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DEF'INTTH, TRAI\{ST,ATXGN INVARIANT BIMtrA§URES
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Introduction. Let G be a locally cornpact Abelian group and let f be its dual
group.

We present a Bochner representation theorem for positive deflnite translation
invariant bimeasures deflned on GXG. In fact, we show that a mapping
B: .fg(G)xtr"(G)-C is a positive deflnite translation invariant bimeasure, if and
only if there exists a uniquely determined positive Radon measure t: ./d"(f)-Q
such that ftfgcgl(v) afi

B{,f,il:f fyaau forall f,g€ffr(G).(x)

Furthermore, we present a spectral representation theorem for stationary vector
measures. In other words, we show that a mapping p: //r(G)tg, with values
in a Hilbert space H, is a stationary vector measure, if and only if there exists a
uniquely determined orthogonally scattered vector measure po: ffc(f)*ä such
that 9f!9t (pro) and

(xx) for ell J'Qtr"(C).

The representation (x) is closely related to (xx). lt p: :{s(G)*ä is a sta-
tionary vector measure, which has the representation (xx) and if (the positive defi-
nite translation invariant) bimeasure B(f, d:(pj)ltt(il), f, C(.fc(G), has the
representation (x ), then

(pr@)lpo(D): n(EV) for all E,ir(trc(D.

The representation (x) is a generalization of a representation theorem for
positive definite Radon measures on G due to Godement (cf. Argabright and Gil
de Lamadrid [1; Theorem4.l], Berg [4], [5J, Berg and Forst [6; Theorem4.5] and
Godement [11]); and it is closely related to the well-known Bochner-Schwarz
representation theorem for translation invariant positive definite distributions (cf.
Gelfand and Vilenkin [9; pp. 166-169]). On the other h.and, the representation
(xx) is closely related to the spectral representation for second order stationary
random distributions (cf. Itö [3] or Gelfand and Vilenkin [9; p. 271D.

p(f)- { sf d!,,,
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This paper is closely related to the works of Berg [4], [5], Berg and Forst [6;
pp. l7--261and Argabright and Gil de Lamadrid []. However, one of the main motiva-
tions to this work is to present an approach to the spectral analysis of stationary
vector measures, which is completely free from the use of distribution theory (cf.

Brillinger [7], Daley and Vere-Jones [8] and the references given there).

1. Stationary vector measures. In this section we present some preliminary
results concerning stationary vector measures defined on a locally compact Abelian
group.

Let F be a locally compact Abelian group (or a locally compact Hausdorff
space). BV %@) we denote the linear space of all continuous complex-valued
functions / defined on lr with compact support suppl Let K be a compact subset

in ,F. By ff"(F; K) we denote the linear space of all f1:fr@) for which supp/cr(.
The topology of ff"(F; JQ is defined by the supremum norm. The topology of
tr"(F) is defined to be the locally convex inductive limit of the Banach spaces

ff (F;Z) with respect to the canonical injections jr: trr(F;L)*//r(F); LcF, L
compact.

Let H be a complex Hilbert space. Recall that a continuous linear mapping

1t: il"(F) * H is a uector measure defined on F with oalues in ä. A vector measure

p: flr(F)*H is bounded,if the linear mapping p: tr (F)*H is continuous when

the space fl;(.F) carries the topology defined by the supremum norm.
Let trt be a vector measure with values in .FI (or a Radon measure) defined on F.

By 9o(p) we denote the set of all functions u: F*C for which lulp is p-integrable
p:1,2. (In this paper we apply the integration theory for vector measures introduced
by Thomas [8].)

Let .E be a normed space. It follows from the reflexivity of a Hilbert space that
all bounded linear mappings ,4: E*H arc weakly compact. Therefore, for every

vector measure (resp. bounded vector measure) $ trc@)*H all the bounded
Borel functions with compact support (resp. all bounded Borel functions) are

p-integrable [18; pp. 86-87 and p. l0l].
Let p: :t"(F)*H be a vector measure. In rvhat follows we use the notation

sp{tt}:p(tc(F)); and bv sp{p} we denote the closure of sp{p} in ä. Recall that

{ ,, dPesP {r} for all tt€91(P)
ll8; p. 691.

In what follows ä stands always for a (fixed) complex Hilbert space, G stands

for a fixed locally compact Abelian group and l- stands for the dual group of G.

