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ON LII{EAR RELATIONS
IN AN INDEFINITE INNER PRODUCT SPACE

PEKKA SORJONEN

Introduction

In 1961 R. Arens [2] initiated a study of linear relations, i.e. subspaces of 505,
where $ is a Hilbert space. Since then there has been a growing interest in this sub-

ject; see for instance C. Bennewitz [4], E. A. Coddington [6-9], A. Dijksma and

H. S. V. de Snoo [11], H. Langer and B. Textorius [18], Å. Pleijel [19].
Some of these authors have used this theory mainly in studying differential

equations which lead to linear relations in a Hilbert space.

On the other hand, there are some recent publications studying differential

equations with an indefinite weight function which lead to symmetric operators

in an indefinite inner product space; see F. V. Atkinson, W. N. Everitt and K. S. Ong

[3], K. Daho and H. Langer [0] and H. Langer [7].
In this context a question arises: Can the theory of linear relations in a Hilbert

space be extended to a corresponding theory in an indefinite inner product space?

This paper tries to answer this question. In another publication we shall apply this

theory to study cannonical differential equations with an indefinite weight function.

Chapter 1 summarizes the basic definitions and results of the theory of indefinite

inner product spaces mainly because our terminology differs from that used by

J. Bognär in [5], which is our main reference in indefinite inner product spaces.

Chapter 2 starts the study of linear relations in an indefinite inner product
space: Section2 contains a detailed investigation of reducing a linear relation to
an operator; some of these results may be new also in the Hilbert space case. Sec-

tion 3 represents a linear relation in a Krein space as a linear relation with a similar
structure in a Hilbert space perturbed by an operator; these results extend the

known facts of the operator case. In Section 4 we study the Cayley transforma-
tion. In Section 5 we generalize the notion of the operator matrix to linear rela-

tions.

Chapter 3 analyzes dissipative and maximal dissipative linear relations mostly

along the lines of [1 1]. Some of these results seem to be new also in the operator case;

compare with [15].
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In Chapter 4 we give a detailed investigation of the basic properties of symmetric
Iinear relations mostly in a Pontrjagin space. Eigenvalues and points of regular type
are studied in Section 1. With the help of the relation matrix we characterize in
Section 2 self-adjoint extensions of a symmetric linear relation in a Pontrjagin space.

Section 3 introduces the deficiency spaces and the defects numbers.

1. Indefinite inner proiluct spaces

1.1. Geometry. An (indefinite, non-degenerate) inner product space $ is a(com-
plex) vector space with a non-degenerate hermitean sesquilinear form I.l.]. An
element f(§S @ subspace 8c5) is said to be positiuefnon-negatiuefneutralfnon-
positiue f negatiue if lflfl>0 | >0 I :0 I =0/=0 (for all ft 8\{0}).

Two vectors f, S(b (subspaces !, Utc$) are called orthogonal, written
f Ls (g]-wa), if [/lg]:0 (for all f(8,, s€!n). For a subspace !c$ we define
gr :: {/€5l"fr S1 and call itthe orthogonal companiore of I in g. The set 80::8 n 8r
isthe isotropic part of 8. If 80+{0}, the subspace 8 is called degenerate.

Following [2] we define the closure § of a subspace I to be 8rr. The subspace

8 is called closed if E:.8 and dense if E:5.
1.2. Operators. We use the following notations with a (linear) operator T: D(T)

is the domain, E(O the range and !t(7) the null space of 7.
Let Tbe an operator in an inner product space g. Tis dissipatiue if Im lTflfl=-O

for all f€D(T); T is symmetric if lrnlTflfl:O or equivalently fTflg):fflTgl
for all f, g(!-[). Let .ft be another inner product space and T an operator from
5 into .St. Iis called contractiue if lTflffl=lflfl for all fED(T), and isometric
it lrflrfl:lflfl or equivalently lAvd:lflgl for all f, s(D(T). An isometric
operator T in $ is unitary if D(Z):fr(T):b. An orthogonal projector is a sym-
metricoperator Tin$ withtheproperties D(7):5 and T2:7.

If 7is a densely defined operator from $ into "fi, then one can define the adjoint
T+ of T: D(T+) is the set of all those vectors g€S for which there exists a vector
å€5 such that lTflsl:[flh] tor all feDg), and then T+ g::h. A densely

defined operator T in $ is called self-adjoint if T+:7.
1.3. Fundamental decompositions. Let 5 be an inner product space. It is said

to be decomposable if it can be represented in the form

(1.1) §) - 5*[+]5-,
where $*/$_ is a positive/negative subspace. Here the symbol [* ] denotes a direct
and orthogonal sum. Every decomposition of this type is called a fundamental
decomposition of $. The decomposition (l.l) induces so-called fundamental projectors
P* and P-: Prf::fx, where f :f*+f-(.b with Å(§*. The corresponding

fundamental symmetry J::P+-P_ is then self-adjoint and unitary.
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With the help of a fundamental symmetry "I one can define J-inner product
(.1.):

(r.2) (Jld:: ltflgl gf, g€5),

which is positive definite, i.e. $ is a pre-Hilbert space with respect to the form (. | 
. ).

For the corresponding norm, the so-called J-norm, ll . ll : ,f*(,fl f)L/2 we have

t7t

(1.3) lYtgtl = ll/ll ll gll U, s€ 5).

When necessary, we use the prefix "I to denote a property which is defined using a
/-inner product instead of an indefinite inner product. Thus we can speak about

"I-symmetric operators etc. Especially, .I-adjoint is denoted by x instead of +.

1.4. Krein spaces and Pontrjagin spaces. If a decomposable inner product space

$ has a decomposition (1.1) such that 5* (resp. 5-) is a Hilbert space with respect
to the form [.l.] (-1.l.l), it is called a Krein space.In this case $ is a Hilbert
space with respect to every "I-inner product and the ,t-norms are all equivalent. All
topological notions in a Krein space are to be understood to refer to this ,I-norm
topology. As the ,I-norm closure of a subspace .S is given by 8", our earlier ter-
minology is consistent with the agreement just made. Note that a closed subspace

9 is ortho-complemented, i.e. .8+.8r:5, if and only if .8 itself is a Krein space.

A Krein space $ with a fundamental decomposition (1.1) is called a Pontrjagin
space (withx negatiue squares) or a rx-space if dim 5-:x. In a Pontrjagin space a

closed subspace is ortho-complemented if and only if it is non-degenerate.

1.5. Product spaces. Let $ and it be inner product spaces. The product space

5@5t equipped with the usual linear structure and with the inner product

lu, dl(h, k)l:: ulh)+[slkl (u, d,(h, k)(5es1

is also an inner product space.

Proposition l.l. 1o If $ and R are decomposable with decompositions (l.l)
and R:R+|+]S-, then Fs@R is also decomposable and has afundamental decom-
positionr

5@st : 5* @§*[+]5- es- '

2" If b and R are Krein spaces, then b@R is also a Krein space.

3" If b is a n*-space and § is a nx,-space, then FS$-R is a Pontrjagin spacewith
x{x' negatiue squares.

The proof is clear from the definitions.

