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ON GENERALIZED A PRIORI ESTIMATES
FOR QUASI-ELLIPTIC DIFFERENTIAL OPERATORS

VEIKKO T. PURMONEN

Introduction

Let P be a quasi-elliptic operator and R another operator such that the
principal parts of P and R are quasi-homogeneous of the same degree, and let
B=(B,, ...,B,) and Q=(Q,, ..., 0,) be operator vectors; here all operators are
linear partial differential operators with constant coefficients.

The present paper is concerned with the validity of the generalized a priori
estimate

() IRD)ul* = C(IPD)ul*+ S0 BD)u, y,Q(D)u)+ul?), ueCs R,
where the function S(-, -) connecting the boundary values is defined by
SWU,V) = [Is{(F,U, F,V)ldé, U VeCsR~*; €Y,

with a function &—s.(-, -) from R"“!\ {0} into the space of sesquilinear forms
on C*XC*

In Sections 2—4 we consider the homogeneous case, i.e., the case of the principal
parts, and give sufficient and necessary conditions for the estimate (1) (without
the term |ul%, of course) to be fulfilled. Among other things, we make here use
of some results of our previous paper [10] in which we proved a result of V. G. Maz’ja
and I. V. Gel’'man [6] by the methods of M. Schechter [12].

The general non-homogeneous case is then discussed in Sections 5—8. The
result is that (1) holds if and only if the principal parts satisfy the conditions given
in the homogeneous case.

In the last section we shall note that for B=Q the results obtained here imply
a known result (see [6], [10]). As an example of applications of the results, we then
consider certain types of mixed boundary value problems and give sufficient con-
ditions for their coerciveness.
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1. Preliminaries

1.1. We first introduce some notations convénient for our purposes. Let

={y=(x, 1)=(x1, ..., X,—1, )ER"t=0} and R, ={y=(x, 1)€R"t=0}. By
C°° [R,] we denote the space of restrictions to R of the functions of C;°(R").
The trace (restriction) operator y,: Cy [R"]— C°°(R” D) is defined by (pou)(x)=
=u(x,0).Let z be the complex conjugate of z=Rez+iImz€C, |z?=zZ, and
let ||| stand for the norm of the space L2(R"),

lull = [lu()dy, ucL*RY)
&

Let #=%,, %, and %, denote the Fourier transformations in R", R"',
and R, respectively. The partial Fourier transforms of a suitable function u of
y=(x, t), with respect to x and ¢, are defined by (cf. [4], p. 24)

(Fu) &, 1) = a4, 1) = 7,y [ e Du(x, N dx
(Fw)(x, ) = m [ e ®ulx, 1)dt,

k/2

and

respectively, where m,=(27)7"*, other notations being indicated by the definition

<,V, 1’]> = <x’ 6>+t§ = xlfl—l_ +xn—1§n—1+tc
with the dual variable n=(&,{) of y=(x, 1).

1.2. Let my,...,m, be positive integers, p=max{mlk=1,...,n}, and

q:(q', qn)=(q1’”"qn—19 qn) Wlth qk:”/mk-
We set

n—1 1/p
@=(Z1am",  cer,
k=1
and

(ny = (O L™y, = (&, DER™.
We shall consider the polynomial corresponding (via the Fourier transform-
ation) to the linear partial differential operator
P(D)=P(D,,D)= 3 pD*= 3 p,DiDi

(r,q)=n (e, q)=np
with constant coefficients p,€C, i.e., the polynomial
P =PE, 0= 2 P = Z P E¥ (.
(e, qy=n (,q)=n
Here « denotes a multi-index a= (o, 0,)=(0t, ... %, 1, %) EN", H*=E{"=
&a . gl and D*=DYD@=D3... DD with D,= —id[dx, for k<n,
D,= —i0|ot.
The principal part P°(y) of P(y), defined by
Py = 2 pat’

(o, qy=n
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is g-homogeneous with g-deg P°=y; generally speaking, we say that a function
h in R™\\{0} is g-homogeneous of degree r¢R, and write g-degh=r, if

h(tin) = "h(n), nER™\{0},
for all =0, where
1 = @V, 1) = (1&g, ..., -1,y 1)),

The g’-homogeneity in ¢ is defined analogously.

The polynomial P(n) (or the operator P(D)) is called quasi-elliptic of deter-
mined type K*=1 (cf. [3], [12]) if the following two conditions are satisfied:

(i) P°(m)#0 for every n€R™ {0} or, equivalently (see [4], p. 103), we have
with some constant C=0

[P°(n)| = C{n)*, neR™.

(i) For each ZcR"™\ {0} the equation P°(f,z)=0 has exactly K+ sol-
utions z={({) with Im{(&)=0.

1.3. From now on let P be quasi-elliptic, and suppose that P is g-homo-
geneous, i.e., that P=P°. For each {€R"™™\ {0} the different roots of the polynomial
P(&, () are denoted by {,(¢) and their multiplicities by k,(&), respectively.

We make the following assumption:

Hypothesis (A). If a=p, then
L&) # {p(8),  EeR™IN\{0},

that is to say, k(&) does not depend on E.
Note that {, can be assumed to be continuous in R}~

Remark. In [10], p. 334, the reference to Hypothesis (A) is not relevant.
Without loss of generality we may assume that there exist index sets

A={1,..,4}, At = {1, ..., 2%}, A =N\ A"
with some numbers 1=/t=1 such that

PE, 0= g (=L (&)

for all ¢€R""™ {0} (this means no real restriction; see [2]) and that
Im{,(&)=0 for acAt,
Im{,()<0 for acA—.

