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LIPSCHITZ AND QUASICONFORMAL FLATTENING
OF SPHERES AND CELLS

D. B. GAULD and J. VAISALA

1. Introduction

1.1. We consider embeddings in three categories: TOP (continuous maps),
LQC (locally quasiconformal maps) and LIP (locally Lipschitz maps). For compact
objects, LQC maps are quasiconformal, and LIP maps are Lipschitz. Let C be one
of these categories, and let X be a TOP k-sphere in the ordinary n-sphere S”. We say
that Xis locally C-flat if every point of X has a neighbourhood U such that (U, UnX)
is C-homeomorphic to (R", RY). It is well known that for k=n—2, local TOP
flatness implies flatness in the sense that (S”, X) is homeomorphic to (S”, S¥), see
[Ru, p. 48 and p. 158].

The main purpose of this paper is to consider similar questions in LQC and
LIP. In particular, we prove in both categories that if X is locally C-flat and if
45k#n—2, then (S", X) is C-homeomorphic to (S”, S¥). A related result on extend-
ing embeddings is also given, without the restriction k4. We also consider the
analogous problem in which X is a k-cell. Special cases have been considered in
[Ti], [Ri], [LeV 2, p. 103], [Ge, p. 167], [NV], [LuV, 7.8], [GV], and [Ga].

Our main tool is a variation of engulfing, called encasing and considered in § 2.
The proofs of the main theorem in Sections 3 and 4 consist essentially of three steps.
The first step involves the combining of the local collars given by the definition of
local C-flatness. Using the encasing lemma of § 2, we are able to combine sufficient
collars so that X is covered by just two of them.

The second step involves the enlargement of the two remaining collars so that
their union is the whole of S”. This involves an appeal to the known topological
results together with PL approximation.

The third step combines these two enlarged collars to give us the required
results. Here we make use of relative versions of the Schoenflies theorem, which are
considered in 2.4.

1.2. We shall several times make use of the fact that for n=4, every homeo-
morphism f: R"—~R" can be approximated by PL homeomorphisms. For n=2,
this is proved in [Mo 2, p. 49], and for n=3, in [Mo 1]. For n=5, it follows from
[Ru, Theorem 4.11.1, p. 194] and from the stable homeomorphism theorem [Ki,
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p. 575]. The latter result is very deep, but we could each time avoid it by using an
engulfing argument instead. We shall not do it, however, because it would make
the proofs longer and also make it necessary to give separate proofs for the cases
n=3 and n=S5.

1.3. Notation and terminology. The standard orthonormal basis of R" is written
as e, ..., e, and we use the euclidean norm |x|=(3+...+xH)"% If k<n, we
identify R* with the subspace of R" spanned by e, ..., ¢,. We let R"=R"U{e}
denote the one-point compactification of R”". The following notation is used for
certain subsets of R": R ={x: x,=0}, B"(r)={x: |x|<r}, B(r)=B"(r)nR",
S" Y(r)=0B"(r), I"(r)=[—r, r]", Z""X(r)=0I"(r). For r=1 we use the abbrevia-
tions B", B, S""%, I", 2"~%. Note that B" is the open unit ball.

The letter C will always mean one of the categories TOP, LQC, LIP. However,
our results are well known for C=TOP. For the basic theory of LQC and LIP
maps, we refer to [LeV 2], [V&], and [LuV]. The objects of LQC are subsets 4 of R"
such that Acclint 4. An embedding f: A—~R" is LQC at x4 if x has a neigh-
bourhood U such that f is quasiconformal in int (UnA4). By a one-dimensional
quasiconformal map we mean a strictly monotone quasisymmetric function [LeV 2,
p. 88].

We shall use the spherical metric [V4, p. 37] in R". Then R”, S" and X" are
mutually lipeomorphic, and we may freely replace one of them by another.

By an n-cell we mean a set homeomorphic to I”.