1 The symbol + means the algebraic sum in the product space.
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2. Linear relations

2.1. Preliminaries. Throughout this chapter 6, $ and ft are inner product
spaces.

A linear relation from $ into !1. is a subspace 7 of the product space $O.§t;
if §:5, 7is said to be a linear relationin S. A linear relation is closed if it is a
closed subspace. We recall the following definitions and notations for linear rela-
tions 7 and S from $ into .ft and R from 6 into §:

D(7):: {f€$lU,d€7 for some c€.ft},

fr(I) :: {re s117, c)€ r for some /( §},

!t(z) :: U€blU,0)( z),

r(f) :: {se s16r, de r} (/e o1r1,

T_r:: {G,n<SO5l(,f, d(T\,
zT:: {(f, zc)€ Sosl (f, d(T} (z(C :: complex numbers),

§+7:: {f, s+k)e5eS16, s)€ s, 6, k)(T},

,srR:: ,soR:: {(f,kx6@§tlu, g)( R, (s,k)(s for some c€b},

T+ :: {(k, h)€ §05l7ltl : [glk] for art Qf, d<T].
The only new definition here compared to the Hilbert space case (see [6] and [11])
is the adjoint, which has been formed with respect to the (indefinite) inner product.
But because this inner product gives a duality, our definition of the adjoint is a
particular case from [2].

The basic algebraic properties of linear relations are given h 121; we list here

only the following facts about the adjoint:

T+ is closed, T : T+ +,

Sc 7 implies 7+c,S+,

(zT)+ :27+ (z€C),

(7-)* : (7+)-',

,t(7*) : fr(z)4, r+(0) : D(r;r.

If we identify an operator I from § into it with its graph in 56lS, it is easily
seen that a linear relation 7 is an operator iff (if and only if) f(0): {0}. Note that
two relations Sand Twith D(,S):514 and 5(0):7(0) are equal iff Sc7.

As in the case of linear operators the following linear relations 7 in $ are of
interest:
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(i) dissipatiuelinear relations, i.e. Imtgl"fl=0 for all (f,d(T;
(ii) symmetric linear relations, i.e. Im[gl/]:a for all (f,d(T or equiv-

alently TcT+;
(iii) self-adjoint linear relations, i.e. T:T+ ;

(iv) contractioe linear relations, i.e. [glg]=[ flf] fot all (f, d€T;
(v) isometric linear relations, i.e. l1l1l:lf\f1 for all (f, d€T;
(vi) unitary linear relations, i.e. Iis isometric and O(7):n(7):5.
One can define in the usual way a maximal dissipatiue linear relation etc. Of

course the definitions (iv) and (v) can be extended to linear relations from 5 into §t.

If the space $ is a Hilbert space, the last three linear relations are not interesting

as relations because they are all operators, but this is not the case in a general

inner product space: Arens [2] has proved that a linear relation 7is isometric iff
T-L:T+, which implies I(0)cA(7)0 for an isometric relation 7- Hence in our

case, where the inner product spaces are supposed to be non-degenerate, all unitary
relations are operators. On the other hand, an isometric relation is not necessarily

an operator. A simple counter-example is given by the relation 7;:{0}O8, where

8+{0} is a neutral subspace in a Pontrjagin space.

We shall need the following result, which is known in the Hilbert space case

and also for densely defined operators in a Krein space; see [5].

Proposition 2.1. Let T be a closed linear relationfrom a Krein space $ into

a Krein space R. Then 8(T) is closed iffnQ*) is closed.

Proof. It is enough to prove that E(7+) is closed if fr(O is closed, because

the converse follows from 7:7++. On the other hand, E(7) is closed (in 5) itr
5eE1r;: r + be{O} is closed (in 5@S), and fr(7+) is closed iff 71 +(5O{0»'
is closed. So it is more than enough to prove the identity

7"f tsr : (7n S)r

for linear relations T and,S, for which the sum 7*,S is closed. If one uses the

duality given by the inner product and the Hahn-Banach theorem, this result

follows by a light modification of the proof of the corresponding fact in a Banach

space; see [14], LemmaIY-4.9.
Let T be a linear relation in $. Every z(C for which (/ zf)€T with some

f*0 is called an eigenualue of I; the corresponding vectors f are eigenuectors

belonging to the eigenvaltrc z. The set of all eigenvalues of I is denoted by or(T).
If for some z(C the relation (T-zI)-r is an everywhere defined operator, then z

belongs to the resoluent set g (T) of ?- (Here and in the following 1 denotes the identity
operator or the corresponding linear relation.)'[he spectrum o(7) of 7is the com-

plement of q(7) in C.
To be able to put some later results in a concise form we introduce the notion

of a point of regular type. For this let T be a linear relation in a Krein space $.



114 Pn«a. SonroNrN

A complex number z is called a point of regular type of the relation 7 if there exists

a constant c::c(z)>o such that lls-rfll=cllfll for all (f,der. The set of
all points of regular type of I is denoted by r(7).

Theorem 2.2. Let T be a linear relation in a Krein space $. Thm
(\ Q-zI)-L is a continuous operator iff z€r(T); in this case ll(T-zl)-'ll=

c(z)-L;
$» if nQ-zI) is closedfor one zQr(T), then T is closed;

(iii) r(7) is open.

If in addition T is closed, then for all zQr(T)
(iv) 8(T-zI) is closed;
(v) fi'(T - zl):!t(r+ - zI)L ;
(vi) fr(7+ -zI):5.
Proof. (i) and (iii) can be proved in the same way as in the operator case; see

e.g.[], Nr. 100. With a light modification of the proof of Theorem3'1 in [11] we

get the other claims.

2.2. Reduction to an operator. A useful method of studying linear relations is

to reduce them to operators. To do this we need first some facts about the (purely)

multi-oalued part T-:: {(0, c) € f} of a linear relation 7.

Proposition 2.3. If T is a linear relation from 5 into R, then

(i) r-:{0}@7'(o);
(ii) D(r-): {0}, n(7-):r(0);
(iii) (7-)' :5@ 7(0)r, (7-)+ : r(0)' O5;
(iv) 7(0):D(7*)', ffi : f*191','
(v) 7- is closedfortho-complemmted iff 7(0) rs closedfortho-complemented;

(vD f- is non-degenerate iff T(O) is non-degenerate iff 7 n (7-)a is an operator-

If in addition R:b, then

(vii) 7- is symmetric;
(viii) (T-zI)-:7- , z(C.

Proof. (i)-(iv) and (vii)-(viii) are obvious from the corresponding Hilbert
space results; see [6] and [11]. (v) and (vi) follow from (i), (iii) and from the easily

veriflable identities
(ZL;r' : {0}er(0)1a,

(7:")o : {0}@r(0)0 : {0}e(7n (7L)')(0).

Theorem 2.4. Let T be a linear relationfrom $ into R with ortho-complemented

T*. Thm T"::T n(L)' rs an operator with D(T):b(T) and fr(I")c T(O\L, and

(2.1) T - 4t+77*.
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Furthermore,
(0 f" ,s closed if (iff, in case $ and § are Krein spaces) T is closed;
(i0 7" is ortho-complemented tff T is ortho-complemented;
(iiD a(7) : n(4)t + lr(0).

