equiualent. The equiualence d: sA*Ä is giuen by a(@(f):E(flA), E(.sA,f(L(X),
and a is an isometry.

Proof. The formula of a defines obviously a continuous map o(: s/*sx with
lipa=1. Infact, if j: A-X istheinclusionmap,thehomomorphism i': L(X)*
Z(,4) induces a. If fcL(A), there is g(L(X) with glA:f and llgll:ll,fll.
This implies that o( is an isometric embedding. Clearly ulA:id. We conclude that
oc is a homeomorphism of sA onto Ä. n

2.10. Lemma. If A and B are disjoint closed subsets of sX, there is fcL(X)
such that f1l:O,f1n:1, and 0=f=1.

Proof. Choose g(C(sX) with clA:-l and slB:2. Since {fltet1X1l
is a point-separating subring of C(sX) containing constants, by the Stone-Weierstrass
theorem there is h<L(X) such that llk-Sll-=I. Define f:min(max (å,0), 1). n

2.11. Corollary. Two subsets A and B of X haue disjoint closures in sX if and

only if d(A, B)>0.

Proof. The following conditions are consecutively equivalent: d(A, B)>O;
there is f(L(X) wirh flA:O and flB:1; there is f€L(X) with flZ:0 and

f1B:ti and,by 2.10, ÄaB:O. The closures are taken in sX. n
2.12. Lemma. A point of sX betongs to i if and only if it has a countable neigh-

borhood base.

Proof. Wemayassume that X:X. If x€sX\X has acountableneighborhood
base, there is a sequence (x,) in X converging to x. Since X is complete and no sub-

sequence of (x,) converges in X, the subset {x1, x2,...} of X is not totally bounded,
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and thus there is a subsequence (y) of (x,) with infi# j d(yr, y,)>0. Now the fact
limy2i-1:x:limy2i contradicts 2.ll.The proof is completed by the fact that if a
dense subspace ofa regular space is first countable at a point x, then the whole space
is first countable at x; cf. 16,9.7). tr

2.13. Remark. Lemma 2.10 is an improvement of [20, Corollary 4.3]. Corol-
lary 2,ll shows that sX is the Samuel-Smirnov compactification of X defined in
l22l for every separated proximity space. The equivalence of the two compactifica-
tions in 2.9 holds more generally for separated proximity spaces 122, Proof of Theo-
rem 15]. Lemma 2.12 is the same as 123, Theorem 7], a corollary of a more general
result.

2.14. Definition. A map f: X*Y is Lipschitz in the small (abbreviated LS)
if therearee>0and Z>0 suchthat d'(f(x),f0))=Ld(x,y) for all x,y(X with
d(x,y)=e. If/is a bijection and both/and7-r are LS, then/is anLS lrcmeomor-
phism. Two metrics dr, d, on a set S are LS equiualent if id: (S,4)*(S, dr) is an
LS homeomorphism.

2.15. Every Lipschitz map is LS. Every bounded LS map is Lipschitz. Every
LS map is LIP and uniformly continuous. The composition of two LS maps is LS.
The bounded metrics dl[+d) and min (d,l) are LS equivalent to d. It follows
that f: Y*X is LS if and only if f: Y*(X,dl\+d)) is Lipschitz.

2.16. Lemma. The metrics d and olx on X are LS equiualent. In fact,
dl0+d)<olX=d.

Proof. The definition of o at once implies olX<d. Let x,/€X and define

f{(X) by f(z):v1in(d(.2,y), d(x,y1)lQ+d{x,y)). Then, since lllll =1, o(x,y)=
I f(x) -fj)l: d(x, y) lQ * d(x, y)). x

In the next theorem we characterize the homomorphisms 7: L(X)-L(Y) tor
arbitrary metric spaces X and Y.

