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INJECTIVITY THEOREMS II\ PLANE AND SPACE

O. MARTIO and J. SARVAS

1. Introduction

Let (X,d)be a metric space, "B a set and "y'{ some family of maps T: A-X,
AcB,

1.1. Proposition. Suppose that f: X*B has the following -y'l-approxima-
tion property: if xr, xr(X, x1*xz, then there is GcX and T: fGtX, T(til,
such that x1, x2(G and

(1.2) d(rof61, x) = d(xr, xr)12

for all x€G. Then f is injectiue.

To prove this suppose that f(xr):f(x2), x1*x2. Then

d(xr, xr) = d(T of (xr), xr)+ d(r "f @r), x)
= d(xr, xr)12+d(xr, xr)12: d(x1, xr)

is a contradiction.
In this paper we choose X to be a domain D in R', n>2, with a certain uni-

formity property and 'M a subclass in the set GM(n) of all Möbius transformations
of R'. It turns out that if f: D * R" satisfies one of the following conditions (a)-(d),
then f has the .lf-approximation property with respect to an appropriate family
.,ilcGM(n) and thus, by 1.1,/is injective:

(a) locally bi-Lipschitzian with a small Lipschitz constant,
(b) quasiregular and z>3 with a maximal dilatation near l,
G) analytic with a sufficiently small Schwarzian norm in DcR2,
(d) an analytic function with the expression lf"Q)lf'@)l small in DcRz.

The case (a) generalizes a theorem of F. John [.I], who was the first to prove
a non-trivial approximation result for bi-Lipschitz mappings in terms of rigid motions.
John's method was generalizedby Ju. Re§etnjak [R] to cover GM(n) and the approxi-
mation of type (1.2). Especially (b) is essentially based on his work.

The class (c) gives a generalization of Ahlfors' iqjectivity result [A], and (b)
can be regarded as a counterpart of his theorem in lln, n=3. The class (d) has

been considered by Duren, Shapiro and Shields [DSS] and by Becker [B]. In the
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complex plane it is possible to use more direct methods than Re§etr{ak's result
to obtain -y'{-approximation results and hence injectivity theorems, e.g., we give

a new proof to Nehari's injectivity theorem [N] without the best possible constant.
The paper is organized as follows: Chapter 2 is devoted to the study of so-called

uniform domains, especially uniform domains in R2 are treated in detail. ln Chap-
ter 3 the classes (a) and (b) are considered and Chapter 4 deals with (c) and (d).

Notation will be standard and generally as in [V].

2. Uniform domains

Two basic concepts, a John domain and a uniform domain are introduced.
We prove that uniform domains are invariant under quasiconformal (qc) mappings
of ,R'. The last section is devoted to the study of uniform domains in R2. It is shown
that in R2 each boundary component of a uniform domain is either a qc circle or
a point and especially a Jordan domain is uniform if and only if its boundary is a
qc circle.

2.1. John domains. Let O-a=fr=-. A domain DcR" is called an (a,B)-
John domain, denoted by D(J(u, B), if there is xs€D such that every x(D has

a rectifiable path 7: l0,dl*p with arc length as parameter such that 7(0):;,
Y (d): xo and

(2.2)

(2.3)

The point xo is called a center of D. A domain D is called a John domainif D€J(a, B)
for some a, §. The class of all John domains in .R' is denoted by "/.

2.4. Remarks. (a) John domains were introduced by F. John in his study [{
of approximation of bi-Lipschitz mappings.
(b) If D(J(a,B), then diam(D)<Z|.
(c) ztl convex domain D is a John domain is and only if it is bounded; in fact,
D(J(a,f) if and only if ttrere is xo€D with B'(xo,a)cDcB"(xr,p).

d=13,

dist (y(t), At)i) = #, for all t€[0, d].

2.5. A characterization of John domains. Since the
under a qc mapping need not be rectifiable, it is useful
deflnition which does not employ reotifiability.