1.4. Remark. When our manuscript was completed, the paper by Brakes
[Br] appeared. It contains essentially the TOP case of the relative Schoenflies theo-
rem 2.4 and a short proof of the TOP flatness of locally flat k-spheres in S”, k=n—3.
We have incorporated his technique into the proofs of Theorems 3.3 and 3.4.

Acknowledgement. The first-named author wishes to express his thanks to the
University of Auckland, from which he was on leave, and the University of Helsinki,
his host during the period of this research.

2. Encasing

2.1. Definitions. A C-manifold, possibly with boundary, is defined in the
standard way using atlases. For C=LIP, an alternative definition is given in
[LuV, 3.1].

Let M be an n-dimensional C-manifold and let XcM be a k-dimensional
TOP submanifold. A set AcX is C-encasable in (M, X) if there is a C-embedding
h: B"~M such that AchB" and h='X is either B* or B* . We also say that 4 is
a C-encasing of A in (M, X). If every point of X is C-encasable in (M, X), X is locally
C-flat in M.
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With M as in the previous paragraph, let g: Y—~M be an embedding of the
subset ¥ of R*. Set X=g¥. A set ACX is (C, g)-encasable if there is a neigh-
bourhood U of g7'4 in R" and a C-embedding #: U—~M such that (U, UNY) is
C-homeomorphic to (B", B¥) or to (B", B*), that /7' X=UNY, and that h=g in
UnY. Call the embedding /4 a (C, g)-encasing of A. If every point of X is (C, g)-
encasable, say that g is a locally C-flat embedding.

2.2. Lemma. Suppose that A is a PL k-cell, BCOA is a PL (k—1)-cell,
U is a neighbourhood of B in A, and CC A a compact set such that Cn0dAcCintB.
Then there is a PL homeomorphism f: A—~A such that f|0A=id and CcfU.

Pioof. We may assume that A=I* and that B is an ordinary face of I*, in
which case the lemma is elementary. O

2.3. Encasing lemma. Let M" be a C-manifold and X* a TOP submanifold.
Let D,,D,CX be closed subsets which are C-encasable in (M, X). Then D;u D,
is also C-encasable in (M, X) if either

(i) k=4, D, is a k-cell which is locally flat in int X and Dy D, is a (k—1)-
cell locally flat in 0D, or

(ii) k%5, Dyisa (k—1)-cell which is locally flat in 0X and Dy D, is a (k—2)-
cell locally flat in 0D,.

In parallel, let g: Y—M be an embedding, where YCR*. Let Dy, D,CcX=gY
be closed subsets which are (C, g)-encasable. Then D,u D, is (C, g)-encasable if
either

(i) g71D, is a PL k-cell in int Y and g=[DynD,] is a PL (k—1)-cell in
dg7 1D, or

(iv) g™1D, is a PL (k—1)-cell in 0Y and g='[D;nD,] is a PL (k—2)-cell
in 0g™1D,.

Proof. Only (i) and (iii) are considered, the proofs of (ii) and (iv) being some-
what similar.

Let h;: U;—~M be C-encasings or (C, g)-encasings of D; (i=1,2) with h;'X==
U, " R*. Of course in case (i), U;=B".

Choose a PL k-cell 4 and a PL (k—1)-cell Bso that: h;* Dycint A; A Uy R,
BCOANh; *hUy; 0A "B DicCint B. In case (i), local flatness of D; 0 D, in 0D,
and of D, in int X provide a topological cell pair as 4 and B. Obtain the PL pair
by use of PL approximation, see 1.2. In case (iii), the existence of A and B follows
immediately from the hypotheses, since A;*h;=id in R*nU; N Us,.