Proof. As 7- is ortho-complemented, it is non-degenerate, and hence f is
an operator according to Proposition2.3. The decomposition (2.1) is a consequence
of the decomposition 5OS:f-t+l(7-)'. The relations concerning the domain
and the range as well as (i)-(iii) follows from (2.1) and Proposition2.3. The "iff"
in (i) follows from [16], Lemma 5.1.

As to the uniqueness of the decomposition given above we have

Proposition 2.5. Let T be a linear relationfrom $ into ft and S an operator

from $ into R such that 7: §[t]7- . Then S:7" tff T* is non-degenerate.

Proof. 10 If §:7", then every (0, k)€(T*)o belongs to Tn(7-)':7":^S
so that ft€,S(O):{0}; hence 7- is non-degenerate.

20 l-et 7- be non-degenerate. As ^ScZn (T-)':7", it is enough to prove
that every (f,g)(T"(cT) belongs to S. We have (f,d:U,,V)+(O,f) with
k€7(0); hence

lkl,l : tg-s/l/l : lU, d-U,sf)l(0,,)

: [(/, e)l(O, /)] :0

for all /( 7(0), because ,Sf 7- and ( I 7- . This means that kC7(0) n 7(0)r : {0}
(by Proposition 2.3), but then (f, d:(f, §D e S.

The preceeding theorem gives a reduction of a linear relation T in $ to the
operator 7" in 5, but usually $ is too "large". The following result tells us when
I" is an operator in 7(0)4.

Proposition 2.6. Let T be a linear relation in $ with ortho-complemented T*.
If fi,(T"-zl)c7(0)r for one z€C\{0}, then D(f")c7(0),. Conuersely, if
D(Z.)cf(0)', then 8(7"-zI)cT(0)L for all z(C.

Proof. For all ,fe O1f";, CC7(0) and z€C\{0} we have

["f lg] : - z-1[(7"- zl)f lg)'

from which the result follows.
Next we shall study how much information is retained by this reduction to an

operator.

Theorem 2.7. Let T be a linear relation in $ such that T_ is ortho-comple-
mented and D(T)cf(O)'. Regard T" as an operator in T(O\L and let z€C. Then
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(i) T - zI : (7"- zl)l1lT * ;
(ii) 8(T - zI) :fi (7"- zl)t * I 7(0);
(iii) s((-21) is closed if (iff, in a Krein space) fr(T-zl) is closed;

(iv) 8(7"-zI) is ortho-complemented iff nQ-zI) is ortho-complemmted;

(v) {t (T - z I) : {t (T 
"- 

z I) ;
(vi) or(7): oo(T) andfor z{or(T) the relation (7"-zI)-L is an operator, and

(T- zI)-L : (7"- zI)-'[ -i- ]Orror,

where Orro, denotes the zero operator in T(O).

In addition let $ be a Krein space. Then

(vii) r(f):r(7i) in case Z(O)c§* for a fundamental decomposition (l.l)
of $;

(viii) o(I): o(7") in case T is closed.

The proof is mostly a direct calculation.

The following results show that we can use this reduction to investigate all

the interesting linear relations.

Lemma 2.8. Let T be a dissipatiue linear relation in $- Then D(T)c7(0)'.

Proof. Let fe»171 and k€T(O) be arbitrary and let seT(71' Then

zk+g€T(0)+g : T(f) for all z(C' H.enLce (f,zk*g)(T and so

0 = Im (zlklfD+rmlslfl

Thus -lm (zlklfl) is bounded above with the non-negative constant Im tsl"fl
for all zQC,but this is possible only it fklfl:O, i.e. f(0)rD(7).

Theorem 2.9. Let T be a linear relation in $ such that T- is ortho-comple-

mented. Then

(i) 7 rr a dissipatioe relation iff T" is a dissipatiue operator in T(O)t ;
(ii) 7 ,s a symmetric relation iff T" is a symmetric operator ,'n f(0)r,'
(iii) r is a self-adjoint relation iff T" is a densely defined self-adjoint operator

in T(O)L;
(iv) 7 is a contractiue relation itr 7^Q) is non-positiue and T" is a contractiue

operator;
(v) 7 ls an isometric relation iff T is an isometric operator-

Proof. (i) If I is a dissipative operator in 7(0)4, then

rmlslfl: Im [7i"f -f klf] : rmlr"flfl > o

for all (f,g):(f,7""f)+(0, k)Cf:7d"t+l?tr-. Conversely, if T is a dissipative

relation, it is clear tbat T" is a dissipative operator in 7(0)a (see Lemma 2.8).

(ii) Suppose that T" is symmetric in I(0)1. Then

I. c (I,)*, T* c(T-)+, ( c Z(0)re5 : (7-)*
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(see Proposition 2.3). These together imply that T:T"lt]7- is symmetric. The

other half follows from (i) and the fact T"cT.
(iii) If 7 is self-adjoint, then I, is symmetric by (ii) and D(f):514:D(7)

is dense in 7(0)1 by Proposition2.3. Hence the adjoint of I exists as an operator

in the space 7(0)r and 7"c(7,)+. For all å€D((4)+) and (T"f+k,C)C.T:
f"l+17- one obtains

lT"f +klhl: lT"f lhl : U'l(T)+hl,

and so (h,(7")+h)€T+:7. This implies h€D(T):D(7"), i.e. (7")*:4.
Conversely, if ( is a self-adjoint operator in 7(0)r, then TcT+ by (ii).

Furthermore, we have

lT"f +klhl: VVI

for all (h,l)€.7+ and (f,T"f aD{-r"L+lT*. Especially for k:0,

lr"f lhl: lIlt,l,
where /:ä*äe f1011i17(0)'; hence å€D«r").) and (T)+h:T"lt:lz. This

means that (h,l):(h,T"h+L) is in 4[i]T*:7.
(iv) If 7 is a contractive relation, then

[r,f +klr"f +k]=lflfl
for all fen!):»(T), k€T(o). By choosing k:0 or f:g we get the result.

The converse follows similarly.
(v) Let T be an isometric relation. Then we can replace in the proof of (iv)

the inequality with the equality. This shows that 7" is isometric and 7(0) is neutral.

But 7- is non-degenerate and hence 7(0) must be {0} bV Proposition 2.3'

Note that as 7(0), and with it also f(0)t, is ortho-complemented, 7(0)r is

a Krein space/a Pontrjagin space if $ is a Krein space/a Pontrjagin space.

2.3. Reduction to a relation in a Hilbert space. In the previous section we

reduced a linear relation T in $ to an operator. Here we are going to show another

reduction, which is more usable in the Krein space case.

T h e o r e m 2.10. Let T be q linear r elation in a Krein space $ such that b (T) 
= b -

for a fundamental decomposition (l.l) of b. Let J be the correspottding fundammtal
symmetry. Define

(2.2) S:-- TJ : {U, dlUI, dcr]'.