Let «B denote the class of all bounded domains
property: there are 0<ä= 1 and xoQD such that for
1': [0, i j *P with ? (C) : x, y (1) : xo aiid

image of a rectifiable path
to introduce a Yariant of the

D in R" with the following
every xe D there is a path

(2.6) y[0, t)c r(tQ),]air, (y(t),åD))

for 0=r=1. The subclass of those domains inGrsatisfyineQ.6) for a given ä is
denoted by 6r(ö).
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2.7. Lemma. J(a,P)c6r(ul$ and if D<«B@) for some ä((0, 11, then
DQJ(ll<pz, El), where /:diam (D) and E>l depends only on n and ö. Thus Gr:J.

Proof. Snppose that D(J(a, fi). BV 2.4 (b), D is bounded. Let xo be a center
of D. Fix x€D. Let y: [0, d]*11 be a path as in the definition of a John domain.
Define Ir: [0, l]*D by yr(t):y(dt). For 0<s<l=1 we have

ly, (r) - y, (s) I -- d (t * s) = dt = L aist (y @ t), 0D) = 
L aist (y r1t), 0D).

Consequently,for ö:alfi the path y, satisfies (2.6) andtfuis D(Gu(fi.
To prove G"cJ is technically more difficult. Suppose that D(Gp(ä), ä€(0, 11.

Fix x€D. Let y: [0, 1]*2» beapathasin2.5with y(01:2s*y(l):yo. Firstwe
construct a rectifiable path yr: l0,dl-21 with arc length as parameter such that
yr(0):x, yr(d):xo and

dist (yr(t), å,D) > 2-?n $n 7 for te [A, d].(2.8)

To simplify the construction we perform a change of parameter in y. The mapping

f: l0,ll*fO, al,

f(r): (1+,XJ*å Iy(')-xl), r€[0, l],

a:2maxs="=, ly(r)-rl, defines a homeomorphism since we can clearly assume
y(s)+x for s((0,äo) for some äo>0. Let o:T o/-1: [0, al*D. Now by (2.5)

for every ,€[0, l]
2.. l
,dist (y(t),0o) =epå ly(s)-xl =_;f(t).

Hence the path o satisfies the inequalities

(2.9)

(2.10)

io(t)-xl = t,
tt = dist (o(t), AD), I - ö14

for all t€l},al.
Define a sequence to>tr>-...>0 inductively as follows. Put to-a, and if

ti([O, al is defined, let

ti+r : inf {r€ [0, rJ: lo(r)- o(t)l = et,l2].

Set xr:6(7r), i:0, l, ... . Observe that )r;a1 l1l&/ coincide with x, whence )ci-1.1,:x
for all k:1,2,.... By (2.10) we have B"(xi,et)cD for all i.

Next we show that there is an integer x:x(n, e) such that

Q.ll) ,,*o=lt, for k>x and i:0, 1,....

Fix an integer i. We use a packing argument. Suppose that

1

zt,' j:tj=
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Then xj*x, j:i*1, ..., i+k, and xrQB"(xi, et1l2) whenever i=j<.l=i+k.
Therefore, the balls Bi:8"(xj,et1l4), i=j=ifk, arc disjoint, and by (2.9)

Bt c Bo(x,2t,) for i : i*1, ... , i+k.

Thus if m rcfers to the Lebesgue measure in R' and Q,:m(B"),

Q,(zti), : m(8,(x.2t,)) = .t§ -*@,) > ke,(et;18),.

This yields k<)anu-n. We now obtain i.:rÅ'orchoosing the integer z in such a
way that

0=t<-24"e-'=1.
Furthermore, (2.11) implies that /,\0 and x,*.r as i*-.

Define a path !z: l0,dl*D as the broken line joining x, to xi11, i:0, 1,...,
with arc length as parameter. We show that d-.*, i.e., yz is rectifiable, and that
yr(t):yr(d-t), t€10, dl, is the required path in (2.8).