Consequently, the monic polynomial
P (0= EIAY+ (EH(3)1

in { is of degree deg, P, (¢, )=k, +...+k;.=K".
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1.4. Let R(&,{) be an arbitrary g-homogeneous polynomial with g-deg R=y,
and let E€R"IN{0}. If M (&, () denotes the greatest common monic divisor of
the polynomials P, (¢,{) and R(&, () (in (), we set

PO =P.(EDIME, D

and assume

Hypothesis (B). The degree of P’ () in { is a positive constant % for
all E€ RN\ {0}.

Remark. Theassumption x>0 is a consequence of the nature of our problem.
For the case x¥=0 we refer to [6].
It can be supposed that there is an index set A’={l, ..., A’} with 1=A=1%
such that
L0 =TT (=L@

where x,=k, and x,+...4+x; =x=deg P, ({,{)=1. Further, put »,=k, for
a€ ANA" and 0,={0, ..., x,—1} for acA.

1.5. For every E€R"™N{0} let s,: C*XC*~C be a sesquilinear form and
S(&)=(S; (&) the corresponding »Xx-matrix. Thus

s¢(X,Y) = XSOY* = 3 Sp (O X, Y,
for all X=(X;) and Y=(Y,) from C* where the symbol * denotes the matrix
transpose. Moreover, let there be set
SW,V) = [Iss(FU, V)| dé

for U, VeCy(R"™1; CY).

The homogeneous case
2. The problem

Theorem 2.1. Suppose that P(¢,() is a q-homogeneous quasi-elliptic polyno-
mial of determined type and R(E,{) a g-homogeneous polynomial such that g-deg P=
g-deg R=p and Hypotheses (A) and (B) are satisfied, deg, P’ (£,{)=x.

Let

B, = (Bi(,0), ... B, D)

Q0 = (018, 0, ..., 0L(E,0)

be polynomiai vectors such that B;(&,() and Q,(¢,0) are q-homogeneous with
g-deg Bj=p;=p—gq, and q-deg Qy=v,=p—q,. The elements of the matrix S(§)=
(S;x(©)) given in 1.5 are assumed to be continuous and q’-homogeneous in & with
q’-deg Sj=2p—p;—Vi—4,.

and
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T hen the a priori estimate
(2.1) IR(D)ul* = C(IP(D)ull*+S(yoB(D)u, y,Q(D)u))

is valid for all u€C’[R".] if and only if for each EER"™™N\J0} the following condi-
tions (I)—(III) are satisfied:
(1) The matrix S(&) is regular.

D BE,0)=0 and Q& {)=0 mod M(, ).
(II) Both the B;(¢, () and the Q\(£,0) are linearly independent modulo

P+(‘f, C)

Note that here, as well as in the sequel, C shall denote a generic positive con-
stant with the dependences permitted each time and is, if necessary, identified with
a subscript.

The proof of Theorem 2.1 will be given in the following two sections.

3. The sufficiency of the conditions

3.1. First of all, if
R, =RE O/MED
and

B'(&,0 =B, D/ME, 0 = (B0, ..., B, D),
0,0 =0@E0/ME ) =(01E,0), ..., 0., D),
we observe that it suffices to prove
Theorem 3.1. Under the assumptions of Theorem 2.1, the coerciveness inequality
(3.1) IR'(D)vl* = C(| P/ (D)e]*+S(yoB' (D) v, 7,Q" (D))
holds for all veCy[R] if for each EER"™N\{0} we have:
(I) The matrix S(¢&) is regular.
(IV) Boththe B;(&,() andthe Q[ (¢, () are linearly independent modulo P’ (&, ().
3.2. Let ¢6R"™N{0} and set
PiE, 0 = Ca(f))_"ﬁP'(i, O for acAuA,
Ply(C,0) = ({=L©) PL(&, ) for acd,
P_ (&0 = (L&) =P_(¢0 for acd,

where P_(£,)=P(, C)/P+(§, 0.
We first state a result obtained in [10]:

Lemma 3.2. Suppose P(S,() and R(E,() are as in Theorem 2.1. Then for
all £eR"\{0}

G2 [IRE DYOE. D dr

0

Af\

- C(f [P(&,D)0(E, l‘)|2dl‘+a§, ﬂéze' K@(k“_ﬂ—l/z)q"W;,x“—p(f)lz]
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Sfor all veéCy[RY], where
W (&) = 70(D,— L))« "*PL(E, DYO(E, 1), a€A’vA™, k=1,..,%

3.3. Let ¢cR"\{0}. There exist then polynomials B}, (£ {), B;_(¢,{) and
010, Q-0 (in {) such that
B¢,  Bi.(O B0

33 PED - PLGD T PIED

and

%0 _ 0i.C0 90
P'EO  PLED PO

Using (3.3), (3.4), and the Lagrange—Sylvester interpolation formula, we thus
obtain

(3.9 20 Bj(E, DO, 1) = 2 2 b (W, =5 (O

(3.4)

+ 2 2 bW, -5
acA~ Bee,

and
(3.6) 200k (&, D)O(E, 1) = 2 2 ai: (O W, 2Ky — 5(&)
+ Z 2 qkyé(é) Yy Ky — 6(5),
y€EA~ d€e,
where
B, 0 ,

(3'7) Jaﬁ(é) ﬁ' [8C'8 P;a(é C)]|€=Ca(§), O(EA., ﬁéga’

o 1 ( B0 _
39) 70 = 57 [ P | €A™ Been

and, respectively,

: , P# 00 et s

(3-9) quﬁ(é) [aC(s P (5 C)]L ;v(g)’ ])EAs 0€Q~,
0° <

610 @ =Rty L e s,

Define now matrices b*(£), b=(¢), g7 (&), ¢~ (&) by
bH(E) = (bjp(8) (€A, Peo,. j=1,...,%),
b= = (bjp(©) (€A™, feus j=1,....5),
gt @ = (g¢55(0) (e, Sco,, k=1, .., %),
47 = (qis(D) (€A™, 5€g,, k=1, ...,%),
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and vectors W H(E)EC* and W —(&)eCX” (K~ =deg, P_(,0)) by
WHE) = Weu-p () (2€A4",  BE0y)
W= (&) = Wpu-p(8) (247, PE0,).