Let f: A—~A be the PL homeomorphism given by 2.2 with C=A4 nh;*[D; U D,]
and U=Anh;*h,U,. Extend f by suspension to a PL homeomorphism of a PL
n-cell A*c U,, and further extend this to a PL homeomorphism ¢ of R", where
@=id on RN\ A4*.
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Now define the map h: @U;—~M by setting h=h ¢~ in @[UN\hy hy,A*]
and h=hyph; *hyo™! in @hy'hy,A*. In case (i), h is a C-encasing of D, u D, in
(M, X) and in case (iii), 4 is a (C, g)-encasing of D; u D,. Note that in case (i), /&
could have been h; in U\ hyA* and hyohy *hy in b7 h,A*. O

2.4. Relative Schoenflies theorem. Let 1=I=k=n, let Y be either 0, R
or R%, let Z be either § or YR, and let A=B"\B"(1/2). Suppose e: A—R"
is a C-embedding such that elANnZ is the inclusion, e (Y, Z)=An(Y, Z), and
eAcG, where G is the bounded component of R™\eS"~ Y. Then there is a C-homeo-
morphism é: (B", B'nnY)—(G, GNY) such that é=e¢ on S"* and é|B"nZ is the
inclusion.

Proof. If n=1, the theorem is almost trivial for C=TOP or LIP but not
for C=LQC. In this case we may apply the method of [LeV 1, p. 12] to replace
e by a quasisymmetric function continuously differentiable on B! (3/4)\ B'(1/2).
The sought-for é can then be chosen to be PL in a neighbourhood of [—1/2, 1/2].

Suppose that n=2. By going through the non-relative version Y=0 in [GV,
Theorem 3], one can ensure that all of the auxiliary maps can be chosen to setwise
respect Y and Z. Although the proof in [GV] is stated for the categories QC and
TOP, it is equally valid in LIP. Thus 2.4 is true for Z=0. Assume Z=0. If Cis
LIP or TOP, one can replace a C-homeomorphism ¢é: (B", B"nY, B"nZ)—
(G,GnY,GNZ) with é=e on S" ! by é67L, where o is the (n—I)th suspension
of é|B"nZ (firstly, in the case Z=R",, extended over B* by reflection in B*~"), to
obtain the desired C-homeomorphism.

For C=LQC, the above suspension need not be a C-homeomorphism, so
one must return to the proof in [GV] with Z in mind. We will use the notation of
[GV, § 5]

We begin with Lemma 7. With e as above and G playing the role of Cin Lemma 7,
we claim that the C-embedding f: B"—R" may be chosen so that fB"u e[int A]=G,
that f=1Y=B"nY and that f|B"(3/4)nZ=id. To ensure this, one carries out
the construction in Lemma 7 replacing 1/2 by 3/4 thus in effect considering only
e|B™\B"(3/4). Since the initial conformal normalisation may destroy the fact that
e|AnZ=id, we must forgo that luxury. Instead, choose a QC homeomorphism
f’: R">R" which satisfies the conditions: f|B"(3/4)=id, f' Y=Y, f/(«)=X=
7e,/8, and R™\ f’B" is a small ball centred at x, and contained in e[B™\B"(3/4)].
In the construction of Lemma 7 we replace 1/2 by 3/4 and choose the auxiliary
map f so that B(x,)=0. We thus obtain an LQC embedding f: R™\ {x,}—~R"
defined either as ea = fae™! or the identity. Corresponding to the map f of Lemma 7
we obtain an LQC embedding f;: R"™\{x,}—~R" defined as f~'yf or the identity.
Then f=f, f* is the desired map.

Let &: B"(3/4)—~B" be a QC embedding which is the identity on B"(3/4)n Z,
respects Y and is such that 6B"(3/4)uf'elint A]=B" and 6B"(1/3)nf"led=0.
The map J could be chosen so that B™\6B"(3/4) is a small neighbourhood of
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(B™\B"(3/4))nZ in B", and OB"(1/3) is a small ellipsoidal neighbourhood of
B"(1/3)nZ. The QC embedding g=f5: B"(3/4)~R" satisfies:

(a) gB"(3/4) velint 4] = G;

(b) g[B"(3/4)\B"(b)] C e[B"™\B"(a)] for some a, b with 1/2 <a =b < 3/4;
(c) gB"(1/3)ned = 0;

(d) glB"(3/4) " Z = id;

(e) g 'Y=B"3/4H Y.

