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OI{ THE POISSON REPRESENTATIOI{
OF DISTRIBUTIONS

AATOS LAHTINEN

1. Introrluction

l. Let ,il be a test function space on R and ,il' the corresponding space of
distributions. The elements of ,il and d' are supposed to be complex valued. A com-
plex valued function is called harmonic if its real and imaginary parts are harmonic
functions. A distribution T(,il' has a harmonic representation in gä if oc.il
and there exists a complex valued function å harmonic in C\R such that

l,'g t h@+irr)E@) dx - (r,E)

forevery E€AA. Similarly T€.il' hasananalyticrepresentationin fi if Oc*d and
there exists an analytic function/in c\R such that (l.l) is valid for every E(o
when 4*91 and h(z):f(z)-fc4.

Let 0"(R) be the test function space of functions E: R*C such that 9(l)
together with its derivatives is asymptotically bounded by lrl. as lrl*-. In [2]
Bremermann has shown, among other results, that T<E'(R) has a harmonic rep-
resentation in Or(R) and that T«:(R), d>_ -1, has an analytic representation
in e(R).

In this paper we consider the harmonic representation of T<0:(R) in 0,(R)
following Bremermann. we mainly use the notations and terminology of [2]. For
the basic properties of distributions we also refer to Schwartz [5]. Let us denote the
Poisson kernel by p(t, z), i.e.,

Ip(t, z):=lyl .lr-zl-r, z - x*iy.
TC

(t .1)

(1.2)

The function p(.,2) belongs to 0,(R) for every z€C\R if q>-2. For those
values of a we can define for every T@;(R) a complex valued function z *(7, p( , ,))
which is harmonic in CtR. We call this function the Poisson representation of T,
and show that it gives a harmonic representation of TEA|(R) in @,(R) if -Z<q,-L.
As an immediate corollary we get an analytic representatior of Te9l(R) in 0,(R)
if -l=a<1.
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2. Asymptotically bounded functions

2. Let a€R. A complex valued function f: t*f(t), r€R, is called asymptotically

bounded by ltl and denoted by f(t):@(ltll if there exist non-negative constants

c arid r, asymptotic constants, such that lfQ)l=cVY it lrl=.. We call q, the

asymptotic degree of f. The set of non-negative integers is denoted by Z * .

lf a,b(Rv{X*}, z(C, and the function/is deflned on (a,å), we denote

(2.1)
b

PI(f , z; a, b) - { pQ, z)f (t) dt,

Pf(|,z)-1

DyPI(f,z) - PI(Drf,r).

provided that the integral exists. Here p(t, z) is the Poisson kernel defined in (1.2).

We also denote

(2.2) PI(f , z) : PI(f , zt - a, a).

Using the Poisson integral we can represent asymptotically bounded functions as

boundary values of harmonic functions.

Propositio n 2.1. Let f(C*(R) ond Dk7Q1:0(Vl1 for euery k€Z +, o<k=m.
If u<t, then

lir\Ooft6,x*iti: Dkf(x), 0 = k= m,

uniformly in compact subsets of R.

Propositions of this kind are usually proved on the assumption that a:0
(cf.l2l and [4]). The proof of this slightly more general form is essentially the same.

One only has to be more careful with estimates because of the growth. of f at infinity.
We say that P(f, z) is the Poisson representation of f. It should be noted that

(2.3)

and that

(2.4)

3. Let fi<l and let ftC(R), "f(t):0(Vlp). Then PI(f,x+itD, the Poisson

representation of f, exists and is a continuous function of x for fixed values of
,?(R\{0}. We intend to study the asymptotical boundedness of PI(f, x*i1) as a

function of x. To be more exact, we want to know the asymptotic degree and, more-

over, in which cases the asymptotic constants can be chosen to be independent of 4.

This information is needed in the next chapter.

Propositior2.2. Let f(C(R), f(t):0(ltl0), fr=|, and let d=max (P, -2).
If t1o>O is giuen and O=lnl=qo, then PI(f, x+i4):0(lxl\, and the asymptotic

constants can be chosen to be independent of q.
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Proof. Let 4o>0 and 0=lryl=ry,. Let c and r be asymptotic constants ofl We
divide the Foisson representation of / into three parts, PI(f, .1: p|(f . ; -r, r)+
PI(f, .; r, *)*PI(f, .; -*, -r), and estimate each part separately.