Fix ,€[0, d) and set y:yr(t). Then y lies on the line segment joining x,o

and x;,4r for some io.Let /y<- denote the length of yrllt, d). We have by (2.11)

,,= 2@ia-xil: § etil2:+'å(:ä--',,.*,) 
= +'åx2-kt,o: extio.

j:io i:ro z k:o \ j=

On the other hand, dist (y, lD)=et,ol2 by (2.10) since x,o*r( B'(x,o, er,o/2). Because
lio>0, we get

---1;- -: 
"rtu 

: 
2" - ZQI';+D = " ö'

Thus /r=627t;o1e%to<*, and since 2-5nen-2-7nä", 7, is the required path.
To complete the proof we obserye that since D€Ga, the domain D is bounded

and, consequently, in the above construction

o :2 
E?älY(s)-xl -- 2 diam (D).

Thus if we let /:diam (D),

d= ä
i exto : exa = i(l*24"e-n)a = 26nö-n l.

On the other hand, the property D(GB@) implies that B:B"(xo,öll2)cD.
Let now x€D be arbitrary. We may assume that x§8. Let yr:lo,dl*p

be the path constructed above. By (2.8)

dist (7, (l), 0D) = 2-7n 6t t > 2-7n 6n dt I d > 2-8n ön +r h f d'

thusfor q-2-8nön+11,fr:26'ö-"/ thedomainDis inJ(a,f). If we set E-2snö-n
the proof is complete.
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2.12. Unifurm domains. Let O<qafr<-. d domain DcR" is called (4, B)-
uniform if for each pair x, y of points in D, x*y, there is G(J(ulx-yl, frlr-yl)
such that x,y€GcD. The collection of all (a,B)-uniform domains is denoted by
U(a, fi).A domain DcN is called uniform, and written as D€U, if D(U(a, fl)
for some a, B.

2.13. Examples and remarks. (a) It is not difficult to see that B" (x, r)€U(Uz,l/rl2)
and Ån€U(ll2,e+ll2) for every e>'0.
(b) A John domain need not be uniform, e.g.,

D : B\{x( R': xn:0, xr * 0}

is a John domain but not uniform.
(c) Properties of convex sets imply: If D(J is convex, then D(U.

2.14. Quasiconformal inuariance of uniform domain. Let DcN be a domain
and f: D*N a bi-Lipschitzmapping, i.e., for some Z>l

lx - yll L = lf @) - IU)l = Llx- yl

for all x,y(D. It is easy to see that if D€J(a,B), then fD(J(L-sa,ZB). This
implies that if D is uniform, fD is also uniform. However, simple examples show

that if f: D*R" is qc and D uniform, thenfD need not be uniform. For instance,

take D:8" and map B' quasiconformally onto a domain D' which has an out-
ward directed spire (see [GV, p. 56D and it is easy to see that D'is not uniform.
For n:2 the Koebe mapping .f(z):zl0-z)z of -82 gives a well-known example.

The next theorem shows that the situation is different if we consider qc mappings
of the whole .Ro.

2. I 5. Th e o r em. Suppo se that f: P - N, fl>-2, is a K-qc mapping and D ( U (a, fr).
Then fD€U(ez,lle), where e€(0,1f depends only on n, K, a, and B.

For the proof we need a fairly standard distorlion argument.

2.16. Lemma. Let f be as aboue and

l(x, f , r) - inf lf @-f (x)1, L(x, f , r)
lv-xl:r

_ sup lf@-f(x)|.
ly-xl:r

If 0< rt€rz1*, then

(2.17) L(x, f , ,)lt(x, f , rt) € c(rrf rr)KL/(n-L> ,

where c<@ depends only on n and K.

Proof. First, reasoning as in [V, p. 79] we get

(2.18) L(x,f,r)ll(x,f,r)=s':c'(n,K).
Now, let 0< ft=_ r21.a. By (2.18)

(2.19) L(x,f,rr)ll(x,f,rJ s c'21(x,f,rr)lL(x,f,rr),

387
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and we may assume l(x,f, rr)>L(x,f, rr). Let l- be the family of all paths joining

S'-'(x, rr) and S'-'(r, rr) in B"(x,r) and M(f) itsn-modulus. Then

or, -, (log (l (x, f , r r) I L (x, f ,, )))' -' = M (f r) =- | a O : ff {ros (r rl, ))' -',

where co,-1is the (n -l)-measure of §'-1. This combined with (2.19) gives (2.17).

