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ONI TOPOLOGICALLY AND QUASICONFORMALLY
HOMOGENEOUS CONTINUA

BE\TERLY BRECHNERI) and TIMO ERKAMA

A subset M of the Riemann sphere is called quasiconformally homogeneous if
for each pair of points P and Q of M there is a quasiconformal map E defined in
a neighborhood of M such that E(M):M and q(P):Q. For information about
quasiconformal mappings, see [].

Recently the second author showed [3] that a simple closed curve is quasicon-

formally homogeneous if and only if it is a quasicircle (i.e., the image of a circle
under a quasiconformal map). In this note we prove the following more general

result.

Theorem l. Euery non-degenerate quasiconformally homogeneous continuum is

a quasicircle.

Note that a continuum is called non-degenerate if it is an inflnite proper subset

of the sphere.

It can be shown by function theoretic methods that a non-degenerate quasi-

conformally homogeneous continuum must contain an arc. Hence by a theorem
of Bing [2] such a continuum is a simple closed curve. However, we prefer an alterna-
tive method which combines the result of [3] with a purely topological theorem.

Let M be a proper subcontinuum of ,S2. We say that M is homogeneous with
respect to neighborhood extensio,rzs if for each pair of points x, !CM, there exist
both a neighborhood U of M in Sz and a homeomorphism h: U - Sz such that
(t) h(x):y and (2) h(M):14.

By definition, every quasiconformally homogeneous continuum is homogeneous
with respect to neighborhood extensions. Thus Theorem I follows by Theorem 2

and [3].

Theorem 2. Let M be a non-degenerate proper subcontinuum of 52 such that
M is homogeneous with respect to neighborhood extensions. Then M is a simple closed

cun)e.

1) The first author is indebted to Morton Brown and F. W. Gehring, both for bringing this
problem to her attention and for a number of interesting conversations.
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Proof.
(l) Clearly each point of M must be accessible.

(2) Any indecomposable plane continuum contains inaccessible points by [5].
(3) Thus M contains no indecomposable continuum and is hereditarily decom-

posable.

(4) Now by Theorem 2 of [4], every homogeneous hereditarily decomposable
plane continuum is a simple closed curve.

The theorem follows.
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