Then S is q linear relation in $ with D(S):5i7), SiO;: T(0) and

(2.3) T : S+2TP-,

where P- is the fundamental projector belonging to (l.l). Furthermore,
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(i) 
^S z's closed iff T is closed;

(ii) 7 is dissipatiue f maximal dissipatiue f symmetric f maximal symmetric f setf-adjoint
iff S is J-dissipatiaelmaximal J-dissipatiuell-symmetricfmaximal J-symmetricfJ-self-
adjoint.

Proof. Since D(7)=§- and Jz:I itfollows that D(S;:517) and ,S(0):Z(0).
Let us prove (2.3). Every (f,d(S+zTP_ is of the form (h,k+l), wherc

(Jh, k), (2P - h, l)(T; then

U, g) : (h, k+[) : (Jh, k)+(Zp _h, l)(7.
Conversely, if (f,g)€T, then 2P_f, Jf€D(T). Hence (2P_f,D€f or U,l)e
2TP- for some /(5 and (Jf,k)€T or (f,k)<,S for some ft€$. These rela-
tions imply (f, k+l):(Jf k)+QP- f,l)€T and further (0, g-k-l):(f, d-
(f,k+l)€T. so (Jf, g-l):(Jf, k)+(0, c-k-l) is in 7 or (f,g-l) is in 

^s.
Putting these facts together we see that (f,d:(f,(g-l)+/) ts in S+2Tp_.

(i) follows from the facts that,Iis continuous and T: SJ. (ii) is a direct calcula-
tion, which uses relation (1.2) and the basic properties of the fundamental sym-
metry "I.

fn case S-(:f-) is "I-ortho-complemented, i.e. closed, we can go a step
further using Theorem2.4 and reduce T to the operator s":

r: (s"(*)s_)+zrr_;
here (*) means a sum which is orthogonal with respect to a ,I-inner product. We
can put this decomposition in a more usable form:

Theorem 2.11. Let T be a linear relation in a Krein space b such that T* is
closed and D(T)= H- for a fundamental decomposition (l.l) of g with the funda-
mental symmetry J::P*-P-. Define s::7,I, ^S"::,Sn(S_)(r) and A:: -2S"p_.
Thm

(2.3',) T - S+A, Tr:,Sr+/.
Furthermore, parts (i) and (ii) of Theorem2.lo remain true.

Proof. We verify the first identity in Q.3'); the second follows similarly. All
other claims are obvious in the light of Theorem 2.lO.Let (f,d(7. Then (,r/g)6§:
S"(+)S- and so (Jf, g):(h, S,r)+(0, k) with /r(S(0). Because h:Jf and
J-I: -2P_, we get

s : Å«"r-D +I)f +t": Af +S"f +k.

Hence (f, d: (f, (s"f+t)+,qf) with (f, s"f+k)€ s"(+)s- : ,s and so
(f, d< s+A.

Conversely, let (f,C)€,S+,4; then (f,g):(h, S"h+k+Ah) with &(,S(0). In
this case

c : s""f-2s" P-f+k: S"Jf *k,
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which implies that the vector (Jf,g):(Jf, S".f/)+(0,k) is in 
^S 

( i),S :^9, i'e'

(f, d€T.
Note that this theorem gives us (at least theoretically) the possibility to use the

perturbation theory in studying a linear relation lin a Krein space: T can be regarded

as the corresponding Hilbert space relation § perturbed by the opetatot a.

2.4. The Cayley transformation. Following [11] we define for z€c the cayley

transform C,(T) of a linear relation T in b by

C,(T) :: {k- zf, c-zf)lj, d<r}

and the inverse transform F,(T) of T by

F,(T):: {k-f, zc-zf)lj, d(T}
Then C,(T\ and F,(T) are linear relations in 5 with D(C,(D):fi(T-zI),
D(4(r»:n Q-I) and n(C,(fl):fi(T-zl), r(r,(O): fr(zT-zl). For future

use we quote the following result from [1U:

Lemma 2.12. Let T and S be linear relations in $ and z(C\R. Then

(i) T : C,(F,(T)) : F,(C,Q)) ;
(if rc S iff C,(T)cC,(S) iff F,(T)cF,(S);
(iiD c-,(7):c"(-T), F-"(T): - F,(T);
(iv) Cu(fl : C,(T)-', Fu(T) : P,17 -r1,
(v) C,(f+): Cr(T)', F,(T +): Fr171+,

(vi) c,(T+s):c,(7)+c,(s), F,(T+s):4(Dt F,(S) and the sums are

direct iff the sum f+ S ,s direct;
(vii) C,(r)(0) :{t(T - zI), 4(O(o) : *Q - I) ;
(viii) D (Z) : n(C,Q) - I) :\(r,Q) - rt) ;
(ix) A (I) : fr (C,1r1 -zz-' I) :fr(r,(r) -zI) ;
(x) r(o) : vt (c 

"q1 - 
t1 :x(r,Q1 - zt) ;

(xi) in case $ is a Krein space, T is closed iff c,(T) is closed ff F,q) is closed.

Let z be a non-real complex number. We define a mapping c, in the extended

complex plane ö::Cu {-} as follows:

(2.4) cr(w) ::
, if 14, € C\ {r),

if w:2,
if l,v: oo.

[ 
(, -z)(w - z)-'

l;'
We agree to say that oo is

7 is not an opetator. Then
and [18]):

an eigenvalue of a linear relation T if \€op(T-'), i.e.

the spectral mapping theorem is true (compare with [2]
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Proposition 2.13. Let T be a linear relation in g and zeC\R. Then

c,(o(T)): o(C,(T)).

Moreooer, eigeru;alues correspond to eigenualues.

The proof is clear if one uses Lemma 2.12 and the relation

Q.s) n(C,(T)-c,(w)1): 8(T-zI), w(C.

We denote by C + (C-) the open upper (lower) half-plane of the complex plane
C. As to the Hilbert space case of the following two results, see [ll].

Theorem 2.14. Let T be a linear relation in $.
(D If f is dissipatiue, then C,(T) is contractiuefor all z(C_ and an operator

for all z€C\or(7).
(ii) If T is symmetric, then C,(T) is isometric for all z€C and an operator

for all z(C\or(7).
(iii) If 5 is a Krein space and T is self-adjoint, then C"(T) is a unitary operator

for all z€q(T).

Proof. The identity

lc- rf ls- rf)-ls-zfls-ZIl : -4(Im z)lslfl
for all (f, d<T and Lemma 2.12 imply (i) and (ii).

Because 8(T- zl):g and {t(T - zI): {0} in (iii), we have, by proposition 2.1,
D(c,(r»:fr (T-zI):g and

n(c,Q)) : fr (T-zI) : E((r - zt)*) : fr ((r- zl)+)t t
: Il(T- zl)t : §);

hence C,(T) is unitary by (ii).
The most remarkable fact here is that the cayley transform is not always an

operator as in the Hilbert space case. Theorem 2.14 has the following converse.

Theorem 2.15. Let T be a linear relation in $.
(i) If T is contractiue, then F,(T) is dissipatiue for all zQ.C_.
(ii) ff T is isometric, then F,(T) is symmetric for qll z€C.
(iii) If T is unitary, then F,(T) is self-adjoint for all z€C\R.