Then (3.5) and (3.6) can be written, taken all together, in the forms

(3.11) 7B (&, D)d(E, ©) = Wb () +W(Hb™(D)
and

(3.12) 20 (€, D)o(E, 1) = WH()g* (O +W (g™ (),
respectively.

3.4. It follows from (IV) that the matrices b*(¢) and q* (&) are regular (cf.
[10]). Then, by (I), the matrix b1(£)S(E)q* (£)* is regular, too. Hence

(3.13) wb*(©)S©E)g () w* %0 for weC*™\{0}.

In particular, let
Q= (Qacﬁ)ué A,BE gaé Cx\{o}

waﬁ(é) — <6>(ﬁ—u¢+1/2)q,.gw'
Then by (3.13) we have for w(&)=(w,z(£))

(314 ()b (SO g (D) w(&)*|= 0.

Now the left side of (3.14) is homogeneous in the Q,, of degree 2 and the coef-
ficient of the term Q,,Q,; is g’-homogeneous in ¢ of degree 0. In fact, by our
assumption,

and set

q’-deg Sy = 2p—p;— Vi =y,
and, furthermore, it follows from (3.7) and (3.9) that (cf. [10])
q’-deg bjyy = p;—p+ 06— Bq,

q’-deg gis = Vi— i+ (%, —0)q,.
Hence, by continuity,

(3.15) w(©)bT()SE) g () w (@) = ClQPF
for all £€R"™\{0} and Qe€C*. Therefore, taking
Q= Q,5(8) = <5>(x“_ﬂ_1/2)q"m,xo,—g(é),

we obtain from (3.15)

GB16) 3 X OB, p(OF = GIWHODT(O)SOq T WO

acA” BEeo,
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3.5. On the other hand, by (3.11) and (3.12) we have
B17)  s:(3B'(E, DYDE, 1), 1,0’ (€, DYB(E, 1)
=WHOb (SO gTE WO +WHOb*(O)S(©) g &) 7 (O
+W=(Ob~ (SO g & WO +W-(Ob=(O)SE) 4 O W (&)
It follows from (3.8) and (3.10) that
Wb~ (©)S©q- O W (&)
=C 5 (O Putto=da-a (&)W, 5@

aEA~ yEA
Beeo, odce,

Since (cf. [10])
oo 1/2
W@ = CCyt=mmu [ 1P, Do, npar) s aea-,
0
we thus get

(3.18) W=()b= (S q= (O W-(O)* = Cf P, D)0(E, n)dt.
Next, let =0 be arbitrary. Then

B.19) OB H()S©) g () W (&)

=G, 3 (EEITNIT, , (@) +e71C [ IP/(E, DYBE, ) dr,
ag A 0

B€o,
because

(O P, @)= C [ IP'(¢, DYB(E, nrde,  yeA-.
0

Likewise,
(B320) (Db (ST WO

=Gy I (O, (@2 +e7tC [ P/, DYB(E, P dr.

i, 0
Fix now &=0 such that
e = %Cl_l(C2+ Cg)—l.

By (3.18)—(3.20), we then conclude from (3.16) and (3.17) that
@2 2 EZ' (P, (O

acd” BEe,

= C( J 1P/, DO(E, D de-+[5:(0B' (. DIOE, 0, Q' (€, DIOE, 1))
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3.6. Combining (3.2) and (3.21), we thus find

oo

(3.22) [ IR DO, niFdr

0
= o [ 1P, D)o, DPdrt [si(0B'E DIBE, 1,30 € DIOE D).
0

Finally, integrate (3.22) over R"™!, with respect to ¢. By the Parseval formula,
the result is (3.1).
This completes the proof of Theorem 3.1.

4. The necessity of the conditions

4.1. Obviously, it is sufficient to consider the case n=1, that is, to verify the
statement below.

Theorem 4.1. If we have

4.1) flR(Dt)ulzdtéC[f |P(D,)u[zd;+]s(yOB(D,)u,yOQ(D,)u)\)

for all ueCy [R +), then:
(I) The matrix S=(Sy) corresponding to the form s: C*XC*~C is regular.
(I B()=0 and Q()=0 mod M ().
(1) Both the B;({) and the Q(() are linearly independent modulo P.(D).
The proof of Theorem 4.1 will be given in the rest of this section.

4.2. First, we may assume that there exists an integer 1% 0=A°=A1’, such
that {, is a root of M ({) of multiplicity /, precisely for A%<a=41’". Define A°=
{1, ..., 2% for 2°>0 and A°=0 for A°=0. Then

| {ka—xa for acAN\A°
= Lk, for a€A™\A".

Furthermore, set
for acA®

Cu = {{la, e k,—1}  for a€ANA°
and
ol =10, ...,1,—1} for acA” = AT\A.
The general exponential solution of the equation P,(D,)z=0 has now the
representation
Z(t) = X(t)—[—y(t) = 2 Ez'lxaﬂzaﬁ(t)—'_ 62' Z,yaﬁza[i(t)’ xapa yaﬁEC,
Qu o

acA” B A” Beox
where
Z,(1) = (it)P ™%,
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One immediately checks the statements

4.2) R(D)x =0 precisely for x,, =0, acA’, fcol,
and
4.3) R(D)y =0 forall y,, acA”, Bcgj.