2.17. Theorem. Let T: L(X)*L(Y) be a homomorphism. Then there are a
unique set EcY with d'(.E', f\E)>o (if Elg+ f\8, and a unique Lipschitz
map t: E*sX such that

if x< E

if x€r\E (te L(x)).(2.19) ru)(x) _ 
{[u(,))

Coru:ersely, if E and t are as aboue, tlten (2.18) defines a homomorphism T: L(X)t
L(Y),

Proof. Let T: L(X)*L(! be a homomorphism. Let E:7(t)-1(l). Since
7(1)lf\E:0, we have d'(E,I\E)>O and fu)lf\ä:0 for each f&(X).
Let Tr: L(X)*L(E) be the homomorphism f*T(fllE; then I, is linear and
f.(l):l. Hence 7. induces a map Tl: sE*sX. We consider L(X) and L(E) as

Banach algebras with the norm (2.6). Then one can prove as in the proof of [13,
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Theorem 248] fhil 7, is continuous. Therefore 7, has a bounded linear dual map
T{: L(E)**L(X)*.Thus 7ro:7|lsE is Lipschitz. Since the inclusion mapj: E-sE
is also Lipschitz (2-16), t:Tlj: E*sX is Lipschitz. The formula (2.18) is easy to
verify. The uniqueness result is trivial.

Conversely,let E and I be given. lf fe.L(X), we define T(f): Y*R by (2.18).

Since obviously .fe fGX) (cf. [20, Theorem 4.1]), we have ftqL(E) and hence
TU)Q(Y\ Evidently T: L(X)*t (D is a homomorphism. !

2.19. Corollary. If X is compact, eoery homomorphism T: L(X)*L(Y) with
f(l):l is indaced by aunique Lipschitz map t: Y*X, and conuersely-

Proof. Since sX:X, this follows from 2.17 and 2.16. !
2.20. Corollary. A map t: Y-X is LS if and only if t'(L(X))cL(Y).

Proof. 2.17 and 2.16. tr
2.21. Corollary. Two metrics d, and d, on a set S are LS equioalent if and

only if L(S,dr):175,4r1. n
2.22. Theorem. Let t: Y*X beLS and t': L(X)*t (Y) the induced homo-

morphism. Then t' is injectiue if and only tf t(Y) is dense in X, and t' is surjectirse if
and only if t is injectiue and t r: t(Y)- f ,s LS.

Proof. The first part follows from the fact that L(X) is a completely regular
subset of C(X). To prove the second part, let A:t(Y), let tr: Y-A be the LS
map defined by r and let j: A-X be the inclusion map. Then /' is the composite
of j': L(X)-L(A) and t'r: L(A)*11y1. We first assume that tlis an LS homeo-
morphism; then ti is an isomorphism. Hence, sinceT'is surjective, l'is so. We now
assume thal t'is surjective. Since I(Y) separates points of Y, t, is bijective. Since
rl is surjective and by the above also injective, ri is an isomorphism. Obviously
/r-1 induces (ri)-1. Hence rr 1 is LS by 2.20. tr

2.23. Theorem. Two complete metric spaces X and Y are LS honteomorphic
if and only tf the rings L(X) and L(Y) are isomorphic. Euery LS honteomorphisnt
induces an isomorphism and euery isomorphism is induced by a unique LS ltomeo-
morphism.

Proof. Let T: L(X)*L(f) be an isomorphism. Then 7 induces a homeo-
morphism To: sY*sX. By 2.12 7o defines a homeomorphism t: Y*X. Then
T:t' and T-r:(t-r)'. Hence by 2.20 I is an LS homeomorphism. The converse
result is obvious. n

2.24. Remark. Lemma 2.16 sharpens [20, Corollary 3.7) and its proof is sim-
pler; if d is bounded, it is the srlme as [20, Proposition 3.4]. For compact X and Y,
2.19 and 2.22 cover precisely [20, Theorem 5.1], and thus 2.23 in this case follows
from [20, Theorem 5.1] (see also [20, Corollary 5.2]). For bounded d, arrd d2,2.21
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coincides with [20, Corollary 3.5]. Fraser 15, 2.41 proved 2.21 more generally for
pseudometrics.

