ON THE POISSON REPRESENTATION OF DISTRIBUTIONS

AATOS LAHTINEN

1. Introduction

1. Let \mathscr{A} be a test function space on \mathbb{R} and \mathscr{A}' the corresponding space of distributions. The elements of \mathscr{A} and \mathscr{A}' are supposed to be complex valued. A complex valued function is called harmonic if its real and imaginary parts are harmonic functions. A distribution $T \in \mathscr{A}'$ has a harmonic representation in \mathscr{B} if $\mathscr{B} \subset \mathscr{A}$ and there exists a complex valued function h harmonic in $\mathbb{C} \setminus \mathbb{R}$ such that

(1.1)
$$\lim_{\eta \to 0} \int_{-\infty}^{\infty} h(x+i\eta) \varphi(x) \, dx = \langle T, \varphi \rangle$$

for every $\varphi \in \mathscr{B}$. Similarly $T \in \mathscr{A}'$ has an analytic representation in \mathscr{B} if $\mathscr{B} \subset \mathscr{A}$ and there exists an analytic function f in $C \setminus R$ such that (1.1) is valid for every $\varphi \in \mathscr{B}$ when $\eta \to 0+$ and $h(z) = f(z) - f(\overline{z})$.

Let $\mathcal{O}_{\alpha}(\mathbf{R})$ be the test function space of functions $\varphi \colon \mathbf{R} \to \mathbf{C}$ such that $\varphi(t)$ together with its derivatives is asymptotically bounded by $|t|^{\alpha}$ as $|t| \to \infty$. In [2] Bremermann has shown, among other results, that $T \in \mathscr{E}'(\mathbf{R})$ has a harmonic representation in $\mathcal{O}_0(\mathbf{R})$ and that $T \in \mathcal{O}'_{\alpha}(\mathbf{R}), \alpha \geq -1$, has an analytic representation in $\mathscr{D}(\mathbf{R})$.

In this paper we consider the harmonic representation of $T \in \mathcal{O}_{\alpha}'(\mathbf{R})$ in $\mathcal{O}_{\alpha}(\mathbf{R})$ following Bremermann. We mainly use the notations and terminology of [2]. For the basic properties of distributions we also refer to Schwartz [5]. Let us denote the Poisson kernel by p(t, z), i.e.,

(1.2)
$$p(t, z) = \frac{1}{\pi} |y| \cdot |t-z|^{-2}, \quad z = x + iy.$$

The function $p(\cdot, z)$ belongs to $\mathcal{O}_{\alpha}(\mathbf{R})$ for every $z \in \mathbf{C} \setminus \mathbf{R}$ if $\alpha \ge -2$. For those values of α we can define for every $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$ a complex valued function $z \to \langle T, p(\cdot, z) \rangle$ which is harmonic in $\mathbf{C} \setminus \mathbf{R}$. We call this function the Poisson representation of T, and show that it gives a harmonic representation of $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$ in $\mathcal{O}_{\alpha}(\mathbf{R})$ if $-2 \le \alpha < 1$. As an immediate corollary we get an analytic representation of $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$ in $\mathcal{O}_{\alpha}(\mathbf{R})$ if $-1 \le \alpha < 1$.

2. Asymptotically bounded functions

2. Let $\alpha \in \mathbf{R}$. A complex valued function $f: t \to f(t), t \in \mathbf{R}$, is called asymptotically bounded by $|t|^{\alpha}$ and denoted by $f(t) = \mathcal{O}(|t|^{\alpha})$ if there exist non-negative constants c and r, asymptotic constants, such that $|f(t)| \leq c|t|^{\alpha}$ if $|t| \geq r$. We call α the asymptotic degree of f. The set of non-negative integers is denoted by \mathbf{Z}_+ .