The group l- carries the usual locally compact Hausdorff topology. Furthermore,
i and, 0 stand for a fixed pair of Haar measures on G and ,l-, respectively, satisfying
the Plancherel relation. In what follows g'(G) stands for 9e(1), p:1,2. For
u€9L(G) we denote by 9u the Fourier transform of u, i.e.,

fru(y) - I ffiu(x) d\(x), y€.r.
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By 9u we denote even the Fourier transform of any function u€92(G). For
u, u(91(G) the function u xu is the convolution of u and u. Finally, for any func-
tion u: G*C we put

u"(x): u(a-tx), x(G, a(G) u*(x1 : u(rl} x(G.

The following definition is analogous to the definition of a second order sta-

tionary random measure or distribution; see e.g. Daley and Vere-Jones [8; p. 333]

and Itö [3] or Gelfand and Vilenkin [9; pp. 262-263], respectively.

Definition l.l. A uector measure p: trr(G)*H is stationary, if
(p(illpk)): (p(nlpZ)) for att f, s€.t{c(G), a€G.

The following lemma follows directly from the way to define the semi-variation
p' of a vector measure p (cf. [18; pp. 65-66])

Lemma 1.2. Let p: ff"(G)-H be a stationary uector measure. Then

p'(u): p'(u) for all u: G - R+u{+ -} and a€G;

and uQ9t(p) if and only if u,Q9t(p) for all aCG.

Recall that a function p: G*C is called positiue definite, if

ä ;afipp(x;txp)>oj:1 
'<:1

for all ai(C; x1e G; i:1, ..., m; m€N.

Theorem 1.3. Let p: tr(G)-t1 be a stationary Dector measure. Then for
any u€9t(p) the function Fu: G-C defined by

(1.1) F"(x) : (f " apll ,,rtu), x€G,

is a bounded continuous positiue definite function; and there exists a uniquely deter-

mined bounded positiue Radon measure v,: J{r(f)*C such that

(1.2) .F,(x): {t@)rln"(y), x(G,

and

(1.3) [@xw.)(x)r;x1at61: {Futrwdv,
for all u,w(91(G).

Proof. Let u(91(1.r) be given.

First we note that it follows from Lemmal.2 and from the way to define the
integral with respect to a vector measure (cf. [8; p. 69]) that

(r.4) ([ ",aul[ *.au) ([ ' aulf, au)

for all u,w€9'(tt) and a(G. The positive deflniteness of the function F, follows
then directly from (1.4).
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Clearly,

lr,(x)l = ll[ " 
aull', x(G,

i.e., Fu is bounded.
In order to show that F, is continuous we first note that the continuity of any

function of the type F, f€,/ft(G), follows from the continuity of p and from
the uniform continuity of the corresponding functionl The continuity of the func-
tion Fu follows then in a straightforward way, by applying Lemma 1.2, from the
way to define the integral with respect to a vector measure (cf. [8; p. 69D.

The existence of a uniquely determined bounded positive Radon measure

v": tft(f)*C satisfying (1.2) follows now from the well-known Bochner representa-
tion theorem for continuous positive definite functions.

Finally, the formula (1.3) follows from (1.2) by a straightforward application
of Fubini's theorem.

The theorem is proved.

Definition 1.4. Let p: trs(G)*H be a stationary uector measure and let
u€9t(p). Then the uniquely determined bounded positiue Radon measure tu on I
satisfying Q.2) is called the Bochner measure corresponding to the pair (trt,u).

Lemma 1.5. Let p: //"(G)*H be a uector measure. Then fxu({r(p) for
aU f€trc(G), uCgl(p) n 9t(G).

Proof. Throughout the proof, by 1t" we denote the Radon measure defined by

p,(f) - (p(f))lr), fe trr(G) ; ze H-

Recall that p;<llzllp' for all z(H.
Since p: tr(G)-H is a vector measure with values in a Hilbert space, it is

enough to show that f x uCSt(p,) for all z(H (cf. [18; Thdoröme 5.6, Th6oröme 5.3

and Proposition 5.11).

Suppose z(H, f(t{"(G) and u(91fu)o91(G); f>0, u>0, are given. Since

f(Jft(G), the function fxu is continuous. Let KcG be a compact set and let

Xr. be its characteristic function. Then y*(fxu)(9'(y,). Furthermore, by Fubini's
theorem

It then follows that the function fxu is p,-integrable and, a fortiori,4-integrable.
The lemma is proved.

Lemma 1.6. Let p: trc(G)*H be a stationary uector measure. If u(91(p)a
g'(G) and if tuis the Bochner measure corresponding to Qt,u), then

(l t*"apll sxuctp): [ trgshdv"
for all f, S(trc(G).