2.25. Remark. The following properties of «p€sX are equivalent: (l) <pQX;

(2) g is continuous in the topology of pointwise convergence of L(X); (3) E is con-

tinuous in the topology of compact convergence of L(X). The implications (1)+(2)+
(3) are trivial and (3)=+(l) follows from 2.10. It is now easy to see that if we con-

sider Z(X) and L(Y) in 2.17 with the topology of pointwise convergence (or com-

pact convergence), then 7 is continuous if and only if r is an LS map E-X (in ttris

case we may replace f iL Q.tS) by/). Thus a map T: L(X)*L(D is a horneo-

morphic isomorphism if and only if T:t' where t: Y*X is an LS homeomor-

phism. The similar results 13, 3.4, 3.5, and Corollary of 3.5] seem to be erroneous

(let a:B:ld; then the induced map t: Y*X is LS, but not necessarily Lip-

schitz).

2.26. Lemma. The following properties of a map t: X-Y are equiualent:

(l) / ,§ Lipschitz.
(2) If Z is a metric space and f: Y*Z is Lipschitz, thenft is Lipschitz.

(3) t'(Lip (f)cLip (x).

Proof. Trivially, (l)+(2)=(3). To prove (3)+(1), we define a linear map

T:t': Lip (r)*Lip (x) and introduce a norm ll,fll :max (lf(b)l,lip/) on Lip (r),
where å€ Y is fixed (we may assume YIT), and a similar norm on Lip (X). Then

Lip (X) and Lip (I) are Banach spaces and in them convergence implies pointwise

convergence. Since 7 is continuous if we consider Lip (X) and Lip (I) with the

topology of pointwise convergence, 7 is continuous by the closed graph theorem.

Letx,y(Xanddefine/€Lip(Y)byf(z):d'(z,t(y))-d'(b,r(y)).Then d'(t(x),t(v)):
lrU)@)-rU)0)1. Since ll"fll=1, we obtain lipr=llrll. !

Lemma 2.26 implies the analogue U2, 5.41 of 2.21.

2.27. Theorem. Consider Lip (X) and Lip (Y) with the topology of pointwise

conergence (or compact conuergence). Let T: Lip(X)*lip (Y) be continuous and

let T define a homomorphism L(X)*L(Y)' Then there are a unique set EcY with

d'(^E', f\E) >O and a unique Lipschitz map t: E*X such that

(2.28) rj)(x) - ! f (t(x)) if
[o if

x(E
,i rxu (teliP (x))'

Coru:ersely, if E:Y and t is as aboue, then Q.28) defines a map T haoing the abotte

properties.

Proof. Let I be given. Then by 2-25 thete are a unique set EcY with
d'(8, f\E)>0 and a unique map t: -ErX such that (2.28) holds for evety fQL(X).
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Let f(Lip (X). Since the sequence (max (min (l n), -n)) in L(X) converges to

is Lipschitz, 2.26 implies that I is Lipschitz. The proof of the converse part is

omitted. n

3. Rings of LIP functions

3.1. In this section we consider the rings l(X) and l*(X).These have been

studied by Su [24] and Scanlon [17]; by the following lemma Su's l"-mappings,
which are defined by the property (2) of the Lemma, are precisely the LIP maps.

3.2. Lemma. The following properties of a map f: X-Y are equiualent:
(1) /rs LIP.
Q) flK is Lipschitz for each compact subset K of X.
(3) If x(X, then supna'(f1), f(d)ld(y,, Z,)=- for all sequences (y,) and

(2,) in X with y,*1, Zn*x, afid !,*zn for each n.

(4) If Z is ametric space and g: Y*Z is LIP, then gf ,s LIP.
(s) f'(L(Y))ct(x).
Proof. The implications (1)+(2)+(3)+(1) are easy to verify; in [17, 2.1] these

are proved for Y:R. In (3) the condition for x is equivalent to the condition that

/is Lipschitz on some neighborhood of x. It is trivial that (1)+(4)==+(5). In 124,5.4'7
it is proved that (5) implies (2), but we repeat the proof here. Let KcX be compact.