If $a, b \in \mathbb{R} \cup \{\pm \infty\}$, $z \in \mathbb{C}$, and the function f is defined on (a, b), we denote

(2.1)
$$PI(f, z; a, b) = \int_{a}^{b} p(t, z)f(t) dt,$$

provided that the integral exists. Here p(t, z) is the Poisson kernel defined in (1.2). We also denote

$$(2.2) PI(f, z) = PI(f, z; -\infty, \infty).$$

Using the Poisson integral we can represent asymptotically bounded functions as boundary values of harmonic functions.

Proposition 2.1. Let $f \in C^m(\mathbf{R})$ and $D^k f(t) = \mathcal{O}(|t|^{\alpha})$ for every $k \in \mathbf{Z}_+$, $0 \le k \le m$. If $\alpha < 1$, then

$$\lim_{\eta \to 0} D^k PI(f, x+i\eta) = D^k f(x), \quad 0 \le k \le m,$$

uniformly in compact subsets of R.

Propositions of this kind are usually proved on the assumption that $\alpha = 0$ (cf. [2] and [4]). The proof of this slightly more general form is essentially the same. One only has to be more careful with estimates because of the growth of f at infinity.

We say that P(f, z) is the Poisson representation of f. It should be noted that

(2.3)
$$PI(1, z) = 1$$

and that

$$(2.4) D_x^k PI(f, z) = PI(D^k f, z).$$

3. Let $\beta < 1$ and let $f \in C(\mathbf{R})$, $f(t) = \mathcal{O}(|t|^{\beta})$. Then $PI(f, x+i\eta)$, the Poisson representation of f, exists and is a continuous function of x for fixed values of $\eta \in \mathbf{R} \setminus \{0\}$. We intend to study the asymptotical boundedness of $PI(f, x+i\eta)$ as a function of x. To be more exact, we want to know the asymptotic degree and, more-over, in which cases the asymptotic constants can be chosen to be independent of η . This information is needed in the next chapter.

Proposition 2.2. Let $f \in C(\mathbf{R})$, $f(t) = \mathcal{O}(|t|^{\beta})$, $\beta < 1$, and let $\alpha \ge \max(\beta, -2)$. If $\eta_0 > 0$ is given and $0 < |\eta| \le \eta_0$, then $PI(f, x+i\eta) = \mathcal{O}(|x|^{\alpha})$, and the asymptotic constants can be chosen to be independent of η . *Proof.* Let $\eta_0 > 0$ and $0 < |\eta| \le \eta_0$. Let c and r be asymptotic constants of f. We divide the Poisson representation of f into three parts, $PI(f, \cdot) = PI(f, \cdot; -r, r) + PI(f, \cdot; r, \infty) + PI(f, \cdot; -\infty, -r)$, and estimate each part separately.

For the first term we get directly an upper bound

(2.5)
$$|PI(f, x+i\eta; -r, r)| \leq \frac{8r\eta_0}{\pi} \sup_{-r \leq t \leq r} |f(t)| \cdot |x|^{-2} \quad \text{if} \quad |x| \geq 2r.$$

This has the required asymptotic behaviour.

The remaining two terms appear to have similar upper bounds

(2.6)
$$\begin{aligned} |PI(f, x+i\eta; r, \infty)| &\leq cPI(t^{\beta}, x+i\eta; r, \infty) \quad \text{if} \quad |x| \geq r, \\ |PI(f, x+i\eta; -\infty, -r)| &\leq cPI(t^{\beta}, -x+i\eta; r, \infty) \quad \text{if} \quad |x| \geq r. \end{aligned}$$

Thus the proposition is proved if we show that there exist non-negative constants c_0 and r_0 such that

(2.7)
$$PI(t^{\beta}, x+i\eta; r, \infty) \leq c_0 |x|^{\alpha}, \quad \text{if} \quad |x| \geq r_0,$$

for every $\eta \in \mathbf{R}$, $0 < |\eta| \leq \eta_0$.