(tr.5)

{ r"(f x t) ctipt,l - [ xx(x)({ tt*u (s-1x) r/z(s)) ttlp,l (x)

-{ /(') ({ ,.@)tt('-' x) ct p,l(r)) dt(s)

= llzll p'Qt1 [ f cl)".
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Proof. suppose u(9t(p) a gr(G). since the Bochner measure vu corresponding
to (1t, u) is bounded, all the functi ons gfgg; .f, s<J{r(G), are rru-integrable. Further-
more, by Lemma 1.5, the functions J'xu and gxu are p_integrable.

In the following lines we apply several times Fubini's theorem. Its use is justified,
since the function

Fn*,,u(*): ([ c*" dplf u"clp), x€G,

is continuous and bounded and since g1Qt")cgr0r,) for all z(H; here iu, is the
Radon measure defined as in (1.5).

Denote

iln*,(h) he,tr (G),

x€.G.F"(x)
Then

: I ryrg av,.

The Iemma is'proved.

Lemma 1.7. Let p: tr6@)-H be a stationary uector measure. Suppose
u(91(p)o9t(G). Thenfor alt f(trc§)

where tf*u
respectiuely.

Proof.

vf *u : i'qfiz.vu,
ond Y,, ore the Bochner meosures corresponding to (lr,-f *u) ancl ([t, u),

and f€,%'c(G). Then, by Lemm a 1.6,

- { l,q hi' d, r*u

'(u@l{sxudp),
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The assertion then follows in a straightforward way from the boundedness of
the positive Radon measures ,t": lt"(f)-C and vy*u: trc(f)*C and from the

obvious fact that any function E(trc(f) can be approximated (in the supremum

norm topology) by the elements in the linear span of the functions lfrhlz, h€//;(G).
The lemma is proved.

2. Positive definite translation invariant bimeasures. In this section we present

a Bochner representation theorem for positive deflnite translation invariant

bimeasures.
Recall that a continuous bilinear mapping B: t (G)XtcG)*C is called

a bimeasure on GXG.

Definition 2.1. A bimeasure B: tr"(G)Xtrc(G)-C is called positiue defi-

nite, if
B(f,f)>O .for all f(trc(G);

it is called translation inuariant, if
B(f ", 

g') : B(f , d for all f , c'(trc9) and a(G'

Theorem 2.2. A bimeasure B: ,fcG)Xtr (G\tC is positiue defnite and

translation inuariant, if and only if there exist a Hilbert space M and a stationary

ueclor meqsure p: tr"(G)-M such that

(P(fll,t'(g)) : B(1,il for all 'f , s€{.(G)'

Proof. Let Mbea Hilbert space and let 1t: :{6(G)*M be a stationary vector

measure. It is clear that the bilinear mapping B: ,{slG)XtrcG)*C defined by

B(f, d : @(fiipG)), f, se{r1c1,

is a positive definite translation invariant bimeasure on GXG.
On the other hand, suppose B: {c(G)Xtrr(G)*C is a positive definite trans-

lation invariant bimeasure on GX.G. Consider the positive definite kernel

Q: trc(G)Xtrc(G)tC,

QU, il: B(J,il, !, g(.{c(G),

and the reproducing kernel Hitbert space H(Q) defined by Q @f- Aronszajn [2;
p.3aaD.

For g(trc(G) define Qn: {cG)*C bY

Qn$): Q$, d, f, s('tr"(G1'

Then the mapping p: {c(G)*H(Q),

p(f): Qy, f€trs(G),
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is a well-defined linear mapping. Furthermore, since B: trg(G)Xt"(G)*C is a
continuous bilinear mapping, it follows that p: tr (G)*H(Q) is a continuous linear
mapping, i.e., p is a vector measure. Finally,

(pTlp@): (Q1,Q) : QU, d: B(f,g), f, s(trcg);
which proves the theorem.

Definition 2.3. Let M be a Hilbert space and let 1t: tr"(G)*M be q uector
measure. The bimeasure B: ff6(G)X,fc(G)*C defined by

B(f,s) : Qr(f)|,,r(s)), f, sCtrc(c),

is called the bimeasLtre defined by p.

Let B: frrc)XJft(C) *Q be a bimeasure and let (r, r) be
pair of functions u: G*C, u: G*C. Then by

f t", u) dB

we denote the integral of (u, u) with respect to B. (For the definition
with respect to a bimeasure we refer to [18; pp. 144-145] and to

a ^B-integrable

of the integral
the references

given there.)
The following theorem was proved in [15; Theorem 2.4.111.

Theorem 2.4. Let M be a Hilbert space and let p: ff"(G)*M be a aector
measure. If B: ,fr(G)XtrcG)*C is the bimeasure defined by p, then oll the pairs
(u,u); u,u(91(p), are B-integrable and

(["arll"ap): [{u,Oan.
We are now ready to prove the Bochner representation theorem for positive

definite translation invariant bimeasures.