Moreover, z satisfies (4.1) (cf. [1]).
4.3. Let us then suppose that
S(‘))OB(D,)X, YOQ(Dr)x) =0.

By the Leibniz formula, this relation proves to be equivalent to

(4'4) EZ/:’ Ezv/ S(-B(B) (Ca)} Q(é) (Cy))xaﬁ 55}’6 = 09
BEex 56271:/

where BP=(iD)’B, Q”=(iD,)°Q.
Define matrices T,,, B,, and Q, by
Txx = (S(B(p)(ga), Q(a)(cy)))a,ﬂ;y,é (“EA,’ ﬁEQa,n ')’EA,, 56@;)3
B, = (BP())up = (BP ()i (€A, oy j=1,...,%),
Qx = (Q(‘S)(Cy))y,é = (ngé)(Cy))y,é;k (YEA,9 56 Q;; k= 1, (XN J")'

Note that they satisfy

T..=B.S Qi
Now (4.4) can be rewritten in the form
XT . X*=0

where X=(x,;)€C*. By (4.1) this, however, implies X=0.
Hence the matrix T,, is regular and, consequently, so are S, B,, and Q,.

4.4. Consider next the general solution z=x+y, and put

Y = (Vupdac A", BE L ecr (K” = degc M(C))«
Then we have

S(VOB(Dt)Z’ yOQ(Dt)Z) = XTxxX*"—XTny*+Y1-:vx)_(*+Y1;er*,
if we define
Txy:BxSé;’ Tyx:BySé:’ Tyy:BySé;’

where
B, = (B(ﬂ)(ca))a,ﬂ = (Bj’m(ca))a,ﬂ;j (x€d”, Beoy; j=1,..,%),

0,=(QVUD)s = (@PD)ysn  (GEA, S€0]; k=1, ...,%).

Thus the relation
S()’OB(Dz)Zs YOQ(Dr)Z) =0
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is equivalent to the equation
(4.5) XT X*+XT,Y*+YT, X*+YT,Y* =0.

Let Y now be fixed. Then X can always be chosen such that (4.5) holds.
Indeed, recalling that T,, is regular and noting that T, T;'T,,=T,,, one can take
X=-YT,, T;' But then we deduce from (4.2) and (4.3) that X=(x,;)=0. Con-

sequently,
YT,,Y*=0 forall Y=/(y,)ecCY
so that T,,=0.
Furthermore, it follows that

—YT, T7;'!=0 forall YeC¥
and therefore
B,SQ: =T, =0.
Hence
(4.6) B, =0.
Accordingly, we have

s(y()B(Dt)Z’ yOQ(Dt)Z) = XTxxX*+XTny*'

For any Y fixed, take here

X* =TT, Y™
Then (4.2) and (4.3) imply

—-T3'T,Y*=0.

Hence

B,SQ;=T,=0
and thus
4.7) Q,=0.

Finally, we conclude from (4.6) and (4.7), taking the definitions of B, and Q,
into account, that

B(0) =0 mod M()),  Q(f) =0 mod M(0),

i.e., condition (II) is satisfied, too.

4.5. To show (III), we first observe that (4.1) now holds for all ucCy’[R +]
if and only if

@8 [IROka= ([ 1P OyordetsGBDIY, 10
0 0

for all v€ Cy[R,]. In fact, each v€ C;[R, ] can be represented in the form v=M(D,)u
with some u€Cg[R,] (see [1]).
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Next, we shall make use of the general solution of the equation P’ (D,)w=0,
given by
W(I) = 2 ﬂg waﬁzaﬁ(t), WaBEC-
Qy

acA’

Note that w also satisfies (4.8).
Consider now the relation

S(VOB,(Dt)W’ VOQ’(Dt)W) =0
or, what is the same thing, the equation

49) 3 3 s(BOC). 0V, = 0.
Fee, see,

We define matrices T’, B’, Q" by
T =(s(BP(), QPUD)apsns  @€A, B0y yEA, F€0,),
B = (BDC))up = (B9 U)ups; (€A, PCoys j=1,...,%),
Q' = QD)5 = (Q1PUN))y s WEA, €0, k=1,...,%),

and have then

T = B'SQ™
Thus, if we set W=(w,;)€C*, (4.9) becomes
(4.10) WT'W* = 0.

Now suppose w satisfies (4.9). Then R’(D)w=0 and consequently w=0,
because R’({) and P.({) are relatively prime.

Hence (4.10) can be true only for W=(w,)=0. The matrix T’ is therefore
regular. But then B’ and Q’ are also regular, and it follows that both the B;.(C)
and the Q;({) are linearly independent modulo P’ ({).

Finally, this implies (III), and thus completes the proof of Theorem 4.1.

Remark 4.2. The constant C in (4.1) satisfies the inequality

R(©)

PO

To see this, let v€Cy°(R), and let a€R such that supp v N]—eo, a[=0, where
supp v denotes the support of v. If u€Cy(R,) is defined through u(t)=
v(t+a), then

2

C=
sup

S(VOB(Dt)ui yOQ(Dr)u) = 0.
By (4.1), we thus find that

jolR(D,)vlzdté C f{P(D,)uth

for all v€Cy (R), from which the assertion follows, via the Fourier transformation.
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The general case

' 5. Definitions and lemmas

5.1. We first recall the definitions of some well-known spaces of distributions
(cf. [4], [13], [14], [15]).

Definition 5.1. For s€R, the space H®(R") is defined by
H*(R") = {uc &’ (R [(1+{m*) P (Fu)e L*(R))}
and is provided with the norm | « || gsgn
lull zrsrmy = (L4 D2 (F )| Ly

where &’(R") denotes the space of Schwartz’s tempered distributions in R".
Analogously,

H R = {pe &' (R H |1+ H(FHEL (R}
with the norm |- |,
[ols = ol msrn-1y = 11+ (F V)| Lawn-1-

Definition 5.2. For s€R, let H*(R%) be the space of restrictions to R,
of the elements of H*(R"), and provide it with the norm | .| defined by

lully = llull gy = inf {1 U | oy [lUE H*(R") with Ulgn = u}.
We now have (see [4], [15])

Lemma 5.3. The spaces Cg(R") and Cg[R'.] are dense in H*(R") and
H*(R",), respectively, and H*'(R"YC H**(R"), H*'(R",)C H**(R",) algebraically and
topologically for s;=s,.