If β is not an integer, (2.7) can be obtained by means of residue calculus. So we suppose first that $\beta < 1$, $\beta \in \mathbb{Z}$, and consider a value of x for which $|x| \ge 2r + 4\eta_0$. We imbed the *t*-axis into the complex plane C_w , w = t + iu, choose a constant R such that $R \ge 2|x| + 4\eta_0$, and define paths γ_j : $[0, 1] \rightarrow C_w$ as follows: $\gamma_1: s \rightarrow Re^{i2\pi s}$, $\gamma_2: s \rightarrow (R + s(r - R))e^{i2\pi}$, $\gamma_3: s \rightarrow re^{i2\pi(1-s)}$, $\gamma_4: s \rightarrow r + s(R - r)$. We also define $\gamma_0 = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$. Along these paths we define integrals

(2.8)
$$I_{j} = \frac{|\eta|}{\pi} \int_{\gamma_{j}} \frac{w^{\beta}}{(w-x)^{2} + \eta^{2}} dw, \quad j = 0, 1, 2, 3, 4.$$

Here the argument of w^{β} is taken between 0 and $2\pi\beta$. Because I_2 and I_4 are of the type of (2.1) we get a representation

(2.9)
$$PI(t^{\beta}, x+i\eta; r, R) = (1-e^{2\pi i\beta})^{-1}(I_0-I_1-I_3).$$

In order to get (2.7) we estimate each integral of the right side separately.

The value of I_0 is equal to the sum of the residues of the integrand multiplied by $2\pi i$ (cf. e.g. [1]). Because the integrand has only two simple poles at $x \pm i\eta$, $I_0 = \text{sgn}(\eta)[(x+i\eta)^\beta - (x-i\eta)^\beta]$. This gives easily an estimate of the right kind

(2.10)
$$|I_0| \le 4 |x|^{\beta} \text{ if } |x| \ge 2r + 4\eta_0.$$

A straightforward calculation gives an estimate of I_1 in R,

(2.11)
$$|I_1| \leq 16\eta_0 R^{\beta-1}$$
 if $R \geq 2|x| + 4\eta_0$.

Because $\beta < 1$, I_1 tends to zero as R tends to infinity. In the same way we can estimate I_3 in x,

(2.12)
$$|I_3| \leq 16\eta_0 r^{\beta+1} |x|^{-2}$$
 if $|x| \geq 2r + 4\eta_0$.

If we take absolute values of both sides of (2.9), use the estimates (2.10), (2.11), (2.12), and let *R* tend to infinity, we get an estimate of the type of (2.7) with values $c_0 = |1 - e^{2\pi i\beta}|^{-1} (4 + 16\eta_0 r^{\beta+1})$ and $r_0 = 2r + 4\eta_0$. These values are clearly independent of η . So (2.7) is proved in the case $\beta \notin \mathbb{Z}$.

For integer values of β (2.7) can be obtained by direct integration and estimation. If $\beta = 0$, then $\alpha \ge 0$ and the statement follows from (2.3). In the cases $\beta = -1$ and $\beta = -2$ we get the same final estimate

(2.13)
$$PI(t^{\beta}, x+i\eta; r, \infty) \leq (\eta_0+1) |x|^{\beta} \quad \text{if} \quad |x| \geq 2r \geq 2.$$

This shows (2.7) for values $\beta = -1$, -2. If finally $\beta \in \mathbb{Z}$, $\beta < -2$, then $\alpha \ge -2$ and $PI(t^{\beta}, x+i\eta; r, \infty) \le PI(t^{-2}, x+i\eta; r, \infty)$ when $r \ge 1$. This implies (2.7) for the remaining values of β by (2.13). The proposition is proved.