Theorem 2.5. Let B: ,fg(G)Xtr"(A*C be a mapping. Then B is a positiue
definite translation inuariant bimeasure, if and only if there exists a uniquely deter-
mined positiue Radon measure y on I such that gfgsegr(r) and

B(f ,s) : I r|fi A, for all f, se,fc(G).(2.r)

If B: il"(G)Xil;(G)*C is a positiue definite translation inuariant bimeasure,
if visthepositiue Radonmeqsureon I satisfying (2.1) and if p: trcG)*M is any
stationary uector measure with ualues in a Hilbert space M such tltat B is the bimeasure
defined by p, then for all u,o(9tQ)a9t(G) the pair (u,D) is B-integrable,
fufiesr(tt) and

(z.z) !t",a)6: t ru.ruav.
Especially, (2.2) is ualid for all bounded Borel functions u: G-C, u: G*C with
compact support.
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Proof. Suppose -B: tr"(G)Xtrc(G)tC is a positive definite translation invari-
ant bimeasure and suppose p: ft(q*M is a stationary vector measure with
values in a Hilbert space M such that .B is the bimeasure defined by p (cf. Theo-
rem2.2).

We start by constructing a positive Radon measure y on l-. The construction is

fairly standard (cf. Rudin 117;p.22l,Berg [4], [5], Berg and Forst [6; pp. 19--20)
and Argabright and Gil de Lamadrid [1; p. 1a).

Throughout the proof v. stands for the Bochner measure corresponding to the
pair (p, w), where wC91Qt)n9t(G).

Let Kcf be a compact set. Fix a number d>O and choose a function hUcG)
such that

l7h(y)1z > d, y(K.
Define

Ao(d: f r&drr, a€trg€; Ii).

An: ,trr(r; K)--{ is a well-Cefined linear mapping. Furtiiermore,Then

(2.3) lAr(*p)l = sup lEisup W# { orr

= sup iqlC-, ,{ drr, q€ffc€; K);

which proves that the linear mapping Ao: trc(f ; fl-)-C is continuous, if the space

fc!; K) carries the topology defined by the supremum norn'l.
Suppose now K'cl- is any compact set such that KcK' and suppose h'({c(G)

is a function such that l9h'(y)12=d', ?€K'; for some constant d'=0. Then, by
Lemmal.7,

An(E) : I, +,t,, : I E rrn.,t1vry a,,u.o,

: Ir&ctvo' - Ao(d ror all q€i{g(t: K).

Thus, the mapping

u(E) : 
.[ E *;e tlt,1,o,, E(.r^c[);

where hr*r(tr"(G) is such a ftinction that for some constant d">0

l,7h1q(y)12 = d" for all 7€ supp (r,

is a well-defined linear mapping. Furthermore, it foll:rvs from (2.3) that the linear
mapping v: /{r(f)*C is continuous, i.e., ..,is a Radon measure on ,l-. The posi-
tivity of all the Radon measures vo, h€;{g(G), implies that even l is positive.

Next we show that v satisfies (2.1).

Suppose u,u(91(p)n9t(G). Then, by Theorem 2.4 the pafu (u, u) is B-inte-
grable.
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Let E(tr"(l) be given. choose a function h$c(G) such that for some

constant d>0 one has lfrh(y)1z>d for all y€supp E- By the deflnition of v and

by Lemma 1.7 we then get

(2"4)

- { rp l,F ttl' dv ;

boundeC Radon trneasure, it thenwhich proves that lfrul'., :Y,,. Since r,, is a

follows that

J l,rtl'd, - { ctvu'

Thus, by Theorem 2.4 and Theorem 1.3,

{ t", u) dB - fr{ " 
dp'll': { nr. - .[ lrut'dv.

Furthermore, by applSring a well-known polarrzation formula, we then get

(2.5) J' @, u) {tB - .f fru,Fu rJv for all u, t)e-gr(u) n g'(G)"

Especially, the representation (2.5) is valid for all bounded Borel functions u: G-C,
o: G*C with compact support, since all these functions are integrable with respect

to any vector measure with values in a Hilbert space (cf. [18; p. 101]).