Then g(/lÅJ:GfllK€L(K) for each ccL(f(K)), where §€Z(I) denotes an

extension of g. Thus flK is Lipschitz by 2.20. tr

3.3. Lemma. l(X)o:pY.

Proof. Here uX is the Hewitt realcompactification of X 16,8.81. Since /(X) is

a completely regular subring of C(X), we may treat X as a subspace of C(X)o and

of l(X)o as in 2.3; then C(X)o :uX by [6, 11.8]. We define the m-topology on C(X)
by taking as a neighborhood base at g all sets {,fllf-sl="}, where z€C(X) is

positive; then C(X) is a topological ring [6, 2N.1] and l(X) is dense in C(X) by

[14, 5.18]. Let E€l(X)o. Since /(,Y) is inverse-closed, 9 is continuous. Hence g
has by uniform continuity a unique continuous extension u(q) to C(X), and

a(EXC(X)". Since C(X)" is equicontinuous and /(X) is dense in C(X),it is easy

to see that a: l(X)o * C(X)" is a continuous bijection with o(-1(E):q l/(X). Since

a-l is trivially continuous, c is a homeomorphism. Finally, alX:id. tr

3.4. Remark. By 3.3 the L"-realcompact metric spaces X defined in 124, 4.3

and 5.111 by t(X)o:y are precisely the realcompact metric spaces. Let Ck(M)
be the ring of all real-valued C& functions on a paracompact Hausdorff Ck manifold
M (second countability not assumed), k:1,..., -. It is proved in [11, Satz3] as

in 3.3 that Ck1M1":74 if and only if M is realcompact. The proof of 3.3 shows

that Ck (M)o:tsM even if M is nLot realcompact.
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3.5. Theorem. (su) Two meffic spaces x and y are lipeomorphic if and only if
l(x) and l(Y) are isomorphic. More precisely, euery isomorphism is induced by a
unique lipeomorphism, and conuersely.

Proof. Every lipeomorphism t: Y*x induces clearly an isomorphism
t': l(X)*l(Y). Conversely, every isomorphism T: l(X)-l(y) is of this form by
[24, 6.4'f, since 7 is linear by 2.2 and hence satisfies the additional condition of su
to leave all constant functions unchanged. Another proof is as follows. Since Z
induces a horneomorphism To: l(Y)o*l(X)o and since X:{x <uxl{x\ is a Gr-set}
by 16,9.71and similarly for Y, by 3.3 t:T"lY is a homeomorphism y*X with
T:t'. Then r is a lipeomorphism by 3.2. n

3.6. corollary. Two metric spaces x and y are Lipschitz homeomorphic if
and only if there is an isomorphism of l(X) onto l(y) that carries Lip (x) onto Lip (y).

Proof. 3.5 and 2.26. n
3.7. Lemma. l*(X)o:fiX, where §X is the Stone-öech compactification of X.

Proof. As in 3.3, we may consider X as a subspace of C*(X)o and of l*(X),
and then c* (x)": Px [6, 11.9]. The proof is now completed as in 3.3, but instead
of the m-topology the sup norm topology suffices. D

3.8. Theorem. Two metric spaces x and y are lipeomorphic if and only if
l*(x) and l*(Y) are isomorphic. More precisely, euery isomorphism is induced by a
unique lipeomorphism, and conuersely.

Proof. This follows from 3.7 and 3.2 because X:{x(BXl{x} is a Gr-set}
16,9.71. tr

3.9. corollary. Two metric spaces x and y are LS homeomorphic if and only
if there is an isomorphism of l*(X) onto l*(Y) that carries L(X) onto L(y).

Proof. 3.8 and2.20. n
3.10. Definition. Let the seminorm p* on l(x) be defined for each compact

set Kcx by pxj):ll"flril-+tip (flK). The l-topolosy on /(x) is defined by
taking as a neighborhood base at g all sets {f lp*(f-g)=e}, where Kcx is com-
pact and e>0.

3.11. Theorem. In the l-topology l(x) is a complete Hausdorffmultiplicatiuely-
cont)ex topological algebra. The l-topology is giuen by a norm if and onty if x is com-
pact, and then by p*, i.e., (2.6). The space l(x) is metrizable if and only if X is locally
compact and separable, and it is separable if and only if x is discrete qnd card x=
card,R.