3. The Poisson representation of distributions

4. We define the space of asymptotically bounded test functions as in [2]: If $\alpha \in \mathbf{R}$, then

(3.1)
$$\mathcal{O}_{\alpha}(\mathbf{R}) = \{ \varphi \in C^{\infty}(\mathbf{R}) | D^{k} \varphi(t) = \mathcal{O}(|t|^{\alpha}) \text{ for every } k \in \mathbf{Z}_{+} \}.$$

If $\alpha \leq \beta$, then $\mathscr{D}(\mathbf{R}) \subset \mathscr{O}_{\alpha}(\mathbf{R}) \subset \mathscr{O}_{\beta}(\mathbf{R}) \subset \mathscr{E}(\mathbf{R})$. Using Propositions 2.1 and 2.2 together with (2.4) we get the following result:

Proposition 3.1. Let $\varphi \in \mathcal{O}_{\beta}(\mathbf{R})$, $\beta < 1$ and let $\alpha \ge \max(\beta, -2)$. If $\eta \in \mathbf{R} \setminus \{0\}$, then $PI(\varphi, x+i\eta) \in \mathcal{O}_{\alpha}(\mathbf{R})$ as a function of x and

(3.2)
$$\lim_{\eta \to 0} PI(\varphi, x + i\eta) = \varphi(x)$$

in $\mathcal{O}_{\alpha}(\mathbf{R})$.

5. The distribution space corresponding to $\mathcal{O}_{\alpha}(\mathbf{R})$ is denoted by $\mathcal{O}'_{\alpha}(\mathbf{R})$. It consists of continuous linear functionals $T: \mathcal{O}_{\alpha}(\mathbf{R}) \to \mathbf{C}$. The value of a distribution T applied to a test function φ is denoted by $\langle T, \varphi \rangle$. It is easily seen that the Poisson kernel $p(\cdot, z)$ belongs to $\mathcal{O}_{\alpha}(\mathbf{R})$ for every $z \in \mathbf{C} \setminus \mathbf{R}$ if $\alpha \ge -2$. Thus we can define a function

$$(3.3) PI(T, z) = \langle T, p(\cdot, z) \rangle$$

for every $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$, $\alpha \ge -2$. We call this function the Poisson representation of T. The harmonicity of the Poisson kernel implies that also the Poisson representation is a harmonic function outside the real axis.

Proposition 3.2. If $T \in \mathcal{O}'_{\alpha}(\mathbf{R}), \alpha \geq -2$, then its Poisson representation $PI(T, \cdot)$ is harmonic in $C \setminus \mathbf{R}$.

Proof. We begin by showing that

$$(3.4) D_x PI(T, z) = \langle T, D_x p(\cdot, z) \rangle.$$

Suppose that $z \in C \setminus R$, $t \in R$ and $h \in R \setminus \{0\}$. Consider the difference

(3.5)
$$A_x(t,h) = \frac{1}{h} (p(t,z+h) - p(t,z)) - D_x p(t,z).$$

If $n \in \mathbb{Z}_+$, we can show by induction that

(3.6)
$$D_t^n A_x(t,h) = h B_n(t,z,h) (|t-z-h|^2 |t-z|^4)^{-n-1},$$

where B_n is a polynomial of t, z and h. As a polynomial of t the degree of B_n is at most 5n+2. Thus (3.6) implies that $D_t^n A_x(t, h)$ converges to zero uniformly on compact sets as $h \rightarrow 0$. Moreover, if $h_0 > 0$ is small enough, then $D_t^n A_x(t, h) = \mathcal{O}(|t|^{-2})$ and the asymptotic constants are independent of h when $0 < |h| \le h_0$. Therefore

$$\lim_{t \to 0} A_x(t, h) = 0$$

in $\mathcal{O}_{\alpha}(\mathbf{R}), \alpha \geq -2$. This proves (3.4).

The rest of the proof runs along the same line. If we replace p by $D_x p$ in (3.4), we see in a similar way that (3.7) is still valid in $\mathcal{O}_{\alpha}(\mathbf{R})$, $\alpha \geq -2$. Thus

$$(3.8) D_x^2 PI(T, z) = \langle T, D_x^2 p(\cdot, z) \rangle$$

Proceeding to the y-direction in the same way we see that (3.8) remains valid if D_x^2 is replaced by D_y^2 . Because p(t, z) is harmonic in $C \setminus R$ these facts imply that $(D_x^2 + D_y^2)PI(T, z) = \langle T, (D_x^2 + D_y^2)p(\cdot, z) \rangle = 0$ if $z \in C \setminus R$. The proposition is proved.