Inclusion (b) certainly holds with a=1/2, b=3/4, so it also holds for some a=1/2,
b<3/4. The extra condition a=b ensures that a/3b=1/3, which is needed when
considering &A1 u"1|S""(a/3b).

We now apply the procedure of Lemma 9 of [GV] to the QC embedding
h=g'e: e7'gB"(3/4)~R". Define radial QC homeomorphisms A, u: R"~R" so
that: 1 is the identity on R™\ B"(3/4), expands B"(3/4)\ B"(b) onto B"(3/4)\B"(1/3)
and is division by 3b on B"(b); u is multiplication by @ on R"™\ B", contracts
B"™\B"(1/2) onto B"(a)\B"(1/2) and is the identity on B"(1/2).

Define the QC embedding &: B™\B"(a)—~R" by

hu(x) if x{e 'gB"(3/4),
é(x) =1 Ah(x) if glh(x)§eA,
hph=*Ah(x) otherwise.

As in the case of € in the proof of Lemma 9 of [GV], & is well-defined and, using
properties of g, one can verify that & acts in the same way on S"~* as on $"*(a),
more precisely, &(x)=h(ax) if x€S"™' and é(x)=h(x)/3b if x€S" (a). Prop-
erty (¢) of g ensures that &~'Y=(B"\B"(a))nY, but & is not necessarily the
inclusion in Z. Indeed, é=ui on (B"™\B"(a))nZ. Hence the QC embedding
éA7u~t: B"(a)\B"(a/3b)~R" is the inclusion in Z, still respects ¥, and acts in
the same way on S”~*(a) as on S"*(a/3b). As in the proof of Lemma 9 of [GV],
exploit this feature of éA7'u~! to extend it to a QC embedding e’: B"(a)—~R".
Since ge’=e on S$"7'(a), ge’ extends to a QC embedding é: B"—~R" having all
of the required properties. [

3. Flattening spheres

In this section we consider a TOP k-sphere X< S" which is locally C-flat
in §". If k=n—2=1, then X may be knotted, so we must add the hypothesis that
S™X is homotopy equivalent to S'. We shall prove in 3.3 that, unless k=4
or (n,k)=(4,2), X is C-flat in S” in the sense that (S", X) is C-homeomorphic
to (S, S.
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A similar result holds for locally C-flat embeddings, and in 3.4 we prove that,
unless (1, k)=(4, 2), any locally C-flat embedding g: R*—~R" extends to a C-homeo-
morphism of R". Of course, as above, we require gR* to be homotopically unknotted.

Finally we show that our methods adapt to verifying uniqueness of C-structures
on R" and S" when n>4 and on I" when n#4 or 5.

3.1. Lemma. Let XcS" be a TOP k-sphere and let hy, hy,: B"~S" be
C-encasings in (S", X) such that S"=h,B" U hyB". Then (S", X) is C-homeomorphic
to (S", S%).

Proof. We replace S™ by R". Choose rc(0,1) so that B™\B"(r)Ch;'h,B".
Applying the relative Schoenflies theorem 2.4, with Z=0, together with an inversion
we find a C-homeomorphism f of R"\B"(r) onto the closure of the bounded
component of R™/;1h, S""*(r) such that f~'B*=R"\B*(r) and f=h;'h, on
S"1(r). The sought-for C-homeomorphism #: (R", R¥)—~(R", X) is obtained by
setting A=h; in B"(r) and h=h,f in R\B"(r). O

3.2. Lemma. Let Xc2X" be a TOP k-sphere and let hy, hy: B"—~2" be
C-encasings in (2", X) such that X=h; B*Uh,B*. Suppose that n=4 and there are
a homeomorphism o: X"—~3" and a PL k-cell D,CX* so that af*=X,
D,ca h, B* and Z*\int D,=D,cCo~1h,B*. Then there is a C-homeomorphism
@: Z">X" such that ¢|X=id and @h,B"U hyB"=2".