Proof. The identity

tmfzg-zf lg-I]: Gm z)(lglsl-Vlfl)
for all (f, d(I implies (i) and (ii). (iii) follows from (ii) and from the facts

fr(F,(T)-zI): D(7) : b: m(r) : n(F,(T)-24
for all z€C\R; see Lemma 2.12.
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2.5. The relation matrix. In this section we suppose that $ is a Krein space.

Let T be a linear relation in $. Extending the notion of the operator matrix we say

that T is represented by the relation matrix

(2.6)

(2.8)

181

lT:: i-:l
with respect to the fundamental decomposition (1.1) of b if Trx is a relation from

51 into 51 and

(2.7) T : (T**tT_*)*(7*-+7--).
The basic properties of a relation matrix are given by the following result:

Theorem 2.16. Let T be a linear relation in a Krein space b such that
D(Q:$- for a fundamental decomposition (l.l) of b. Define

T* * i: p +(r n(5* o5)) : {(f, p *s)€ b+ o b*lu,s)€ T},

T- + i: P +(r n(5- O5)) : {(f, P *s)€ 5- O 5*lU,s)€ T},

T+ - i- P-(r n (5* o5)) - {(f , P _d€ 5+ o b_\ff, s)€ r),
r- - :- P -(rn (5- o5)) - {(f, p -il€ 5- o b*l(f,s)€ r\,

where P* are the fundamental projectors belonging to (1.1). Then T is represented

by the relation matrix (2.6), whose components are giuen by (2-8). Furthermore,
(i) D (I* *) : D (7* -) 

: D (r) n 5+, D (7- *) : D (T - -) : b - ;
(ii) P+ r(0) : 7* * (0) : 7_ + (0), P_ r(0) : 7+ _ (0) : 7_ _ (0);
(iii) for euery (f, g)(T there exist f*(51, tr1€5 and I(T(O) such that

f :f**f-, g:g+*g-+l and

(f +, P+g+)€T++, (f _, P*g_)€T_a,

UI+, P-g+)(T+-, (f -, P-g-)(T--;
(iv) I: (T+ + +T +-)+(7- + *7- -1.

If in addition 7(0) ,s closed and T(O)c.$a, then
(v) (7**)":(4)++ and T**(0):T(0);
(vi) (7_*)":(4)_* and T_ *(O):T(0);
(vii) 7*- is an operator and 7*-:(7")*-;
(viii) 7- - is an operator and T--:(7")--.
Proof. (i) and (ii) are obvious from the definitions. (iii) follows easily if one

defines fa::Paf ((D(O), chooses Br€5 such that (f*,8+), (f-,g-)€.7, and
puts /::g- g+-g-.

The verifications of (2.7) and (iv) are direct computations, which use (i)-(iiD
and which can be split into the following parts: T':P+T+P-7, P*T:T**tT_*
and similarly for P-7, f n (5*e5):7*** T*_ and. similarly for 7n (5-O5),
and finally T:T a(5+O5)+ 7n (5-615).
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If in addition 7(0) is closed and in 5a, then 7 is ortho-complemented and
Tn:T a ([)r an operator (see Proposition2.3 and Theorem 2.4). From (i) it fol-
lows that 7**(0):7-*(0):f(0) as well as that T*- and T-- are operators.
From the identities

(7J** : P*(4^ (5*o5)) : p*(Tn(b+@r(0)r;),

(z* *)o : T+ + n [((r* *)_), n g*1

: [r* (rn (5* 05»] n [5* o(r(o), ., 5*)]

we see that (7")**c(7*a)". Furthermore, they are both operators with the same

domain D(7)n5+; thus (7:)++:(7.,a),. (vi)-(viii) are proved similarly.

3. Dissipative and maximal ilissipative relations

3.1. Dissipative relations. Almost all the properties of a dissipative linear rela-
tion 7 in a Hilbert space are based on the inequality

(3.1) lls - ,f ll = (Im z)llf ll

for all (f, d<7, i.e. C -cr(T); see [11] (note that our definition of dissipativeness
differs from that in [11]). In a general inner product space this inequality is not
necessarily true even in the case of operators. In order to get an analogous but
weaker form of this result we suppose that our space is a Pontrjagin space.

Theorem 3.1. Let T be a dissipatiue linear relation in a Pontrjagin space $
such that 7(0) rs closed and O(f):5- for a fundamental decomposition (l.l) of g.
Thm there exists a constant c7>0 such that

(3.2) lls-zfll = Gmz-cr)l7ll

for all (f,d<T, i.e. z(r(T) for all z(C- with lm7,>cr.

Proof. According to Theorem2.ll we can write T:S+A with ,S:: TJ and
Az:-25"P_. As S(f_1:5_ is finite-dimensional the operator r4 is bounded;
we put c7::llAll. (Only here we need the assumption that g is a Pontrjagin space.)
The operator A*ic7I is ,I-dissipative; indeed, for all feD(A) we have

Im (Af + icr f I fl : tm (Af 
I fi + c rll I llz

= -llAlll ll/ll+ ll,4ll ll"fll' = o.

As § is ,I-dissipative it follows that ^S-(Re z)I is also ,I-dissipative. In this case

the relation
7- (Re z-icy) I: (^S-(Re z) I)+(A+icr I)
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is also ,I-dissipative as a sum of two ,/-dissipative relations. So we can use the inequal-
ity (3.1) to get

lls-,f ll ll"fil = rm k- {lf)
: Im (g-(Re z-icr)f lf)+rm 1ne z-icr- z)llfllz

> (tmz-c1.)llfllz

for all (f, d€T; hence the result.
The next result gives a sufficient condition for a dissipative linear relation to

have dissipative extensions with a given eigenvalue. Later we shall show the converse
for symmetric linear relations.

Theorem 3.2. Let T be a dissipatiue linear relation in an inner product space

S qnd let z€C.

O If nQ-ZI)t contains a non-zero uector f such that (Imz)lflfl=0, then
T has a dissipatiue extension T' in the original space with zQor(T');

G\ if WQ-ZI)L contains a non-zero uector f such that (Imz)lflfl>0, then
T hqs a dissipatiue extension T' in s larger space $' with z(on(T') and at least one
eigenuector does not belong to $.

Proof. We can follow the proof given in the operator case; see [5]. In case (i)
we define T'::(7,(f,rf)), where the symbol (..) denotes the subspace spanned
by the set {..}. Then T'=7, z<oo(T') and a direct calculation suffices to show
that T' is dissipative. In case (ii) we take an element e which does not belong to g
and define 5'::(b, e) with the inner product [.l.]':

Then the relation

rslel':: {'-urr, |]I 
rr':',

T' :: (f,(f +€, z(f +r»)
meets our requirements.

3.2. Maximal dissipative relations. The most interesting extension of a dissipa-
tive linear relation in the origiiral space is the maximal one. The following results
give some information about maximal dissipative linear relations; for the Hilbert
space case see I l].