We still prove that the positive Radon measure y on l- satisfying (2.1) is uniquely

determined.
suppose there exist two positive Radon measures y and y' on l- satisfying

B(f,il : I uforav : t rftfgav' for all f,s€{r(G).
By applying exactly the same arguments as in the proof of Lemma 1.7 we then get

ifrhlz.v: l9hl2.r' for all h€tr"(G)

Furthermore, by applying the same technique as in proving e.q we then get that

v and v' must be identical.
In orcler to complete the proof we must still show that any mapping B: trc(G)X

/{c(G)-C defined by (2.1), when v is given, is a positive definite translation invari-

ant bimeasure.
Thus, let »: Jr{r(f)-( be a positive Radon measure such that frffrg(9t(v)

for all f, S€trc§). It is clear that the mapping B: ff1;(G)X.fr(G)-C defined by

B(f, g) : I ryrgav, f, g(rr(G),
is a well-defined bilinear mapping satisfying the conditions

B(f,I) = 0, B(f ,, g") : B(f , g) for all f , g(:{c(G); a(G-

It follows from the way to define the locally convex inductive limit topology of
:f"G) that in order to show the continuity of B it is enough to show that B is sep-

arately continuous (cf. [18; p. l4al.
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Let S({c(Q be fixed. We show rhat the linear mapping ,B(., §): tr (G)*C,
B(.,il(fl:B(.f,il,fQ{c@), is continuous. Since S(tr"(G), the support of fig
is o-compact (cf. Benedetto [3; p.20]) and, a fortiori, even the support of the Radon
measure 9g.v is o-compact. Let Lncf , n(N, be an increasing family of compact
sets such that

snpp(%g.v)c U*L,.

Let KcG be a compact set. For z€ll define B,(.,8): tr (G;K)*C by

B,(., il(n : I ryrg dv, f (trc(G; K).
L^

Then B,(., §) is clearly a well-deflned linear mapping. Furthermore,

lB,(.,ilu)l < sup lfl Iat" tl,rslau, fe41c; x1,
KL^

which shows that the linear mapping B,(., il: ffc9; K)*C is continuous. It fol-
lows from the Lebesgue convergence theorem that

,LT B,(., c)ff) : ]rX I sfss dv
Ll

: I UfOray : B(.,E)ff), f(tr (G; K).

Thus, the restriction of .B(.,8) to the Banach space /dr(G;K) is a pointwise limit
of thecontinuouslinearmappings B,(.,8): {"(G;K)-C,n€i[. Therefore,itfol-
lows from the uniform boundedness principle that even the linear mapping
B(., il(D:B(f, g), fetrr(G; K), is continuous (cf. Horväth [12; pp. 62-63]).
It then follows that even the mapping B(., §): ffc(G)*C is continuous.

The separate continuity of B: ;{s(G)Xf"(e)*C follows then by symmetry.
The theorem is proved.

Example 2.6. Recall that a Radon measure p: trc(A*C is called positiue
definite, if

I f xf* au = o for all f{rcQ)
(cf. [4], [5], [6; p. 18] or [1; p. 23]).

Let p: .fr(G)*C be a positive definite Radon measure. Define a mapping
B: :rs(G)x.rcG)*C bv

(2.6) B(f,S) : { t x 8* dp, f, g(,trc(G).

Then B is a well-defined bilinear mapping. Furthermore, it follows from the Bochner
representation theorem for positive definite Radon measures (cf. [4], [5], [6; p. 19]
or [l; p. 23]) that there exists a uniquely determined positive Radon measure
v: ,/dr(f)-6 such that for all f,S<ffcQ) one has fffg<gr(v) and

B(f,§) : { f* s* dp - { ryfi au.
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Thus, it follows from Theorem2.s that.B is a positive definite translation invariant
bimeasure.

We show that there exist positive definite translation invariant bimeasures

B: ,fg(G)Xffc(G)*C for which there does not exist any positive definite Radon
measure p: tft(G)*C satisfying (2.6).

Choose G:R. Suppose h: R.*R is a non-negative bounded Lebesgue meas-

urable function. Then the positive Radon measure

(2.7 ) v - h.dx

has the property that lgfl2(91(v) for all f<.fs@), i.e., v is the Fourier transform
of a positive definite translation invariant bimeasure (cf. Theorem 2.5). If all posi-

tive Radon measures v: trc(R)*C of the type Q.7) were Fourier transforms of
positive definite Radon measures, then even the function

h(x) : sign x, x(R,

were the Fourier transform of a Radon measure on Ä. But it is well-known that
the function inh is the Fourier transform of the so-called F{ilbert distribution (which

is not a Radon measure on rR).

Next we consider some special cases of Theorem 2.5.

Theorem 2.7. Let B: ffg(G)x//LG)-C be a positiue definite ffanslation

inuariant bimeasure and let p: trs(G)*M be any stationary uector measure with

ualues in a Hilbert space M such that B is the bimeasure defined by p. Then the uniquely

determined positiue Radon measure v: trs(f)*C satisfying (2.1) is bounded, if and

only if there exists a constant c>0 such that

(2.8) BU, f) = c suP lff 12 .for all l€.rcG).
If Q.8) is satisfied, then 9t(G)c9'(p); and for any u, u(91(@ the pair (u, D) is

B-integrable and

[ {r, D an : I ruru av.