6. The Poisson representation of a distribution T can be used for the characterization of T as follows:

Proposition 3.3. Let $\beta < 1$ and $\alpha \ge \max(\beta, -2)$. If $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$ and $\varphi \in \mathcal{O}_{\beta}(\mathbf{R})$, then

(3.9)
$$\lim_{\eta \to 0} \int_{-\infty}^{\infty} PI(T, x + i\eta) \varphi(x) \, dx = \langle T, \varphi \rangle.$$

Proof. Because $\beta \leq \alpha$, we have $\varphi \in \mathcal{O}_{\alpha}(\mathbf{R})$ and the right side of (3.9) is well defined. We consider the integral on the left side. Let a < 0 < b and let $\{x_j\}_{=n}^n$ be a division of the interval (a, b) into equal subintervals. We show that if $\eta \in \mathbf{R} \setminus \{0\}$, then

(3.10)
$$\lim_{n \to \infty} \sum_{j=-n}^{n} \varphi(x_j) p(t, x_j + i\eta) \Delta x_j = PI(\varphi, t + i\eta; a, b)$$

in $\mathcal{O}_{\alpha}(\mathbf{R})$. Denote the sum of the left side by σ_n . If $m \in \mathbf{Z}_+$, it is not difficult to see that

$$\lim_{n\to\infty} D_t^m \sigma_n = D_t^m PI(\varphi, t+i\eta; a, b)$$

uniformly in compact sets. If c and r, $r \ge 2 \max(-a, b)$, are asymptotic constants of $D_t^m p(t, x_j + i\eta)$, we can suppose that they are independent of the division of the interval (a, b). Thus the estimate

$$|D_t^m \sigma_n| \leq (b-a) \cdot \sup_{x \in (a,b)} |\varphi(x)| \cdot c \cdot |t|^{\alpha}, \quad \text{if} \quad |t| \geq r,$$

gives the right asymptotic boundedness independent of *n*. So (3.10) is valid in $\mathcal{O}_{\alpha}(\mathbf{R})$. This means that

(3.11)
$$\int_{a}^{b} PI(T, x+i\eta)\varphi(x) dx = \lim_{n \to \infty} \sum_{j=-n}^{n} PI(T, x_{j}+i\eta)\varphi(x_{j})\Delta x_{j}$$
$$= \lim_{n \to \infty} \sum_{j=-n}^{n} \langle T_{t}, p(t, x_{j}+i\eta)\varphi(x_{j})\Delta x_{j} \rangle = \langle T_{t}, PI(\varphi, t+i\eta; a, b) \rangle.$$

Next we show that

(3.12)
$$\lim_{-a,b\to\infty} PI(\varphi, t+i\eta; a, b) = PI(\varphi, t+i\eta)$$

in $\mathcal{O}_{\alpha}(\mathbf{R})$. If $m \in \mathbf{Z}_+$, it is not difficult to see that

$$\lim_{a,b\to\infty} D_t^m PI(\varphi, t+i\eta; a, b) = D_t^m PI(\varphi, t+i\eta)$$

uniformly in compact sets. It remains to show the asymptotic boundedness. The derivative $D_t^m p(x, t+i\eta)$ can be written in the form $B_m(t, x) \cdot p(x, t+i\eta)$, where the function B_m : $\mathbf{R} \times \mathbf{R} \to \mathbf{R}$ is bounded. If d is an upper bound of $|B_m|$, if c and r are asymptotic constants of φ and if $-a \ge r$, $b \ge r$, then we get an estimate

$$\begin{aligned} &\left|D_t^m \big(PI(\varphi, t+i\eta) - PI(\varphi, t+i\eta; a, b)\big)\right| \\ &\leq cd \big(PI(|x|^\beta, t+i\eta; r, \infty) + PI(|x|^\beta, -t+i\eta; r, \infty)). \end{aligned}$$