Proof. Choose r€(0,1) so that D;XI" *(r)ca™'h;B", and a PL homeo-
morphism  f: ¥t E"* () > T=cl (Z™\Z*XI""*(r)) such that B=id on
k% Z"*¥=1(r). Next choose neighbourhoods U; of D; in I*™' such that
U X2 1(r)cBp1a"1hB"

By 1.2, we can choose a PL homeomorphism y approximating «|7 such that
yBIUX 2" *=Y(r)]ch;B" and X yT=0. By Lemma 2.2, there is a PL homeo-
morphism §: I**1—**1such that §|2*=id and U, L U,=I1**". Then yf (6 Xid)p~1y*
is a PL self homeomorphism of yT which can be extended by the identity to a PL
homeomorphism ¢: X"—2" with the desired properties. [J

3.3. Theorem. Suppose that X< S™ is a locally C-flat TOP k-sphere and that
k#4 and (n, k)= (4, 2). If k=n—2, assume also that S"™\X is homotopy equivalent fo
S1. Then (S™, X) is C-homeomorphic to (S", S¥).

Proof. Choose a homeomorphism «: R¥—~X andlet 4,: B"—~S" bea C-encas-
ing of a(es) in (S", X). Let Q=I*(r) be a k-cube containing R*\a 'h,B* in its .
interior. Subdivide Q in the natural way into cubes Q,, ..., @, such that each
aQ; is C-encasable in (S", X) and Q;,;n(Q,v...uQ)) is a PL (k—1)-cell in 0044
for 1=j=m—1. Applying Lemma 2.3 (i) inductively we see that aQ is C-encasable
in (S", X); let h;: B"—~S" be a C-encasing of aQ in (S", X).

We consider three cases separately: n—k=3; n=4; (n, k)=(4, 3).
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Firstly suppose n—k=3. Replace S” by R". Assume for the moment that
hy,=g|B", where g: R"—R" is reflection in S"~'. Since X n B"ch,; B", we may
assume that X~ B"(2)C/h; B". In the notation of [Ru, Lemma 4.5.2, p. 159], set
M=R™(R"\B"(2)), U=h; B"\(R™\B*(2)), C=B*(2\B* and P=B*(2). From
this lemma it follows that there is a C-homeomorphism of M having compact support,
so that it extends to a C-homeomorphism f: R"—~R", with B*(2)c ph, B". Choose
s<1 large enough so that B*(2)c fh, B*(s). Then (Bhy|B™\B"(s)) " R*=B"\ B*(s),
so by the relative Schoenflies theorem 2.4 with Z=@, Bh,|B"(s) extends to a C-home-
omorphism y: R"—~R" with yR*=pX. Hence f~'y is a C-homeomorphism of
R" taking R* onto X. If h,=g|B", then, using the C-Schoenflies theorem, we can
assume that /i, extends to a C-homeomorphism, call it 4, also, of R". Observe that
ohy'hy: B"~R" and g¢: B"—~R" are C-encasings in (R", oh;*X) with images
covering gh; ' X, so that by what we have just shown, (R, oh;* X)is C-homeomorphic
to (R", R*). Since ghy' is a C-homeomorphism from (R", X) to (R", gh;*X), this
completes the case where n—k=3.

Secondly consider the case n4. Replacing R” and S" by X", we see that
a: Z*¥~X extends to a homeomorphism «: (2", 2¥)~(Z", X). For (n, k)#=(3, 1),
this extension follows from [Ru, p. 48 and p. 158]; for (n, k)=(3,1) from Dehn’s
lemma [Mo 2, p. 199] and from [Bi]. With D,;=0, the hypotheses of Lemma 3.2
are satisfied: let ¢: Z"—~2X" be the C-homeomorphism given by 3.2. Then ¢/,
is a C-encasing in (2", X) with @, B"U hy, B*=2". The assertion now follows from 3.1.