Proof. Since the /-topology is defined by the seminorms pa and pr(fd=
px(f)pxk), we conclude that l(X) is a locally convex topological algebra and



Rings of functions in Lipschitz topology

indeed a multiplicatively-convex one. Clearly /(X) is Hausdorff. If X is compact,
obviously p, defines the /-topology.

To prove the completeness, let fr be a Cauchy filter in /(X). If KcX is cornpact,
the sets {flKlfep), F(.F, in the Banach space I(K) form a Cauchy filter base,

which hence converges to a function f"EL(K). We define f: X*R by f(x):
{a(x). Then f lK:fy for every compact KcX, and therelbre f(l(X) by 3.2.

Obviously F*f.
The characterizations of normability and metrizability of l(X) can be proved

as the corresponding results for the topology of compact convergence on C(,S),

^S 
a topological space, in [1, Theorem13] and [, TheoremsT and 8], respectively.

Suppose that X is not discrete. Then there is a nondiscrete compact set KcX.
By [10, Theorem l] the Banach space L(K) contains a linear subspace isomorphic
to m(N), where N is the set of positive integers, and is thus nonseparable. This
implies that for each sequence (f,) in l(X) there is ge /(X) with inf, px(f,-g)=0,
i.e., l(X) is not separable.

We now suppose that X is discrete. Then /(X): Rx and the /-topology is the
topology of pointwise convergence. Hence by [4, VIII.7.2(3)] l(X) is separable if
and only if card X=card R. n

3.12. Finally we prove some results on ideals of l(X) and /*(X) by usingresults
on ideals of C(,S) and C*(S), where ,S is a completely regular Hausdcrff space,
and the approximation theorem [14, 5.18]. By ideal we mean proper ideal. If ,4 is a
commutative ring with unity, let M(A)be the set of all maximal ideals in.4 considered
with the topology in which F:{M€.M(A)IM=OF\ for every FcM(A)
(cf. [6,7M]). If feC1S1, we denote Z(f):f-t(O). If /(C*(^S), we let fP be
the unique continuous extension of f to PS.

We consider C(§) with the m-topology and C*(,S) with the sup norm. The
topology on the ring l(X) induced by C(X) is intrinsic, because for every positive
u€C(X) there is an invertible element u of l(X) with uz<u. Also the sup norm
on /*(X) can be deflned intrinsically. Since /(X) and /*(X) are inverse-closed,
the closure of every ideal is an ideal and hence every maximal ideal is closed. This
is also true of C(,S) and C*(,S); cf.16,2M and 2Nl. If ,4 is either C(X), C*(X),
l(X) or l*(X), we let f(4 denote the set of all closed ideals in A; then
M@)cr@).

3. 1 3. Th e o r em. The map s rE : I (C (X)) - I (l (X)), I* I n I (X), and n* : f (C" (X)) *
I(r(x», I*Inl*(X), are bijections.

Proof. We first consider z. Since /(X) is a dense subring of the topological
ringC(X), one can define a map p: I(I(X))*I(C(X)) by p(I):i. Clearly, np:id,.
In order to prove pn:id, we show that if lis an ideal in C(X),lhen t.tnt|'JI().
Let f(I and let u€C(X) be positive. By [6,7O.3] there is S€C(X) such that

lS-fl=-u and clpx Z(g) is a neighborhood of clu* Z(f) in BX. Since by [14, 5.18]

131
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there is h€l(X) such that lh-gl=u and Z(h)=Z(d, we may assume Scl(X).
Since g€1 by [6,7O.1 and7O.2f, fetnt1X1.

We now consider z*. As above one can define a map p*: I(l*(x))*I(C*(X))
by p*(I):I; then n*p*:id. Let.Ibeanideal inC*(X) andlet f€I and e>0.
Since k-kr is an isomorphism of C*(X) onto C(§X),by16,4O.2)thereisg(C*(X)
such that llg-lll-=e and Z(gP) is a neighborhood ot Z(fP) in BX. Since there is
h<l*(X) such that llh-Sll*<e and Z(h)=Z(g), we may assume C(.l*(X).
Since g€1 by [6,4O.1], f(I^l\n This implies p*n*:id,. n

3.14. Corollary. The sets Mp:{f€l(X)lpeclB*Z(f)}, p€PX, are the max-
imal ideals in l(X), and p*Mp is a homeomorphism of PX onto M(l(X)). ,ln tdeal
in l(X) is closed in the m-topology if and only if it is an intersection of maximal ideals.