Theorem 3.3. Let T be a maximal dissipatirse linear relation in a Krein space

$. Then

(i) f rs closed;

GD nq-ZDr is posititse if WQ-ZD is non-degeneratefor z(C-.
Proof. (i) It is quite clear that the closure of 7 is a closed dissipative extension

of 7; hence T:7. (ii) If there exists a non-positive vector f<ng-ZDa, then
lt::(C,(T), (0,,f)) is a contractive extension of C,(T). So F,(V) is a dissipative
extension of 7, which implies that F,(V):T or V:C,(I). Hence f(n(C,(T)):
$(T-ZD, but fi(T-ZI) is non-degenerate and so /:0.
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Theorem 3.4. Let T be a dissipatiue linear relation in a pontrjagin space g
such that 7(0) rs closed and D(T)=b-.

O If f is maximal, then fi,(T-zl):g for all z€C with lmZ>cri
(i» if ng-zl):$ for z(C with ImZ>2cr, then T is maximal.

Proof. (i\ According to the theorems 2.lO and 2.ll we can write T:S*A,
where ,s is a maximal "I-dissipative linear relation and A is a bounded operator
with [,all:cr'. Especially (s-zl)-t is an everywhere defined bounded operator
withthenorm <lllmZ for z€C_; see(3.1)andTheoremZ.2.If ImZ>cr, then

llAll : cy <lmz = 1/ll(^S-21)-111,

and therefore the operator I*A(s-zI)-l has an everywhere defined bounded
inverse. In this case

T -zI : (S-zI)*A : (I+A(S-zD-t)(S-zr)
or

(T- zl)-r : (S - zl)-t(t+,1,15_ ,4-r1-r,

but the operator on the right side is everywhere defined and so fr(T-zl):9.
(ii) As in (i) 7:,S*,4, where ,S is "I-dissipative. Furthermore, by the assump-

tion and by the theorems 2.2 and 3.1 the operator (T-zty-t is everywhere defined
and ll(T - zl-1ll 

= 
l/(Im 2 - c r). But then ll All : c r =tm Z - c r = I I lle - zt)-tll, and

hence we can proceed as in (i) to get

(S- zl)-t : (T- zl)-t(t-,lq- zt)-r)-r,
which implies fr(§-21):9. From [11] it follows now that ,s is maximal.r-dissipa-
tive and so 7 is maximal by Theorem 2.11.

Corollary 3.5. Let T, $ and z be as in Theorem3.4, part (1). Then z(ee)
and llR(z)ll<(lmZ-cy)-r for the resoluent R(z)::(T*zI)-L of T.

4. Symmetric linear relations

4.1. Eigenvalues, points of regular type. Since every symmetric linear relation
7 is dissipative, we know from Theorem 3.1 (under the other assumptions made
there) that all zQC with Im Z>c, znd (for reasons of symmetry) with Im Z<-cr
are points of regular type of 7. However, by using better results of the perturba-
tion theory we can improve this. To do so we first examine the eigenvalues of r.

Theorem 4.1. Let T be a symmetric linear relation in an inner product space $.
Thm

(i\ rJt(T-zI) and rIt(T-wI) are orthogonal for z,w(op(T), ztw;
Ql tJfQ-zI) is neutralfor z€op(Z)\R.

In addition, let $ be a nx-space and let T* be ortho-complemented. Then
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(iii) the number of the eigenvalues of T belonging to C* (resP-, C-) is at most 14;

(iv) o(D\R:or(7)\R is symmetric with respect to Rfor self-adioint T.

Proof. (i) lf feli'Q-zl) and S€[t(T-wI), then (f,zf), (g,wg)eT and so

o : lzf lsl-Vlwcl: e-w)Uld.
(ii) follows immediately from (i). (iii)-(iv) are direct consequences of the theorems

2.7 and 2.9 and of the fact that the corresponding results are valid for operators;

see [5]. Note that 7(0)r is also a nEx,-spacewith x'=x.
We can now prove the converse of Theorem 3.2 for symmetric linear relations.

Theorem 4.2. Let T be a symmetric linear relation in an

b and let z€C\R.
(i) m (f - ZDt contains a non-zero neutral uector iff T has a

T' in the original space with z€op(T').

inner product space

symmetric extension

(ii) Y(T-ZDL contains a non-zero negatiue uector iff T has a symmetric extension

T' in a larger space $" which includes $ as an ortho-complemented subspace with

$L positioe in $', such that z<oe(T'\ and at least one eigenuector does not belong

to 5.
proof. The other halves of (i) and (ii) follow as in the proof of Theorem 3.2.

To show the converse of (i) we take an eigenvector fr belonging to z€or(T'). Then h

is neutral by Theorem 4.1 and belongs to fi(T-ZI)r. Indeed, since (å, zh)qT' and

7'is symmetric we have

Ls -zf lhl : [slh)-V I zhl : s
for all (f, d<TcT'.

For the converse of (ii) we denote by P the orthogonal projector of $' onto
g and let h49S be an eigenvector belonging to z(or(7'). Then

0 : Url hl : [Phl Phl+lQ - P)hl(I - P)hl

and (I-P)h$)L is positive; hence Ph is negative. Furthermore, it belongs to

n(T-zl)t, because

le -zf lPhl : lsl hl-V I zhl : s
for all (f, deTc.T'.

We remark that if the space $ in Theorem4.2is a Pontrjagin space, then (ii)

in Theorem 4.2 can be given the following form: $(T-ZI)L contains a non-zero

negative vector iff 7 has a regular symmetric extension f' with zqon(T') and at

least one corresponding eigenvector does not belong to $. Here a regular extension

means an extension which is defined in a Pontrjagin space b'=b with the same

number of negative squares as in the original space §. This remark follows from

the facts that then $1 is positive and $ is ortho-complemented in 5'; see [5].

Corollary 4.3. Let T be a symmetric linear relation in a Pontriagin space $
and let z€C\R. The subspace $(T-ZDL is positiue iff T does not haue any regular

symmetric extension T' with zqor(T').

185
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Theorem 4.4. Let T be a closed symmetric linear relation in a Pontrjagin space

$ such that D(T)=§s- for afundamental decomposition (l.l) of S. Then ail non-real
points zgor(T) are points of regular type of T.

Proof. By Theorem 2.ll we have fs:S *r4, where ,S" is a closed,I-symmetric
operator and A:: -2§"P-. As fr(P-):5- is finite-dimensional the operator
,4 is ^s"-completely continuous and then by [13], Theorem 9.4, allnon-real zfior(T"):
or(T) are points of regular type for ,S"*,4:7. Theorem 2.7 lhen implies the
result.

4.2. The relation matrix. The relation matrices introduced in Section 2.5 are
useful especially in the study of symmetric linear relations and their extensions. As
to the operator case, see [5] and [15].