Finally suppose (n, k)=(4, 3). Choose s€(0,1) so that A;'aQc B*(s). By
the Schoenflies theorem 2.4 (with Y=0) we can extend h;'4,|S?(s) to a C-embed-
ding f: R®™\B*(s)—~B®. Define u: R®*~S* by u=h, on B3(s) and u=h,f on
R®\ B*(s). Then uis an embedding and uR®*=X. If C=LIP, uis a LIP embedding,
and the theorem follows from [LuV, 7.8]. Suppose C=LQC. By [GV, Corollary 5,
p. 230], it suffices to show that u is locally QC flat. This is clearly true at points of
B®(s), since hy|B*(s) is a QC extension of u|B%(s). If xcR*\B*(s), we apply
Carleson’s extension theorem [Ca], see also 3.12, to find a QC embedding v of a
neighbourhood U of x in R* such that v=h;'u in U~ R® Then hyv is a QC local
extension of u at x. [J

3.4. Theorem. Let g: R*—~R" be alocally C-flat embedding with (n, k) # (4, 2).
If k=n—2, assume that R™\gR* is homotopy equivalent to S*. Then g extends to
a C-homeomorphism of R".

Proof. Proceeding as in the proof of 3.3 with a=g, we may use Lemma 2.3
(iii) to reduce the number of (C, g)-encasings to two.

The proof in the case (n, k) =(4, 3) may now proceed just as in the corresponding
part of 3.3. In the case n#4, we also proceed much as in the corresponding part
of 3.3, observing that the homeomorphism ¢ of 3.2 is the identity on gR¥, so that
we have two (C, g)-encasings h;: B"(b)—~R" and hy: R"™\B"(a)~R* for some
a<b so that im A uim hy= R". The result now follows from the (C, g)-version of
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Lemma 3.1. This version is proved just as the original except that the appeal to the
relative Schoenflies theorem uses the case Z=Y.

In the case n—k=3, we again follow the proof of the appropriate part of 3.3.
We begin with two (C, g)-encasings h;: B"(b)—~R" (b=2) and id: R\ B"—~R",
engulfing via B: R"—>R" as before and using the Z=Y version of the relative
Schoenflies theorem to extend pi,|B"(2) to the C-homeomorphism y: R"—>R"
with y|[R*™\B*(2)=id. The C-homeomorphism B~1y: R"—~R" extends g. If the
second (C, g)-encasing is hy: R"™\B"—R", not necessarily the identity, then as in
3.3 we extend it to a C-homeomorphism h,: R"—~R", extend h;'g: R*~R" to
a C-homeomorphism of R" using the previous part and then follow this by 4, to get
the desired extension of g. [

3.5. Remark. The missing case (n, k)=(4,2) in Theorems 3.3 and 3.4 seems
to be difficult: one needs a version of Lemma 3.2 for this case, the other steps in
the proofs of 3.3 and 3.4 being valid in this case. It is of interest to note that the
two questions concerning 3.3 and 3.4 arising from this case are equivalent. To see
this, one proceeds much as in the last paragraph of the proof of 3.3, but appealing
to Ahlfors’ extension theorem [Ah] to extend a QC map from R2 to R

3.6. Theorem. Let X be a locally LIP flat LIP k-sphere in S", (n, k)#(4, 2).
If k=n—2, assume also that S™X is homotopy equivalent to S*. Then (S", X)
is lipeomorphic to (S", S¥).

Proof. Let g: R*~X be a lipeomorphism. By 3.4, it suffices to show that g
is locally LIP flat at each point acR*. We may assume as-. Choose a LIP
encasing /: B"—~S" of g(a) in (S”, X). Then h(h~'gXid) is a local extension of g,
defined in a neighbourhood of @ in R". ]

3.7. One-sided versions. Let X be a TOP (n—1)-sphere in S” and let G be a
component of S™\X. Modifying in an obvious way the definitions in 2.1 we define
local C-flatness of X in G and local C-flatness of an embedding g: R"~!- S,
gR"'=X, in G. An easy modification of the preceding proofs then yields the fol-
lowing results, the second of which was essentially proved in [GV] for C=LQC and
in [LuV] for C=LIP.