By Proposition 2.2 there exist constants c_0 and r_0 such that

$$PI(|x|^{\beta}, t+i\eta; r, \infty) \leq c_0 |t|^{\alpha}$$
 if $|t| \geq r_0$

for every $r \ge r_0$. This fact together with the preceding estimate gives the right asymptotic boundedness. So (3.12) is valid in $\mathcal{O}_{\alpha}(\mathbf{R})$. Together with (3.11) it shows that

(3.13)
$$\int_{-\infty}^{\infty} PI(T, x+i\eta) \varphi(x) \, dx = \langle T_t, PI(\varphi, t+i\eta) \rangle.$$

The statement (3.9) follows now from (3.13) by Proposition 3.1. The proposition is proved.

7. Now we can formulate our main result. We recall that a distribution $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$ has a harmonic representation in $\mathcal{O}_{\alpha}(\mathbf{R})$ if there exists a harmonic function $h: \mathbf{C} \setminus \mathbf{R} \to \mathbf{C}$ such that

(3.14)
$$\lim_{\eta \to 0} \int_{-\infty}^{\infty} h(x+i\eta)\varphi(x) \, dx = \langle T, \varphi \rangle$$

for every $\varphi \in \mathcal{O}_{\alpha}(\mathbf{R})$. The Poisson representation provides us a simple means of obtaining a harmonic representation in some cases. In fact, Propositions 3.2 and 3.3 give us immediately:

Theorem 1. Let $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$, $-2 \leq \alpha < 1$. Then $PI(T, \cdot)$ is a harmonic representation of T in $\mathcal{O}_{\alpha}(\mathbf{R})$.

4. The Cauchy representation of distributions

8. Let $\alpha \ge -1$ and $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$. The function

(3.15)
$$\hat{T}(z) = \frac{1}{2\pi i} \left\langle T_t, \frac{1}{t-z} \right\rangle$$

is called the Cauchy representation of T. It is an analytic function of z in C spt T (cf. [2]). Because $\hat{T}(z) - \hat{T}(\bar{z}) = \text{sgn} (\text{Im } z) PI(T, z)$ we have by Proposition 3.3

(3.16)
$$\lim_{\eta \to 0_+} \int_{-\infty}^{\infty} \left(\hat{T}(x+i\eta) - \hat{T}(x-i\eta) \right) \varphi(x) \, dx = \langle T, \varphi \rangle$$

for every $\varphi \in \mathcal{O}_{\alpha}(\mathbf{R})$ if $-1 \leq \alpha < 1$. In other words, the following result is valid:

Theorem 2. Let $T \in \mathcal{O}'_{\alpha}(\mathbf{R})$, $-1 \leq \alpha < 1$. Then \hat{T} is an analytic representation of T in $\mathcal{O}_{\alpha}(\mathbf{R})$.

References

- [1] AHLFORS, L. V.: Complex analysis. 2nd ed., McGraw-Hill Book Company, New York— St. Louis—San Francisco—Toronto—London—Sydney, 1966.
- [2] BREMERMANN, H. J.: Distributions, complex variables and Fourier transforms. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts—Palo Alto—London—New York—Dallas—Atlanta—Barrington, Illinois, 1965.
- [3] BREMERMANN, H. J., and L. DURAND: On analytic continuation, multiplication, and Fourier transformations of Schwartz distributions. - J. Mathematical Phys. 2, 1961, 240– 258.
- [4] HELMS, L. L.: Introduction to potential theory. Wiley-Interscience, New York-London-Sydney-Toronto, 1969.
- [5] SCHWARTZ, L.: Théorie des distributions. 3rd ed,. Hermann et Cie, Paris, 1966.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 7 November 1978 Revision received 26 March 1979