Proof. Since n in 3.13 preserves inclusion, it is easy to see that n defines a homeo-
morphism M(C(X))*M(I(X)). The Corollary now follows from the similar char-
acterizations of »t(C(X)) and of the closed ideals in C(X) given in16,7.3 and 7.111

and [6, 7Q.2], respectively. tr

3.15. Corollary. The sets M*p:{fet.1X1170@):0}, p<frX, are the max-
imal ideals in l*(X), and p*1v7*p is a homeomorphism of BX onto M(l*(X)). An
ideal in l* (X) is closed in the sup ruorm if and only if it is an intersection of maximal
ideals.

Proof. Since n* in 3.13 defines a homeomorphism M(C* (X))-M(f 6)), ttre
Corollary follows from the similar characterizations of M(C"(X)) and of the closed
ideals in C*(X) given in 16,7.2 and 7.101 and [6, 4O.4], respectively. n

3.16. Remark. Our methods in 3.13, 3.14, and 3.15 also apply to the ring
Ck(M) (see 3.4) and its subring Co(M)am(M). The first part of 3.14 and the
second part of 3.14 and 3.15 also follow from12,2.6 atd,3.11 and [21, Theorem 1],

respectively.

4. Rings of LIP functions on locally compact metric spaces

4.1. In this section X and Y are locally compact metric spaces. We study the
rings /o(X) and /oo(X). A continuous map is proper if the inverse image of every
compact set is compact.

4.2. Lemma. If U is a neighborhood of a compact subset K of X, there is f(loo(X)
such that flK:1,/lX\I/:0, and O=f=|. tr

4.3. Theorem. Let A be either lo(X) or loo(X) with the sup norm. Then the

closedideals in A are the sds fp:{f<AlflE:O), where E is anonuoid closed sub-

set of X, determined uniquely by Ia. The maximal ideals are I,:1p1, x€X. An
ideal is closed if and only if it is an intersection of maximal ideals.
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Proof. The last assertion follows from the others. The first assertion can be
proved by aid of 4.2 precisely as the corresponding fact in [7, C.30] for the Banach
algebra C.(S, C) of all complex-valued continuous functions on a locally compact
Hausdorff space S vanishing at infinity. The ideals 1, are maximal because Af I*
is isomorphic to "R.

Let 1 be an ideal in /oo(X). Then IcI, for some x(X, because otherwise
I=loo(X), as the proof of [7, C.30] shows. Thus 1:/, if 1is maximal.

Let I be a maximal ideal in A:lo(X). To prove that I:I* for some x€X,
we assume the contrary case and show modifying the proof for G(S, C) in
18,2q.52(d)lthatthisleadstoacontradiction. Since 1(1, foreach x€.X,1=loo(X) as

above. If the ring B:AII is a field, letf be a function in,4 such that /*,I is the
unity of B. There is g(/.r(X) with ll/-gll-<1 as follows from 4.2; then
h:flL-f+del and f:|x-hf+hs. Since h-hf€l and hg(lro(X)cl, this
implies f(1, a contradiction. Thus all products in B are zero; cf. [16, 3.1.1]. Let
fe l. ny 14, X.I.1 .31 there are disjoint open subsets U and V of X such that X : U v V,
Uisseparable,and fll/:O. Thereisapositivecontinuousfunction EonU vanish-
ing at infinity. By [14, 5.4] one may assume that E is LIP. We define t (A by rlrlU:E
and tlv:O. Then s:(f+lfl+rlD'/' and h:(lfl+{Dttz belong to A, and

f:g'-h'. This implies that I:A, a contradiction. D

4.4. Corollary. Let A be either lr(X) or loo(X).Then Ao:X.

Proof. lt follows from 4.2 that x*e* is a topological embedding of X into Ao.
lf E(A", then, since g is linear, the ring Alker q is isomorphic to .R, and hence
kerg is a maximal ideal. Thus by 4.3 there is x€X with kerE:16s1 E,, whence

9:Q*. tr
Corollary 4.4 also follows from [6, 3.2.8].