Proof. The condition (2.8) is clearly satisfied in the case when v is bounded.

On the other hand, let B: //;(G)XJ{;(G)*C be a positive definite transla-

tion invariant bimeasure satisfying (2.8) and let p: trc(G)-M be a stationary
vector measure such that B is the bimeasure defined by p (cf. Theorem 2.2). lt fol-
lows from the condition (2.8) that

llp(,f)ll = dtzl lf ldl for all I{rcG).
Thus, 91(G)cg'(p) (cf. [18; p. 69]). By Theorem2.4 we then get that for any

u,u(91(.G) the pair (r,r, D) is B-integrable. Furthermore, by Theorem2.5,

t {", » 4a : [ trutru dv,

where v: %(f)*C is the positive Radon measure satisfying (2.1).

We still show that v is bounded.
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Let Kcf be a compact set. choose a function h(/dc(q such that for some
constant 1>-d>0 one has

!3h(y)12 > d, T€K; !fih(y)12 - 2, y{.
It then follows from (2.8) that for the Bochner measure y,, correspondingto (1t,h)
we have

Thus, ! d'r: B@,n) < c suP l9hl2 - 2c.

ll*tu|:ll*dry0,^1
= sup lE] dt f dvo < 2cd-l sup IEI

for all E(Yc(r; rQ. since the constant 2cd-r is independent of the set K it then
follows that the Radon measure v is bounded.

The theorem is proved.

Theorem 2.8. Let B: tra(G)Xtrc(G)*C be a positiue definite translation
inuariant bimeasure, let y: /{c(D-C be the uniquely determined positiue Radon
measure satisfying (2.1) and let p: .{g(G)*M be any stationary uector measure with
ualues in a Hilbert space M suclt that B is the bimeasure defined by p. Suppose there exist
constants c=0, c'=0 such that

(2.e) B(f, n = , I lfp at, for ail f<4(q,
(2.9') v(El\ = ,, I lElr rtT for ail Ee trce),
then 92(G)c9L(1t), 92(f)cg2(v) and for any u,r:(gz(G) the pair (u,t) is
B-integrable and

(2.10) f tu, O 4a : J' ruru av.

Proof. If (2.9) holds, then gz(G)cgt(p) and

(2.11) ll[ naull'= , I lt l'at" for all h€sz(G)

(cf. [18; p. 69]). Similarly, the conditiol Q.9') implies that gz(f)cgzQ) and

(2.11') f lnl, a" = ,, I lt l, ao for all h€gzq)_

Since 92(G)cgr0r), it follows from Theorem2.4 that for a.,y u,u(gz(G)
the pair (u, ö) is .B-integrable and

t{",»dn:({uapl{uap).
Furthermore, a straightforward application of the inequarities (2.11), e.ll') and,
the well-known polarization formula shows that even (2.10) holds.

The theorem is proved.
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3. A representation theorem for stationary vector measures. In this section we
present a representation theorem for stationary vector measures with values in a
Hilbert space. Our result is closely related to a representation theorem for second

order stationary random distributions (cf. Itö [3] or Gelfand and Vilenkin [9;
p.27rl).

First we recall some basic properties of orthogonally scattered vector measures

with values in a Hilbert space.

Let M be a Hilbert space and let S be a locally compact Hausdorff space.

Recall tbat a vector measure p: t (S)*M is called orthogonally scattered, if

fuU)lpk)):0 for all I, setrc§) such that supp/n supp g : 0.

A vector measure 1t: ff"(S)*M is orthogonally scattered, if and only if there

exists a (uniquely determined) positive Radon measure v on S such that

(3. 1)

If (3.1) is valid,

$ull trl)

We shall use also the notation
The following lemma can

Theorem24 in [16].

1rTle,(g)) - v Us) for all f, s€trc(s).

then 9'(r) - g'Qt) and

(l 
" 

dpl{ , dp) - { ttu dv for all u, De e'(tD

(cf. Masani [14; Theorem 5.9] or [16; Theorem24]).
Let v: trc§)*C be a positive Radon measure on ^t. In what follows we

consider the space Z2(r,), formed by all equivalence classes [a] of locally v-almost

everywhere equal functions a: ,S*C such that lulz is r-integrable, as a Hilbert
space with the inner product

- { uD dv, lw\,

lu) - u, lule L' (v) .

be proved in a

lule L'(v).

straightforward way by applying

Lemma 3.1. Let S be a locally compact Hausdorffspace and let v: s{r(S)*(
be a positiae Radon measure. Then the ntapping p: tr (S)*lz(v1,

p(f):U\' fer"1s1,

is an orthogonally scattered uector measure such that 9'(tt):9'(v), sp{p}:z'z(v),

I u d1t : fu] for atl u(91(p)
and

(l 
" 
drll 

" 
dp) : I ua ch' for alt u, u(91(1).