Theorem 4.5. Let T be a closed symmetric linear relation in a Krein space $
with D(T)=$- and let (2.6) with the components (2.s) be a relation matrix of T.
Then

(i) I++ is a closed J-symmetric linear relation in sS* with Z**(0):716;,
Gi) 7- - is a continuous J-self-adjoint operator in g1_;

(iii) 7-+ is a closed linear relationfrom g- into ba with r_+(0):T(o), the
operator part (T_a), is continuous and the J-adjoint (Z_*)* is an operator;

(iv) 7* - is a continuous operator which admits a continuous closure Ti with the

domain O(f1.., Sa, and in addition q_--(I_*)* and llTa-ll=ll(Z_+)"ll;
(v) 7 rs self-adjoint in §S ff 7** rs J-self-adjoint in b+; in this ,or, q_:

-(r , )*.\ 
-f.

Proof. Because 7(0) is closed and

7(0) c 7+(0) : D(7)'c (5-)' : b+,
we can use Theorem 2.16.

(D If (l c), (h,k)€T+a, then they are of the form

(f , g) : U, P*D with f €5+, U,l)(7,
(h, k) : (h, p*m) with h€b+, (h, m)(7.

Furthermore, according to Section 1.3 the,I-inner product (.l.) in 5* is equal to
the inner product [. l.]. So we have

GID-Ulk) : IP+tlh]-ff lP*ml
: ftlhl-fJlml:0,

since ris symmetric. Thus r** is "I-symmetric in S+.The closedness of r** fol-
lows in the same way as the closedness of Z_ *; see (iii).

(ii) In a similar manner as in (i) it can be seen that r- - is ,I-symmetric. Further-
more, (7--)*(O):O(f-_)(.):{0} and so (Z-_)* is an operator. But then Z__
must be "I-self-adjoint and continuous.
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(iii) As 7_*(0):7(0), the subspace (7-,.)- is ortho-complemented by Prop-

osition 2.3 and so we have the decomposition T-*:(T-a)"[*](7-+)-. In addi-

tion, (7-*)*(0):O(f-*)('):{0}, i'e. (T-*)* is an operator. Let us prove that

7 is closed. We can write-r 
T-+ : Tn(b-o5)-7--,

because rn(5_@5):7_+ +T__ and I-- is an everywhere defined operator.

Let (f,,g,) be a sequence in T-* converging to (f,8)€5- @$*. Then (fo, g,):
(f,,k,-T--f,) with (f,,k,)<T. The convergence of the sequencies (1,) and

(g,) and the continuity of 7-- imply that k,:go+f--f" converges to some

k€5. Then (f*,k,\t(f,k)ef n(5-Ob) and especially feDg--). So we get

(1,, gn) : U,, kn-T- - I) * (f, k-T- - I),
i.e. (f,g):(f,k-r--f)eT_*. Thus 7-* is closed and by Theorem2.4 (T-+)"

is also closed. Being defined everywhere in $- the operator (I-*)" is continuous.

(iv) If (f,P-d(I*- and (h,P+k)€T-*, then

becaus e T is symmetric. Hence

To prove the continuity of

the decomposition
(T*-f,

T - -c - ( f- -)* and so by (iii) T + - is an operator.
- f 

-

T * - take an arbitrary vector fe» (7* -). Then-r-
(T*_f,g)€T-+ forsome g€5+. This element has

g): (T*_f,g_+)"7+ _f +t1

with k€ r(0). As

which implies llf*-ll=ll(f-*),11. The properties of the extension T*- ate obvious'

(v) suppose that T is self-adjoint. we should prove the inclusion (7**)*c
7_.. For this, let (h,k)<(T++)+ be arbitrary. If we can find a vector g€5-

ff

such that (h,k*d€T+-r, then (h,k):(h, r*(k+d), i.e. (h,k)(T++. using

(i), Proposition 2.3 and (iv) we get

D((7**)*) c D((7*+)*)r* : r;(0)1 :7(0)-
: D(r).,5* : D(7i-)

(here the orthogonal companions are in $*). By choosing S,:\-n one can,

with the help of (i), (iv) and Theorem 2.16,verify that (h,k+d(7+ as we wanted.

Suppose that T** is ,I-self-adjoint in $*. We should prove T+cT. Take

an arbitrary (h,k)€.f*. Using the assumption, (iv) and some calculations we see

that (h,P*k) is in I** tT-*. Similarly (h,P-k) is seen to be in T*-tT--'
By Q.7) the element (h, k) is then in 7.

T + -c - V -+)* and 7(0) r E (T * -), we have

ll7* _fllz-(r*_f lr+-f): lrrtgll
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Finally we show that T+_: -(7_+)* in case 7 is self-adjoint. By (iv) it is
enough to prove the inclusion O«7_*))c 7(0)an5*. As above we get

o((r-*)*) c o((r_*)*)rr : r_ *(0), : r(o;r.
Theorem 4.6. Let T be a closed symmetric linear relation in a Pontrjagin space

$ with D(7):5- and with the relation matrix (2.6) defined by (2.8). A linear rela-
tion T' is a regular self-adjoint extension of T iff it is represented by the relation mqtrix

(4.1)

where T'** is a J-self-adjoint extension of T++.

Proof. 10 Suppose that T' is a regular self-adjoint extension of 7' Then I'
is a self-adjoint relation in a Pontrjagin space 5'=b, which has as many negative
squares as $, and T' car. be represented by the relation matrix

where the components are defined as in (2.8). Furthermore, by Theorem 4.5 T'++

is.I-self-adjoint in 5'-:S- and T:-(T'--\*. Note that 5'has a fundamentalr -a 4a +- \- _+/
decomposition $':$'*t+15'- with g'*:g* and S)'_:S)-; the corresponding
fundamental projectors are denoted bV P'x.

We show first that 7i* is an extension of I**. For this let (f,d€T++:
r*(rn(5*@5)) be arbitrary. Then f€b+ and (f,d:U,P*k) for some k
such that (f,k)efcT'. As P'xls:Px, we get

U, s) : (f, P * k) ( P;(T' 
^(bi o5)) : T'* *,

i.e. T, , cT', , .TT

As above, it can be seen that T_+cT'_*, T*_c.T'*_ and T__c.T'__.
Furthermore, T-- and T'__ are operators defined throughout in 5_:$'_; hence

ÅtI --:1
tet us prove the identity Tl+:T-*t{o}Of;+(0). From Theorem 2.16 and

from above we get the inclusion :. Furthermore, it is easy to see that the linear
relations on the left and right side of the desired identity have the same domain
§- and their multi-valued parts are equal. These facts imply the equation we wanted.

Finally, we must show 7i_: -(7_,.)*lo(r;*), where the adjoint is taken in
the extension space. A little calculation gives

(T'-*)* : (7- *)*n(7i * (0)a @5-)

: (7_ *)*n(Orr;leo_) : (r_ +)*lo(rr.

on the other hand, r* -: - (T'- *)* , and putting these together one gets the desired
result.

l ri* r*+tt0)@r;*(0)I
[- tr- *)*lo (r,* *) T - - l'

fTi.- T,-:J,
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2" Suppose (* is a,I-self-adjoint extension of I** in a Hilbert space $'*
extending 5*. Then the space 5'::$'*@5- equipped with the usual linear and
inner product structure is a zr-space with a fundamental decomposition

(4.2) 5' ::5;l+15-.
We should show that the linear relation 7' defined via the relation matrix (4.1) is
a self-adjoint extension of 7.