For s>gq,/2 let I, denote the greatest integer less than s/q,—1/2. If we set
;) (x) = (o Diu)(x) = (Diu)(x,0), u€eCs[RL],
then we have (see [14])
Lemma 54. Let s>gq,/2. The mapping
u— (ol ..o Y1)t Co™[RY] - Co= (R

extends by continuity to a continuous linear mapping

IS
u— (Yott, ..., y,u): HS(RY) — [[ HS~Jn=%/2(R*1),
=0

j=
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5.2. We shall often employ the following

Lemma 5.5. Let s;=>s5,>0. Then for any ¢=0 there exists a constant C(g)=0
such that
lully, = elull,+C@lull,  ucH(RY).
Proof. For each s=0 there is a linear extension operator E such that
IEull psrmy = Cllull
and
[ Eull gy = Cllul]
for all u€ C[R"] (see [7], [9], [13]). The assertion is therefore implied by the simple
lemma below.

Lemma 5.6. If s;>s,>5;, then for any >0 there exists a constant C(g)=0
such that
“u“Hsz(R") = 8]|u“H51(R")+ C(&‘) ”u”Hss(R")9 MEHSI(Rn) .

Lemma 5.7. Let a€N", k=(o, q), and s=k. Then
ID*ull-i = Cllully,  u€CS[RL].

Proof. The statement follows from Definitions 5.1 and 5.2 by the inequality
(see [14])
2 0= CA+mA-

{t,q)=k
Lemma 5.8. Let s=0, v=0. For any e¢=>0 there exists a constant C(e)=0
such that
2 1D7ull = ellullysy +C()ull,  ueCe[RL].

{a,qy<v
Proof. According to Lemma 5.7
“Dau”s = C”u”s+(a,q)‘
Hence, putting
r = max {{«, ¢)[o, ¢) < v} <,

2 ID%uls = Cllulls+,-

(a,q)<v

we have by Lemma 5.3

By Lemma 5.5, this yields the desired inequality.

6. Statement of the result

6.1. We consider a general polynomial of the fcrm
Pm) = 2 pn”

[CR T

with p,€C, and decompose it into the sum
P(n) = P°())+P*(m),
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where P°(n) is the principal part of P(y) (cf. 1.2) and
POm) = 3 p.n".

(e, q)<n

Let
Rm) = 2 rn*

(e, py=n
be another polynomial with constant coefficients r,€C, and write similarly

R(n) = R°(n)+R"(n).

Now we make the assumptions that P(x) is quasi-elliptic and that the g-homo-
geneous polynomials P°(n) and R°(n) satisfy Hypotheses (A) and (B), and put
deg; PY(Z, ) =x.

Let there also be given two polynomial vectors

B(f]) = (Bl(")s (AR Bx(n))

and
o =(2:(m), ..., Q(m),
where
B](r’): 2 bjana’ Aujélu_qn, bja€C> J= 1’ e K,
(o, )=n;
and
0c(m) = )Z' Geall>s Ve =L—qus GfC, k=1,..,x.
%, g =V,

As above we also decompose
B(n) = B°(n)+B*(n)

O = Q°(M+0" ().
Further, suppose that with each £€R"™™\ {0} there is associated a sesqui-
linear form

and

sg(+, +): C*XC*~C
that has the representation
Sg(', ') = sg('a ')+Sg°(', ')
with the corresponding matrices
S©) = (Si(®)es
S°(&) = (S%(&);x  (the principal part),
50() = (SRE) s
respectively, such that
(i) Y% isa g’-homogeneous continuous function in R\ {0} with
q’-deg SP, = 21— = Vi— qn}
(i) S;?,‘i is (e.g.) such a function that there exist positive constants 6;.k, 6}',0
8 =0 +0%=¢q,, such that
ISRE] = CA+HENH* 1%, LERIN{0}.
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Finally, we define
S, V) = [Isg(ZU, ZV)|de,

SO, V) = [IsUAU, V)| de,
SO, V) = [ sO(AU, £V)|d¢
for U, VeCs (R™Y).
6.2. We will prove the following result.

Theorem 6.1. Let the assumptions of 6.1 be satisfied. In order that the estimate

(6.1) IR(D)ul® = C(| P(D)ul|*+S(yoB(D)u, 7,Q (D) u) +||ull?)
be valid for all ucCy [ﬁ';], it is necessary and sufficient that
(6.2) [RO(D)ul|? = C(IIP*(D)ul>+S°(yo B (D)u, 7,0°(D)u)),

Sor all ueC7[R].

Remark 6.2. By Theorem 2.1, the inequality (6.1) is therefore fulfilled if and
only if the principal parts satisfy the conditions (1)—(1III) in Theorem 2.1.

7. Proof of Theorem 6.1. Sufficiency

7.1. We first make use of (6.2) to find
(7.1)  |RMDul*= C(IIR‘)(D)f«tH2+< %’ D% u||?)
&, q)=<p

= C(IP(D)ul*+S°(3 B (D)u, 3,Q°(D)u)+ 3 |[D*ul]?)