Lemma 3.2. Let ,t: {"(l)*Q be a positiue Radon tneasure. Suppose all the

functions lgfl', fet (@, are v-integrable. Then the set {rtflfEff (G)} ls a dense

linear subspace in Lz(v).
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Proof. Since the set {r(f) is a dense linear subspace in Lz(t), it is enough
to show that for a given E(trc(D and a given e>0 there exists a function f<%(q
such that

([ ln- Ef dv)'/'= ce

for some constant c>0.
Choose functions S, h(ffc@) such that

D(s, E): sup ll-frr(y)l = e

and 
t(supp,

suplE-frhl = , ((/ lssl, du),,, +t)-,.
Furthermore, f:h x g(trc(G) and

([ l,o - rnrtP 
'tu)''' = ([ I - rsf IEP dn)'t' + (t l,o - rnPvrgp 4')ttz

= D(s, d(t Vof a")'/'+sup lE-shl([ lre1an1"

- u (l lql'd,")'/2 + e.

The lemma is proved.

We are now ready to present the representation theorem for stationary vector
measures.

Theorem 3.3. A mapping p: trc§)*H is a stationary uector measure, if
and only if there exists a uniquely determined orthogonally scattered uector measure

1tr: tft(f)*H suclt that 9f(91(pi and

(3.2) p(f) - { sf dpo for atl f Q,{r(G).

Suppose p: ffc(G)-H is a stationary uector measure and suppose p6: /d"(f)*11
is the orthogonally scattered oector measure for which (3.2) is satisfied. Then sp {1to\:
sp{ph u€9LQt) and

I " ap : t 9u dpo for all u€9t(p) o 9r(A;
especially for all bounded Borel functions u: G*C witlt compact sltpport. Suppose

B: :/{s(G)X{c(A*C is the (positiue definite tanslation inuariant) bimeasure defined

by p.ff v: tr"(f)-Q is the uniquely determined positiue Radon tneasure satisfying

then
B(f,s) : I f|fg au for all f , s(trc(G),

U " d[tolf , apo) - [ uu dv for all Lt, t)Cg2(v);

especially for all bounded Borel functions u: l*C, u: f *C with compact support.

Proof. Slppose a mapping $ ,fcG)*H can be represented in the form

p(f) - I sf dpr, f€trr(G),
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where pa: /{c(f)-H is an orthogonally scattered vector measure such that
frf€9r(p) for all f€fcG). Let v: ff"(r)*C be the positive Radon measure
for which

(po@)lp'(/)) - v @D for all ,p,{(trc(4.

Then, lgfl2€9'7v1 for all fe,fc(G). By Theorem 2.5 the mapping
trr(G) *C,

B(f,il:(p(flltk)1: I rirgav, f, serc(G),

is then a positive deflnite translation invariant bimeasure, which clearly implies
that p is a stationary vector measure.

On the other hand, suppose p: /d"(G)*H is a stationary vector measure.
Let B: trc(G)xtrc(G)*C be the (positive definite translation invariant) bimeas-
ure defined by p andlet v: .ts(l)*C be the positive Radon measure for which

f {", »an : t rurn av for all u, u€9'(p) n 91(G)

(cf. Theorem2.5).
Put

Define a mapping

i(x) -
Since

lll " 
aull': t{", D ou : I l3ul2 dr for alt u(el(p) n sL(G),

the mapping j: E*Lz(t) is a well-defined inner product preserving linear mapping.
Since .E is a dense linear subspace in $ {p} and since 12 (v) is a complete normed
space, the mapping j: E-Lz(v) can be extended, by continuity, to a uniquely
determined inner product preserving linear mapping "r: sp{p}*z'z(v). Further-
more, by Lemma 3.2, the linear span of the functions fru, u(9t(p) a 9r(G), is
a dense Iinear subspace in Z2(v). Thus, the mapping /: sp {pr}-f'z(v) is a surjec-
tion; and it has an inner product preserving inverse J-1' L2(y)*tp{p}.