For the first term we get directly an upper bound

(2.5)

This has the required asymptotic behaviour.
The remaining two terms appear to have similar upper bounds

(2.6) IPI(I, x*i4; r, -)l = cPl(tq, x*i\; r, *) if lxl = r,

IPI(f,x*iq; --, -r)l = cPI(t0, -x*i4:r,-) if ixl = r.
Thus the proposition is proved if we show that there exist non-negative constants

co and ro such that

(2.7) PI(IP, x*i1; r, *) = crlxl", if lxl = ,0,

for every 4€R, 0-lrll=rto.
If B is not an integer, (2.7) can be obtained by means of residue calculus. So we

suppose first that §=1, fr42, and consider a value of x for which lxl>2r*4no.
We imbed the ,-axis into the complex plane C-, w:t-fiu, choose a constant -R

such that n=2lxla44o, and define paths 7;: [0, l)*C* as follows: yL: s*Reizns,
yr: s*(R+s(r-R))eiz", lsi s*ysizt(r-"), ya: s*r1s(Ä-r). Wealsodefine yo:yr*
!z*h,*14. Along these paths we define integrals

iPI(f , x* ir1; - r, r)l = 9't'- sup lf (t)l . ixl-, if lrl > 2r.
tL 

-r<t<r

't;

Here the argument of wp is taken between 0 and 2nB. Becatse Irand In are of the
type of (2.1) we get a representation

(2.8)

(2.9)

(2.10)

(2.11)

PI(t0, x+ irl; r, Ä) : (1 - ,zni§|-t(/, - IL- 1r).

In order Lo get (2.7) we estimate each integral of the right side separately.
The value of 1o is equal to the sum of the residues of the integrand multiplied

by 2ni (cf. e.g. []). Because the integrand has only two simple poles at x*iq,
Io:sgr QDl@+irifi -@-irial. This gives easily an estimate of the right kind

llol = 4i*i$ if lrl > 2r*4ryr.

A straightforward calculation gives an estimate of 1, in Ä,

iltl =l6rtoRP-1 if R=2ll*i+4ryo.

Because F-7, L tends to zero as Ä tends to inflnity. In the same way we can esti-
mate 1, in x,

(2.12) l\l = 164oro +l lrcl-2 if lxl = 2r*44o.
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If we take absolute values of both sides of (2.9), use the estimates (2.10), (2.11),

Q.l2), and let Å tend to infinity, we get an estimate of the type of Q.7) with values

co:ll-sznia l-'(++ l64ora+t) and ro:)v1-440. These values are clearly independent

of 4. So Q.7) is proved in the case fr{Z.
For integer values of B Q.7) can be obtained by direct integration and estima-

tion. If f :0, then a>0 and the statement follows from (2.3). In the cases §:-l
and fi: -2 we get the same final estimate

(2.tr3)

(3.1)

(3.3)

(3.2)

in 0,(R).

PI(IF, x+ irl; r, ".) = (qo* 1) lxlp if lxi > 2r = 2.

This shows Q.7) for values fr: -1, -2. If finally 0€2, B=. -2, then a> -2
and PI(IP,x+iq; r,*)=PI(t-z,x*i4; r, -) when r>1. This implies (2.7) for

the remaining values of B by (2.13). The proposition is proved.

3. The Poisson representation of distributions

4. We define the space of asymptotically bounded test functions as in l2l: If
a€R, then

0*(R) - {Ee C* (R)l DoE(r) - O(Vl\ for every ke z*}.

lf u * 8, then 9 (R) c 0,(R) c 0 u (R) c E (R). Using Propositions 2.1 and 2.2 to gethet

with Q.$ we get the following result:

Proposition 3.1. Let a€9p@), B<.1 and let q,>max(f, -2). ffry€R\{O},
then PI(cp, x*i4)€0"(R) as a function of x and

li14 PI(E, x+ iri - E(x)
4*l)

5. The distribution space corresponding to 0,(R) is denoted bV 0'"(R). It con-

sists of continuous linear functionals 7: 0"(R)*c' The value of a distribution 7
apptied to a test function E is denoted by (7, E). It is easily seen that the Poisson

kernel p(.,2) belongs to 0,(R) for every z(C\R if a>-2. Thus we can define

a function

PI(T, z) : (7, p(. , ,))

for every T€g:(R), a> -2. We call this function the Poisson representation of T.

The harmonicity of the Poisson kernel implies that also the Poisson representation

is a harmonic function outside the real axis.

Proposition 3.2. If f<9'"(R),&=--2, thenits Poissonrepresentation PI(T, ')
is harmonic rl C\R.
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(3.4)

Suppose

(3.s)

where B, is a
most 5n*2.
compact sets

0(V l-) and
Therefore

(3.7)

Proof. We begin by showing that

D*PI(T, z) : (7, D*P(' , ,)).

that z€C\R, /€R and å€R\{0}" Consider the difference

If n€Z+,

(3.6)

A*(t, h) : *u(t, ,+h)-p(t, ,))-D*p(t, z).

we can show by induction that

Dr A*(t, h) - hBn(t, ,, äxlt- z-hl'lt- r':)*n-t,

polynomial of t, z and h. As a polynomial of r the degree of 8,, is at

Thus (3.6) implies that Df A*Q, h) converges to zero uniformly on

as h*0. Moreover, if ho>A is small enough, then Df A"(t, h)-
the asyrnptotic constants are independent of h when 0= ihl=ho-

tJ* A*(t, h) : 0

in @"(R), a> -2. This proves (3.4).