3.8. Theorem. Let n=5, let XCS" be a TOP (n—1)-sphere, and let G be
a component of S™X. If X is locally C-flat in G, then G is C-homeomorphic
to B". 0O

3.9. Theorem. Let g: R**>R" be an embedding which is locally C-flat in
G, where G is a component of R™\gR"™'. Then g can be extended to a C-homeo-
morphism g*: R% ~G. O

3.10. Unigueness of C-structures. In [LuV, 8.3—8.5] it was proved that the
manifolds R* and S" have an essentially unique LIP structure for n4, and that
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the same is true for I", n=4, 5. (Much more general results have been obtained by
Sullivan [Su].) The essential step in the proof of these results [LuV, 8.3] consisted
of showing that if M is a LIP manifold homeomorphic to R", n=4, then every
compact set 4 M is contained in a LIP ball. The proof was based on a LIP version
of Newman’s engulfing theorem. We remark that this can also be easily proved
for both C=LIP and C=LQC using the encasing lemma 2.3. Indeed we can
again cover A with a TOP n-cube, divide this into small cubes each of which is C-encas-
able in (M, M) and then use 2.3 to show that 4 is C-encasable in (M, M). Thus
we obtain the following result:

3.11. Theorem. Let M be R or S", n#4 or 1", n#4,5. Let M, be a C-mani-
fold homeomorphic to M. Then M, is C-homeomorphic to M. [

3.12. Remark on Carleson’s proof. In the proof of 3.3 we made use of Carleson’s
extension theorem [Ca]: Every QC homeomorphism f: R®*—~R® can be extended to
a QC homeomorphism F: R*—R® This will also be needed in 4.1. The ingenious
proof in [Ca] is rather sketchy and difficult to follow because of a number of misprints.
The most serious misprint is on p. 43, where the extension map F is defined in
R3x[2~m0+D 2=m] by the formula

(3.13)
FGx; ) = (x5 270995 0yaa(fusr )+ 270400, (£ — @y 2 (fy 42 (D)),

where y'=y—2""C*D_ First, it is clear that the isotopy f,(x, t) should be from
f,+1 to f, and not vice versa. Secondly, the constant 20+ should be replaced by
(2—mv —2~mOH+D)=1_pmo+Dym 1) However, even with these corrections, the
method of estimating DF from below is incorrect. In fact, we have not even been
able to show that F is injective.

We suggest that (3.13) be replaced by the formula

(314 F(x; y) = (£,(x; 05 10,(fu (x5 )+ =Deysa(f, (x5 1)),

where 1=q(y—2""0V) g=2m0+D/2m 1), and f,(x; ¢) is the isotopy from f,,,
to f,. Indeed, we can now find an explicit expression for G=F~1 as follows: Let
u— A(u; t) be the inverse map of x—f, (x; t). Then G (u; v)=(4(u; t); e )]
where t=1(u; v)=(v—0y+1(®))/(¢y (@) — 0,+1(®)). Then direct computations yield the
estimate

DG (u; v)| = 27™Clo,(w).

On the other hand, as in [Ca] we obtain
IDF(x; y)| = 2™ Co,(f,(x; 1))-

These inequalities imply that F is quasiconformal.
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4. Flattening cells

In this section we apply the methods of the previous sections to C-flatten cells
and embeddings onto cells in S”. When we combine C-encasings, we must be sure
that the boundary is preserved. For this reason we require an additional dimensional
restriction on the cell.

4.1. Lemma. Let E,=I* E,=I*{2e¢,, E=E,UE,, and let XCR" be the
union of two k-cells D,, D, such that (X; D,, D,) is homeomorphic to (E; E,, E,).

() If Dy and D, are C-encasable in (R", X), then (R", X) is C-homeomorphic
to (R", B).

(i) If g: E~R" is an embedding so that g(E; E,, E;))=(X; Dy, D,) and D,
and D, are (C, g)-encasable, then g extends to a self C-homeomorphism of R".

Proof. (i) We present two proofs, the first valid for n4 and all k and the
second valid for k=5 and all n if C=LIP and for n=4 if C=LQC.