Define an orthogonally scattered vector measure p': /{c(f)*Lz(v) by p'(E):E,
Eetrc(f) (cf. Lemma 3.1). Since, by Theorem 2.5, l9u)2(91(v) for all ue gLQt)n
g'(G), we get by Lemma 3.1 that 9u(9t(p') and

! 9u dP' : gru for all u(91(P) a ,t(G)'

Since the mapping J-t: Lz(v)*sp{p} is an inner product preserving linear
mapping, the vector measure po: trcT)-sp{p}, defined as po-J-top', is ortho-
gonally scattered ana (ua@)lur(*)):n(E|) for all E,{t<.rc(D. Thus, 9'(ti:
92(v) and,

trr(G)x

E - {"f "d,plu€s\(p)n 
s'G)}.

j: E --Lz (v) by setting

fru, if x - { " dp for some uQgl (p) n g'(G).

U " 
dpol{ , apo) - [ uu dv for all u, u€. gz (v) ;
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especially for all bounded Borel functions u: f *C, rt: f -C with compact support.

Furtherrnore, for all u(91($ 
^ 

9'(Q; especially for all bounded Borel func-

tions z: G*C with compact support

I " dp : 1-r(fru) : J-'([ g" ap') :{ fu cl(J-tou'1 : [ fru dpo.

Finally, it follows from Lemma3.l that sp{lt'}:L'(v). Since the mapping

J-1: Lz(v)*sp{p} is an inner product preserving surjection, it follows that

tp {pJ : "r-'(tp{1/» : sP {p}.

We still prove the uniqueness of the orthogonally scattered vector measure

tto: ffc(f)tsp {p} satisfying (3'2).

Let trto: %{)*W {p} and plo: tr"(f)*sp{p} be two orthogonally scattered

vector measures such that

p(f): f uf auo: I qart for all f<.r,G)
Furthermore, let v: trr(l)*C and r': ,{g(f)*C be the positive Radon meas-

ures for which

(po@)lp,QlD): rkpV) and (pä@)lp6fi,)): v'(EV), E,l/ <,{c(D'

It then follows that

B(f,il : I ot*4v : t r|rgav' for all f,s€trc§).

Thus, by Theorem 2.5, r:tt'. Therefore, 9'(lro):9'(pri) and

lll " ou'll: lll " ar,ll for all ucel(rri.

Let q(ffc(t); and let e :=0 be given. Since, by Lemma 3.2, the set {gflf€trcG)}
is dense in Lz(v), there exists ar f(/{c(G) such that

([ lrt-,or au)'/' : llf ef -d dp,ll: llf rn-,t) dp'oll = s.

Remark. The mapping J-al sp{p}*I'f'), defined in the proof of Theo-

rem 3.3, is exactly the same as the mappitg fr: tru*L'(ir) defined in Theorem 5.1

by Argabright and Gil de Lamadrid [1]. Theorem 3.3 thus serves a new interpreta-

tion of this theorem which is essentially due to Godement [10; p. 76), Ul].
The following theorem is a direct consequence of Theorems 3.3, 2.7 and 2.8.

Therefore,

hich implies that po and 1ti are identical.

The theorem is proved.
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Theorem 3.4. Let p: /d"(G)*H be a stationary uector measure and let
po: {c(f)-W{lr) b" the uniquely determined orthogonally scattered oector measure

satisfying (3.2). Thm:
(i) po ,s bounded, if and only if there exists a constant c>O such that

(3.3) llpf)ll'= cstplfiflz for all fetrc(G).
If (3.3) holds, then 9L(G)c9t(p) and

I " dp : t Fu duo for atl u€9t(G).

(ii) If there exist constants c>0, c'>0 such that

llp(fil], =, t lfl,at, f€ff (a;
llpo(E)ll, = t'IlEl,do, Eerc(D,

then 92 (G)c g' (p), 92 Q)c 9L (1ts) and

I " ap : I Fu dp, for all u(92(G).

We close this paper by recalling an example due to Masani U4; pp. 92-941.

Example 3.5. Suppose p: fcG)*H is a stationary vector measure which is
also orthogonally scattered. There then exist positive Radon measures vo: /d"(G)*g
and v: {"(f)*g suchthatforall f,S€ffr(G)

|r(Dlt @): vo(!E): I r@gar,.

Since p is stationary, the Radon measure vo is translation invariant, a fortiori, there
exists a con§tant c=0 such that vo:s). (If p:9, then c:0.) It is clear that v
is the Plancherel measure corresponding to vo. Thus, there exists a constant c'>.0
such that y:c'9. (If p:9, then c':0.)

Finally, we note that the condition (ii) stated in Theorem 3.4 is satisfied for ,u.

On the other hand, it is clear that any vector measure p: tr"(G)*ä for which
there exists a constant c>0 such that

(p(fllp@) : c f fE il', f, s(.trc(G),
is orthogonally scattered and stationary.
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