4.5. Lemma. Let t: Y*X and t'(loo(X))clo(Y). ThentisaproperLlPmap.

Proof. Since /oo(X) is a completely regular subset of C(X), , is continuous.
lf KcX is compact, there is f(loo(X) with /lf:l, and then r-1(K) is compact
as a closed subset of the compact set (l)-1(1). Thus I is proper. Let x€Y and

choose a neighborhood U of x such rhat K:t(U) is compact. lf fiQ.L(X), there
arc g(L(X) and h(loo(X) with glK:f and hlK:l; then f:gh(lso(X) and

IIX:f, whence f(tlu):(ft)ltl is LIP. Thus tl|, and hence also /, is LIP
by 3.2. tr

4.6. The o rem. Let
a unique open subset E of

(4.7) rU)@)

Conuersely, if E and t are

/ro(Y).

T: loo(X)*loo(n be a homomorphism. Then there ore
Y and a unique proper LIP map t: E-.X such that

I f (t(x)) if x( E
- t-o' 

/ 
if x€ r\E Ve ho(x))'

as aboue, then (4.7) defines a homomorphism T: loo(X)*



Proof. Let T be given. Then E:{x(Ylf(f)(x)*0 for some f€loo(X)\ is

open, and by 4.4 there is a map t: E*X such that (4.7)holds. If "feloo(X) ana

e>0, then {x€Ellf(t(x))l=r}: {x€rll7(/)(x)l>e} is compact, whence ftclo(E)
(in fact, ft(loo(E)). Thus / is a proper LIP map by 4.5. The rest of the proof is

omitted. n
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4.8. Coroll ary. Two locally compact metric spqces X and Y are lipeomorphic
if md only if loo(X) and loo(Y) are isomorphic. tr

4.9. Theorem. Theorem4.6 holds ,f "loo" is replaced by "lo" and "open" by

"open and closed".

Proof. ltisclearthatif Ec.Y is openandclosedand t:E*X is LIPand
proper, then (4.7) where /€/o(X) defines a homomorphism I: lo(X1-1o1y1. Con-
versely, let T: /o(X)*/o(y) be a homomorphism. Then the proof of 4.6 shows

that there are a unique open subset E of Y and a unique proper LIP map t: E-X
such that (4.7) holds for all f(lo(X). We complete the proof by showing that E
is closed. Assume the contrary case. Then there are x€I\E and a sequence (x,)
in E with xn*x. Since r is proper, the sequence y,:t(x,) in X tends to infinity.
One may assume lhat ym+yn if m*n. Then it is easy to construct "/€/o(X) such

that f(y): j'(x,, x)'t' foreveryn. But l7(/)(x )-rU)G)lld'(x,, x):d'(xn, x)-'/',
which contradicts the fact that f(/) is LIP. n

4.10. Corollary. Two locally compact metric spaces X and Y are lipeomorphic

if and only ,f lo6) and lo(Y) are isomorphic. tr

4.11. Remarks. 1) We did not use the local compactness of I in 4.5, 4.6

or 4.9. However, if one gives up this assumption, then, nevertheless, I in 4.5 and E
in 4.6 and 4.9 are always locally compact.

2) The results of this section still hold if the category of locally compact metric
spaces and LIP maps is replaced either by the category of locally compact Haus-

dorff spaces and continuous maps or by the category of Ct manifolds (in the sense

of 3.4) and Ck maps. The only exception is that E in 4.9 in the case of
G(S)(:G(,S,C)nrRs) need not be closed. The proofs are similar. The charac-

terizations of homomorphisms seem to be new results; I know only the result

llS,Zasatzl] in this direction. The characterizations of isomorphisms are known.
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