The rest of the proof runs along the same line. If we replace p by D*p in (3.4),

we see in a similar way that (3.7) is still valid in 0"(R), a>-2. Thus

(3.8) DIPI(T, z) : (7, DlP( , ,)).

Proceeding to the y-direction in the same way we see that (3.8) remains valid if
Dl is replaced by D|. Because p(t,r) is harmonic in C\R these facts imply that

(D'z,+D?PI(T, z):(7,1o',+D2r)l(, , z)):o if z(c\R. The proposition is proved.

6. The Poisson representation of a distribution 7 can be used for the charac-

teization of 7 as follows:

Proposition 3.3. Let F-l and d=max (fr, -2). If T<O;(R) and

o(ap(R), then

(3.e) f,g [ ru9. x+iDE@)dx : (r, E).

Proof.Because fi=a, we have tpEL"(R) and the right side of (3.9) is well

defined. We consider the integral on the left side. Let a<.O<b and let {xr}"-^be
a division of the interv al (a, b)into equal subintervals. We show that if ry€R\{0}, then

(3.10) lim Z E@)p(t,
tt,.+6 j: _n

in 0"(R). I)enote the sum of the

to see that
Iim D?on

xi*irDlxj : PI(E, t*iry; a, b)

left side by on. If m(Z+, it is not difficult

- Dy PI(E, t*ir1; a, b)
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uniformly in compact sets. If c and r, r>2max(-a,b), are asymptotic constants
of Dip(t, xt*i4), we can suppose that they are independent of the division of the
interval (a, å). Thus the estimate

lD\"Å = (b-a)._?yr, lq(x)1. c. !t1", if ltl = ,,

gives the right asymptotic boundedness independent of z. so (3.10) is valid in o,(R).
This means that

bn
(3.11) [ r4r,x*iq)E@)4,s :lim i rtq,xl+iq)E@)lxi

' n 

n-* j=-n

- lim 7 (7,, p(t,xi+i4)E@)Ax,) : <T* pI(E, t+i4; a, b)).,*_ j=,

Next we show that

(3.12) _"tH_ P[(E, t+iq; a, b) : pt(E, t-fiq)

in CI,(R). lf m€Z*, it is not difficult to see that

_l,rrT_ DiPI(rp, t*i4; a,b) : DipI(E, t-liq)

uniformly in compact sets. It remains to show the asymptotic boundedness. The
derivative Dip@,t*i?) can be written in the form B^(t,x).p(x,t*i4), where
the function B.: RXR*R is bounded.lf d is an upper bound of l.B.l, if c and
r are asymptotic constants of E and if -a=r, b>r, then we get an estimate

l»y(f tg, t*ir»- pI(E, t-tiq; a, b))l

= cd(Pl(lxl|, t*iq; r, -)+Pl(lxln, -t+itt; r, -)).
By Proposition2.2 there exist constants co and ro such that

PI(lxlF,t*i7;r, -) = colli" if lrl = ro

for every r>ro. This fact together with the preceding estimate gives the right
asymptotic boundedness. so (3.12) is valid in 0,(R). Together with (3.11) it shows thar

(3.13) J PI(T, x+idE@) dx : (7,, pI(E, t*i{).

The statement (3.9) follows now from (3.13) by proposition3.l. The proposition
is proved.

7. Now we can formulate our main result. we recall that a distribution T<Li@)
has a harmonic representation in 0, (R) if there exists a harmonic function å : c\R * c
such that

(3.14) lg i ^1**rr1*(x) 
ctx : (r, q)



4. The Cauchy representation of distributions

8. Let a> -l and T€9i(R). The function

(3.r5) i1z1:*(r,,*>
is called the Cauchy representation of T.It is an analytic function of z in C\pt 7
(cf. t2D. Because f1z1-i(4:sgn (Im z)PI(T, z) we have by Proposition 3.3

(3.16) lin i (i«*+inl-?@-irt))E(x) dx : (r, q)
4*u+ __

for every 8e.0,(R) if -1<a=1. In other words, the following result is valid:

Theorem 2. Let T@:(R), -l=a<.|. Then i is an analytic representation

of T in 0"(R).
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for every E€9,(R). The Poisson representation provides us a simple means of
obtaining a harmonic representation in some cases. In fact, Propositions 3.2 and 3.3

give us immediately:

Theorem L. Let T€g:(R), -2=a-1. Then PI(T, ') isaharmonicrepresenta'

tion of T in 0,(R).
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