(wa)<n
éC(IIP(D)uIlz+S"(J’oB‘)(D)u,?oQ“(D)u)+< >Z<’ [1D*ul?).
Since .
4 S°(yoB(D)u, y,Q°(D)u) = f |s%(yoB°(E, D, 70Q°(E, D)) )| d&
an

(72)  sy(yoB(&, D), 7,Q(E, D)it)
= 5200 B°(&, D it, 10Q°(E, D))+ 5o B°(E, D), 700" (&, D))
+52(7oBO (&, D), 7,Q°(E, D)) +5¥(no B®(E, D), 3,0 (&, D))
+5¥(70B(E, D), 100 (€, DY),
we have here
(7.3)  S°(y,B°(D)u, 1,Q°(D)u)
= S(poB(D)u, 1@ (DYu)+S°(yo B°(D)u, 700" (D) u)
+S0(7’OBOO(D)1‘, YoQO(D)u)‘f‘SO()’oBOO(D)”, 'J’oQOO(D)u)
+8%(yo B(D)u, 7,Q(D)u).
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7.2. Let us consider in (7.3) the term
S°(7oB*(D)u, 70" (D)u)
= 12 SOGoBIE, D)2) (O E. DYA)|d

If v>0 (Q,=0p for v,=0), then it foilows from the q’-homogeneity of S"k
and Lemmas 5.4 and 5.7 that

74 [[SE©OGBUE, DY) (3,00 E, D
CJKEy 2o BYE, DYal dg)( f (Ey—=9a2 3, QI0(E, DYl de)*

= CI'J’OB?(D)“’”—M—%/Z IVOQQO(D)ulu—vk—qnﬂ
=Clul, 3 |00l

%, 4) <V

K= Vit

Employing a known inequality (see [14]) and the extension operator (cf. the
proof of Lemma 5.5 and [9]), we easily see that
(7.5) lul, = G 2’ [D*ull+ Collull,  ucCs>[RY].
aq)y=n
Now let ¢>0 be arbitrary. Then, since we have by (7.5) and Lemma 5.8

2 ID*ul,-,, =eCs Z [1D%ull 4 Cy(e) lull,

(2, q)<vy {t,q)=n

it follows from (7.4), again by (7.5), that

S 185 (7B, DY) (0P &, Dya)| de
=eCy DU+ Coe)ful®

Hence e

(7.6) S°(7o B°(D)u, 3,0°(D)u) = eC;, W;:u [D*ul|®+ Cy(e) [Ju|2.

Likewise,

(7.7 Sy B®(D)u, 3,0°(D)u) = eC, W%;,, I1D*ul|®+ Cio(e) |u] 2

and

(7.8) S°(7oB®(D)u, 700" (D)u) = e Cyy " qZ= \ [1D*u)|®+ Cya(e) [|ul|2.

Consider then the last term of (7.3), that is, the term
S°(yoB(D)u, p,Q(D)u)
=[ | 2 SH (0B, D)) (00u(E, DYA)| de.
Due to condition (ii), we, have by Lemmas 5.3, 5.4, 5.7
SIS (08,2, D)) (70, (E, DYa)| de
=C 3y IID“ullu—uj-a;k< >2 1D ull s, - a5,

(t,q)=n; 2, gy = vy
= C”u”u-é}k”u"y—é}'k'
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It therefore follows, by use of Lemma 5.5, that
(7.9 S%(y,B(D)u, 7,Q(D)u) = 8C13< ;’ [[D*ul|>+ Cya(e) ull®.
a4,q)=u
7.3. From (7.3), (7.6)—(7.9) we thus obtain, applying Lemma 5.8 and (7.5),
(7.10)  S°(yoB°(D)u, VoQ°(D)u)+ Z [D*u|?

{a,q)<n

= S(2B(D)u, }'oQ(D)u)+8C15< 2 D ul*+ Cig(e) lul®

a,q)=p
Next, note that according to Sections 2>—4
[D*ul|2 = C(| P*(D)u|+ S (3o B°(D)u, 7,Q°(D)w)
for every a€N" with (o, g)=p, and consequently
2 ID%ul* = Crp (I P(D)ull*+ S0 B°(D)u, ?oQ"(D)u)Jr Z 1D*ul]?).

{e,q)=n {a,q)<n
Hence, if we fix ¢ such that
1
2

e =

CH CH,
it follows from (7.10) that
S(70B°(D)ur, 3, Q°(D)u) + . qu [-D*u|®
= |P(D)ul2+25(po B(D)ut, 70 Q(D)u)+ C lull*.
Finally, combining this with (7.1), we find
IRMD)ul® = C(IP(D)ul+S(oB(D)u, 1,Q(D)u)+lull?).

8. Proof of Theorem 6.1. Necessity

8.1. Assuming that (6.1) is valid we first have
[R*(D)ul* = C(HR(D)MIIZ+ Z’ D% ull?)

éC(IIP(D)MII2+S(VOB(D)u,on(D)u)+ %’ 1D*ul?)
= C(IP°(D)ul*+ S0 B(D)u, on(D)u)+ Z ID*ul).