Assume, then, that n>4, and let /;: B"~R" be C-encasings of D; in (R", X).
Since X is locally flat in R", by [Ru, p. 106] there is a homeomorphism
S+ (R", E)~(R", X). Using an auxiliary homeomorphism of R¥, we may choose f
so that fE;=D;. Replacing R" by X" for the moment, since n#4, we may by 1.2
approximate f by PL homeomorphisms and hence find a PL n-cell 4 and a PL
(n—1)-cell B such that XcI™ 4, cl (Z"™\A)Ch,B"UhyB", BCAANh,B" and
cl(0AN\B)c yB". Applying Lemma 2.2 with U=A4nh,B" and C=Anh B" we
find a PL homeomorphism /: £"—~X" such that hZ™\A=id and hhyB"\h, B"=3".
Replacing 2" by R" and 4, by hh, allows us to assume that /, B"h, B"=R". The
proof in this case may now be completed as in 3.1 using the relative Schoenflies
theorem 2.4 with Y=R" .

Next assume that k=5 and,if C=LQC,n=4. Let h;: B"~R" be C-encasings
of D; in (R", X). Since 471D, is a compact set in B, there is a C-homeomorphism
J: B'>B" such that fB*=B* fB* cB"\A;'D,, and f=id near 9B". Then
hy fhi': hyB"—~h,B" can be extended by the identity to a C-homeomorphism
g: R">R". Since gXcD,, hj'gX=0 is a k-cell in B*_. Moreover, Q is locally
C-flat in B*. Since k—1524, it follows from Theorem 3.3 that (B, Q) is C-homeo-
morphic to (B*, B*(1/2)). Thus we can find neighbourhoods U and ¥ of Q and
B(1/2) in B" and a C-homeomorphism ¢: (U, Q)—~(V, B(1/2)). For C=LQC
and n=2 this requires the extension theorems of [Ah] and [Ca], so n=4. Now
g o™l V—~R" is a C-embedding which maps B*(1/2) onto X. By the Schoen-
flies theorem, g/, ~*|B*(1/2) extends to a C-homeomorphism (R*, B*(1/2))~
(R", X).

(i) Let %;: U;~R" be (C, g)-encasings of D;. Choose a C-homeomorphism
u: R"~R" so that uR*=R*, uE=E, and u=id near R™U,. Define the C-homeo-
morphism v: R"~R" to be huhi' on h U, and id elsewhere. Let U=y~1 U,
and define f: U~R" by f=v"'hu. Then f|E=g, and by the Schoenflies theorem
there is a self C-homeomorphism of R" which agrees with f near E. O
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4.2. Theorem. Suppose that XCR" is a locally C-flat TOP k-cell and that
k#4,5. Then (R", X) is C-homeomorphic to (R", B¥).

Proof. Choose a homeomorphism f: I*—~X. Applying the encasing lemma 2.3
(ii) as in the proof of 3.3, we see that every proper compact subset of 0X is C-encas-
able in (R", X). Hence we may choose r=0 such that if P=I*"'x[1—r,1] and
Qo=cl (I*"*X[—1, 1=rD\J*"*(1—r)), thenfP and fQ, are C-encasable in (R", X).
Subdivide the cube I*"'(1—r) into cubes @i, ..., O, so that for each j, fQ; is
C-encasable, F;=Q,u...uQ; is a PL k-cell, and Q;+;nF; isa PL (k—1)-cell.
Using inductively Lemma 2.3 (i), we see that fF, is C-encasable in (R", X). The
theorem now follows from Lemma 4.1 (i). O

4.3. Theorem. Let g: I*~R" be a locally C-flat embedding. Then g extends
to a C-homeomorphism of R".

Proof. The proof is similar to the proof of 4.2, except that we use (iii) and
(iv) of the encasing lemma 2.3 instead of (i) and (ii), and we use (ii) of Lemma 4.1
instead of (i). 0O

4.4. Theorem. Let X be a locally LIP flat LIP k-cell in R". Then (R", X) is
lipeomorphic to (R", I*).

Proof. This follows from 4.3 as 3.6 follows from 3.4. At boundary points, an
additional extension by reflection is needed. O
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