We verify first that -(Z-*)*lutr'**l is an operator extension of 7*-. As
O(f_+):$- we see that (7_*)* is an operator. Let feOtf *_1, then (kl/):
-(hlT*-f) for all (h,k)€T-+ by Theorem 2.16. This means (f, -f +_f)€(T ,\*. i.e. T, c-(L)*. Furthermore. D(7, ):O(I ,)cD(71 ,). and
so we get the desired result.

To prove the inclusion TcT', let (J',C)(I be arbitrary. Then by Theorem
2.16 g:g1lg, and

(f , gr) : Ur, grr)*(lr, grr),

U, Ez) : Ur, gz)*(Jz, gzz)

with (fr, cr)€T+*CT'++, (fr, gn)eT_+, (fr, gz)eT*_c -(7_+)*lorr**l and
(.fr, grr)(T-- ; hence

U, g): U, gr*gr)€(Ti*t7-*)+(-(7-*)*lo«4 ,tiT--). T'.

In order to show the symmetry of T', we decompose an arbitrary (f,g)<T'
analogously to get

lslf I : (g" lÅ) * (g,, lf ) - G.,ID - G,,lf ,)
: U tl st) - (f zl s rr) * U rl s å - U rl s rr)
: Vlsl;

i.e. T' is symmetric. Here we have used the following facts: 7i*c(7**)*,
(fz, grr)(T-a, (fr, -BzJ€ -(7-*)* ar.d T--c(r--)*.

Finally, we must show the inclusion T'+ cT' . For this we need the identity
D(7i*;:5((7]*)*lo«r,**r), for which in turn we need the fact that O«fl+))
is closed. To prove that fact, one can argue as in the proof of Theorem 4.5 to show
that ll(7-*)Yll=ll(r-*)"llll"fll, i.e. (I-*)* is continuous, which is enough. Then

D((r-*)-) : D(7-*)*)rr : 7-*(0)a : 7(0)-L r I'(0)r : D((*),
from which the identity mentioned above follows.

Let P'* be the fundamental projectors belonging to the decomposition (4.2)

and take an arbitrary (h,k1E7'+. Then a little calculation shows that (h,pit)<
T'**tT_* and analogously (h, P'_)€-(I_+)*lo s,,,1lT. . , i.e. (h,k)€r'.
This completes the proof.

Corollary 4.7. Euery closed symmetric linear relation T in a Pontrjagin space

$ with O(D=$- admits regular selfadjoint extmsions.

We can put the previous theorem in a perturbational form.
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Theorem 4.8. Let T and $ be as in Theorem 4.6. Eoery regular self-adjoint

extension T' of T is of the form T' :S' * A,where S' is a J-selfadjoint linear relation
and A is a continuous operator with llAll<cr.

Proof. From Theorem 4.6 we know that T' is represented by the relation matrix
(4.1). Define S'.:T'+++f --; as T'** and T-- are nl-self-adjoint it is easy to see

that ,S' has the same property. Let

A :: -(T - +)*lo1r; *y f (I- *)".
Then ,,4 is an operator with D(A):917'1.

To prove the continuity of A,let f <DQ) be arbitrary. Then

Af :-(T_*)*Å+(7_*)"Å

with Å(D(ri+) and f,(.D(T-+). This implies

ll Atll' : ll(r- *)*Åll' + ll (7- *)""f,ll'

= ll(7- *)"ll'(llÅll' + llÅll')

: il(r_*)"ll,ll"fll,

(see the proof of the preceding theorem). So we must prove that ll(f-+)"ll=
2llS"P-ll::cr (for the definition of ,S", see Theorem 2.11). With Theorem2.16
and a little calculation we derive

(7-*)": (f")-* : (S"/)- +: P+Å"fls- c-P*,S"P-,

which implies the desired inequality.
Finally, to verify that T':S'+A one can proceed as follows: With the help

of the relation matrix of T' it is seen that T'cS'+A. Furthermore, D(S'):
D(T'):91a) and f'(0):(,S'+z4)(0). These facts together imply the result.

Corollary 4.9. Let T and $ be as in Theorem4.6 and let T' be an arbitrary
regular self-adjoint extension of T. Then

(i) o (T' )c C, :: {z (Cl llm zl= c7} ;
(ii) il(f'-zl)-t|;-(Im z-ct)-r for z{Cy;
(ii\ fiQ-zI)L is positiuefor z{C7.

For the proof, see Corollary 3.5 and Corollary 4.3.

4.3. The deficiency spaces. Let T be a relation in an inner product space 5.
Define Yt,:: ya,(n t: E(T -ZDL and M 

" 
:: M,(T) :: {(h, k) (T + 

lk : zh} for z (C ;

the latter is called a deficiency space of fin [11]. In studying these spaces we restrict
ourselves to Pontrjagin spaces.

Theorem 4.10. Let T be a closed symmetric linear relation in a Pontrjagin
space $ with D(n)$- for afundamental decomposition (L.\ of $. Then
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(:i) M, is a continuous operator with D(M,):fi(M,1:97, for all z€C\R,.
(ii) M, and sJl, are Hilbert spaces with respect to l.l.lfor all z{Cr;
(iii) dim M,:dimft, B constant for all z€C*\or(I) and similarly for all

z€C-\or(7),'
(iv) 7+:71M,7M, for all zsCr.

Proof. (i) is obvious and (ii) follows from Corollary4.9. Clearly dimM":
dim It,:dis1 n(T-zD(d), and the constancy of this dimension follows from
Theorem 4.4 as in the case of Hilbert space operators; see [l], Nr. 100. (iv) is a
direct calculation.

The cardinal number n*::n*(7)::dimMz(T) for z€C*\or(Z) is called
the upper defect number of T; similarly n_::n_(Z)::dim Mz(T) for z(C_\or(Z)
is called the lawer defect number of T. The previous results show that I is maximal
symmetric/self-adjoint iff n* :0 or n- :0/n+ :r_ :0.

A mapping U: $*5 is called a conjugation if Uz:I and fuflugl:l7lfl
for all f, s(b. A linear relation T in b is said to be real with respect to the con-
jugation u, it (f,c)€Z implies (uf,adq. A useful criteria for the equarity
r+:r- is given by the following result:

Theorem 4.11. Let T and $ be as in Theorem 4.10. If T is real with respect to
a conjugation, then the defect numbers of T are equal.

As the spaces 9t1;o with a>cr &ta Hilbert spaces, we can use the proof given
for the Hilbert space operators; see e.g.ll2l, Theorem XII.4.18.

As in the Hilbert space case, the sums in (iv) of rheorem 4.lo are orthogonal
for zQ{i, -i), but it can very well happen here that +.i€Cr. In order to get
orthogonal sums also in this case, we need to modify the inner product:

Theorem 4.12. Let T and $ be as in Theorem4.lO and tet a>cr. Define

[$, dl(h, k)]*:: arfflhl+fglkl

for all (f,d, @,k)ef *. Then T+ is a n*-space with the inner product f.l.)* and

T+: T[t)+ MultT*M_u.
The proof follows the same lines as in the operator case; see [20].
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