By (i), (ii), and (7.2), we therefore obtain the inequality
@) [RD)ul? = C(|P*(D)ull>+S (10 B°(D)u, 1,0°(D)u))
+ G, 2( 2 e D%uly—p;- qn/2< 2 }YODﬂuiﬂ_Vk_Qn/z

a,q)=p; B ay<vy

+ 2 IYOD u]u i~ an/2 2 W‘)D ulu Yk = qn/2
(o, @)<mp; (B, ay=vy

+ 2 [nD* u]p—uj—q,,/Z > |70D u|u—vk—q"/2
(e, q)<p; (B, ay<v

+ 2 IyoDaulu—uj—q,,ﬂ—é}k 2 WODﬂu‘u—vk—q"m—é;k)
(o, q)=n; Bp=vi

+C; 2 [ID%ul?
(e,q)<p

= CL+CL+Cy,.
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8.2. Let &€R" ™\ {0} be fixed. Suppose f€Cy (R"™Y), g€Cy[R,], and h=0,
and define a function u€Cg’[R"] by
1\o-D2 (x)
wte, 0= (1) 7 () e 0si0,
where g,(2)=g(({)%1).
The Leibniz formula yields
1 [ 1 ](n—l)/2+la'l

RDyu= 2 —r|+ (02897 (1] R(E, D) gs(£) e¥=9),
(o, qy=p & '\h h
where o'!=o,!...0,_;! and |o¢'|=0;+...+a,_;. Hence

oo

8.2 [R@ul= [ [ f

0

> (4 winwrer, pygo| i

o, qy=p &

An application of the dominated convergence theorem shows now that the right
side of (8.2) tends to

[ 1R, D) ge(Pdt [ 1fGopdx
as h—oo. '
Similarly, if A—><, we find
IPP Dl ~ [ 1P, DY gl dr [ If (R dx.
Consider next the term '
S°(yo B*(D)u, 7,Q°(D)u)
= f |12k’ S%0)(7B3(0, D)0, 1)) (7,020, D)i(0, 1))| db.

Since

(8.3) 40, 1) = g:(Vh"~V*(Z f)(h(0-2)),
we obtain, substituting t=h(0—¢),

S°(poB°(D)u, 3,0°(D)u)

-Jl;

T T
2> Sk [é+h1) [?oBg [54‘7’ D:] gg(t)] ['Vleg (f‘f‘ﬁ, D;] gg(t)]
J.k
where the right side tends to

[s8(70 B°(E, D) g:(D), %Q°(E, D) gz ®)| [ 1/ ()2 dx

(#N @ de,

as h-co.
Using (8.3), we have, if A—oo,

o D*ul2 ~ (1+(E)°E oy Dingsl? [ If ()P dx,
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and consequently

LA AP AT DO

Q=un (e, q)<p; (a,@)<p;
ba=ve  (Brad=vy (B.ay<vi

X 15“"'1 (v Dingel[vo DEgg] [ 1f (01 dx
+ . 2 (1_‘_<t>2)(2u BV —6jk)/2

X &% 7| |yo Dinge| [y DE=gg| [ 1£(x)[2dx.

Finally, we see, again by (8.3), that
L~ 3 & f Dz g (O2dt [ () dx

(e, q><u
when h—oo.

8.3. By (8.1) we have thus established the inequality
@4 [ IR, D)g () at
0
=C( f [PO(E, D) gz ()[*di+ s¥(po B, D) ge, 100°(E, D) ge)|

T2 2+ 2+ 2 JAHEYET e

A R o e
S Sl B 3 el R A ]

X|EXHE 2o Lingel 17022 8¢
+ . S (L+ &y umm=ri =90 R g+ y, D gl g DEn gy

iz
+ 3 & [ |Dee)di).
(a,q)<p 0
Substitute here
8.5) E=(070, =L,

and divide by (&)* 7. Then (8.4) becomes
[ IR@©, D)g (D) dr
0

=C( f P o, Df)g(r)izdr+|s3(voB°<0,Dr)gu),vog%e,D,)g(r))l
Y303 6 3 4 3 e

ik a,q)=p; (a Q=<p; {aaq)<p;
B, )<V (B, q)=vy (B, )<y

X&)+ () B W20+ | [y, Din g (1) Iyo DEng (7))
+ <é>(a,q> n;+(B.a)— vk-ﬁ

><(<5>'2+<6‘>2)(2"“"‘v k0332|073, Din g (1) [yo DY g (7)]

3 (g ammg f D3 (@) dr).

(a p=<np
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Now, letting (£) tend to infinity, we find

oo

[ IR®, DYg@[2dx = C( [ [P0, D)g(r)]2dx

0

+[53(70B°(6, D) g(1), 70°(60, D)g(v)))
and hence by means of (8.5)

oo

J IR, DYg0Fdr = C( [ |P°(¢, D) ge(n)dr

0

+ lsg(VoB"(é, D)) g:(1), 7,0°(¢, D, gg(t))n .
This implies that

86 [ IR DYv(ndr

1A

C( [ 1P, DYo(d)Rdr+[s3(30 B°(E, D)v, 30Q°(E, DYv)|)
0

for all ¢cR"'\ {0} and all v€Cy’[R,].

8.4. To complete the proof, let u€ Cy’[R"] and E€R"\{0}. Then the func-
tion v€C[R,] defined by

v(0) = (Fuw(E,

satisfies (8.6), that is, we have

fw!R"(é,Dt)(f};u)(é, n*dr

= C(f IP°E, DY(Z )&, D di+]s8(30B(E, D)(Fu), 300°(E, D) (Fw)|).

Integrating the above inequality over Rg‘l, we obtain

[ ([ [#E®@w)E, ppag)ar

0

= ¢ [ (J(EE @), ) de + 59,5y, 100 D))

and consequently (6.2).
Thus we have proved Theorem 6.1.
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9. Concluding remarks

9.1. The case B=Q. If we have B=Q and choose the matrix S(&)=(S;(&))

such that
S5 (&) = (P +1

and
S]k(f) = 0 fOI’ j # k,
then we obtain as a result (see [6], [10]; cf. also [5]):

Theorem 9.1. Under the assumptions of 6.1, the estimate

IRD)ul* = C (|PD)ul+ 2 708 (D) Ul -y, —gupe-+ u]?)

is valid for all u€ Cy[R"] if and only if for each EER"™™\{0} the following condi-
tions are satisfied:

(@ B¢ 0)=0 mod M°(,0).

(ii) The polynomials Bg(é, 0, j=1,...,xn, are linearly independent modulo

P(l(f, 0.
Indeed, by Remark 6.2, the statement follows from the fact that the matrix

S°(&) is now regular, and from the trivial inequality (s=0)
CUHED = 14+ = GUHE.

9.2. Now we will show that the above results can be used to find sufficient
conditions for the validity of coerciveness inequalities for some types of mixed
boundary problems, too (cf. [11]; see also [8]).

A. We first introduce some notations. For s=0, let [-], be the functional
on Cg(R"™) defined by

[l = IKEY (FH D rary-,  vECT (R,
We set

Cii (1) = {v€ G (R* )| supp v " R*2x {0} = 0}
and
Ca Ry = {ue Ci[R7] 7ou€ Cgg (R}

If the extension of weCg(RYY) by 0 to R"' is denoted by w,, then
w1 €Coo(R*™), and we define

[w]+,s: [w+]s’ [W]—,s = [W—]s'
Note that every v€Ci(R"™Y) can be represented in the form

v=v,+v_ with v, = (U|R»3£-1)i€C5’3(R"‘1).
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B. Let there be given polynomials P and R and polynomial vectors B
and Q asin 6.1 such that their principal parts satisfy (II) and (III) in Theorem 2.1.
Furthermore, suppose that for each E€R"™™\ {0} there is a sesquilinear form
sgt C*XC*~C, the corresponding matrix S() being as in Theorem 2.1, such that
(D) and (e.g.) the following two conditions are satisfied:

(i) Each S§;(¢) is a polynomial in ¢.
(i) There exists a positive constant C, such that, for every E€R"™™\ {0},

©.1) ls:(B(&, U), Q(¢&, U))| = CoResg(B(, U), 05, 1))

for all U=(U,, ..., U,_,)€C" (with sufficiently large r=pu/q,), where we have used

the notation
B;¢,U)y= 2 b,tU,, etc

(a, D=p;

Under the preceding assumptions, we shall verify the estimate
9.2) IRl = C(1PD)ul+ 2 [70By(D)ds ey -
=

+k§ [yOQk(D)u]—,,,~vk_q"/2+”u“)

for all u€Cq[R%].
Note that the above conditions may certainly be weakened; for instance, on
the right-hand side of (9.1) one can replace s, by any suitable sesquilinear form.
C. Accordingly to Theorem 6.1, we first have

©.3)  [IRD)u|* = C(IPD)ul*+ [ [s:(F (o BID)u), Z(2oQ(D)w))] d& + |ul?)
for all u€Cy[R%]. If v, weCqo(R"™), we find by (i)
S Sx@OF0.)@OFw) @ dé = 0.
Therefore, if uc C;;;[Ii';], it follows from (ii) that
[ Is:(Z(2 B(D)u), Z(20Q (D)w))| d&
= CoRe ([ s:(F (0 BD)u) 4. F(30Q(D)u)) dé
+ [ 5:(Z (o B(D)u), Z,(20Q (D)u) ) dt).

By Holder’s inequality, we obtain

S 1540 Z(30B;(D)u) s Z(70Qu(D)ur)| dE

= C[vOBj(D)u]+,u—uj—q,,/2[y0Qk(D)u]u—vk—qn/z5
and analogously

J 18348 Z(30B;(D)u) Z. (7,04 (D) u) - | d&
= C[yij(D)u],,—uj-q”/z[VoQk(D)“]-,u—vrqnﬂ'
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Now let =0 be arbitrary. Then we conclude from above, by Lemma 5.7, that

04 [ [ss(FZ@BD)U), Z3,Q(D)w)|dé

=eCilulli+e1C, (

x
Jj=1

0B (D) gt 3 D@D sy )-
D. By (7.5) we have
©.5 3= G 3 1Dl +Culul,

aq)=pn

and, on the other hand, Theorem 6.1 yields
(9.6) > 1D ull?

(a,q)=p
= G5 (IPD)ul*+ [ |so(Z (o B(D)u), Z(20Q (D)w))| dé+ul?).

Choose now &=>0 such that

—

&=

5 (CGC
Then it follows from (9.4)—(9.6) that
[ Ise(Z0 BDYw), Z(2Q(D)u))| dé

=C (l]P(D)uII2 +J§ o B;(DYul%, 4~ gui2

+k§; [PoQu(D)ulZ g2t ”u”‘Z) .

Finally, combining this with (9.3), we obtain

IR@)ut? = C(IP@YI* + 3 0B, (DI, oy

+k§1 [YOQk(D)u]Es”—Vk—qnlz"‘ ”“”2)

for all u€Cg[R"], which at once implies the desired estimate (9.2).
E. For an example of this type of boundary problem, let n=2, (m,, m,)=
(8,4), and consider the polynomial

P, 0 =+

Then p=8, q=(q1,q9,)=(1,2), and x=2. Let R({{) be a g-homogeneous
monomial with ¢g-deg R=8, and take

Bl(ésC)z 19 B2(63C)=C
0:&,0=28 0., 0 =2

consequently p, =0, p,=2, v;=2, v,=4.

and
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Next, define

12 s £10
so=[2% £

—jgo g8

If €0, then S(&) is regular and

se(Z o B(D)U), Z(3,0(D)w)) = UG T UE",

where

and

U@ = (@, 0), (@), 0))
T(S) = &*S(9)-

Now the form that corresponds to the matrix T(¢) is hermitian and positive

definite. Thus we have even s.=Res,.

(1
[2]
(31

[4]

{51
(6]
7
[8]
91
[10]
[11]
[12]

[13]

Therefore, (ii) is satisfied, too.
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