2.20. Proof of Theorem 2.15. Suppose that D€U(q.,8) and let x', y' €fD, x' *y'.
Put x:f-L(x') and y:f-'(y'). Now there is G€J(al*-yl frlx-yD such that
x,yQGcD. We show that fG€J(e'l*'-y'l,l*'-y' l/e), where e((0, 1] depends

only on n, K, a, and B.
With ö:al§ Lemma 2.7 gtrves G<GB(6). We prove that fG(Gs(c6r'), where

1St-ytt(n-r) and c((0, 1] depends only on n and K.
Let xo, ä and 7 brl as in (2.6) when D is replaced by G. It is sufficient to show that

(2.21) (f oy) [0, s] c B'(f oy (s), * , dist (f oy (s), 0G))

for every s€[0, 1] with ä':cär'. Fix s€[0, 1]. Set d:dist (y(s), åG). Let lr:
l(tG),f,d),4:f1r1s),f,dlö); for notation see Leruna2.16. Because B"(y(s),d)cG
and 7[0, s]c,B'(t(s), dlö)we get B"(f oy(s),lr)cf G,and thus /r=dist(/oy (s),0f G),

and
("foy)[0, s] c B'(/ol(s), ZJ.

To obtain (2.21) we only need to show Lz=Llö'. But this follows from Lemma 2.16.

Thu;s fG(6r(ö').
In view of the second claim in Lemma 2.7 it suffices to find an upper bound for

diam(fG) in terms of lx'-y'1. Since G(J(al*-yl,§lx-yD, diamG=2lx-ylf
bV Q.0 @). On the other hand, by Lemrru2.l6,

diam(/G) = 2L(x, f,2lx-yiil < 2cl(x, f,lx-vD = 2clx'-v'1,

where c depends on n, K and P. This completes the proof.

2.22. kemark. The proof for Theorem 2. 15 shows that if f: R" * R" is qc and

DcRn a John domain, then also fD is a John domain.

2.23. Uniform domains in R2. A Jordan curve C in R2 is called a qc circle if
there is a qc mapping f: Rz*Rz with /SI:C. Here we show, among other things,

that a Jordan domain in R2 is uniform if and only if its boundary is a qc circle.

This gives a new characterization of qc circles.

2.24. Theorem. Suppose that DcRz is a uniform domain. Then each boundary

component of D in Rz is either a point or q. qc circle in R2.

To prove Theorem 2.24 we first introduce a simple metric condition which is
sufficient to make a Jordan curve a qc circle.

A closed set ,4cR2 is said to be of q-bounded distortion, 0=Q41, if for all
x€AaRz and r>0 the disc,B2(x, qr) meets only the x-component of AnBz(x,r).
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2.25. Lemma. If a Jordan curue Cc.Rz is of q-bounded distortion, then it is a
qc circle.

Proof. Suppose first that -€C. Let zr,zr,zr€Rz be three points on C in
this order. lf qlzr-zrl>lrr-rrl, then clearly C cannot have q-bounded distortion.
Consequently,

lzr- z)l14- zrl = llq.

This is Atrlfors' condition in [A, Theorem 1], which shows that c is a qc circle.
Next, suppose that CcRz. We may assume O=q=112. Again, by Ahlfors'

criterion lA, p. 2951, C is a qc circle if

389

(2.26)

for arbitrary four points z;€c such that zrandzo belong to different components
of C\{zr, zr}. We show that (2.26) holds for c:q-n.

Let zi, i:1,2,3,4, be four points on C as above. Set a:lzr- z)llzr-z),
Suppose that a>l/42. Now lzr-zol=lrr-rrllq since otherwise C cannot be of
q-bounded distortion. But this gives

(2.27) lrr- rol = lzr- zrllq : lzr- zrll(aq) = qlrr- rÅ.

on the other hand, if we set t:lzr-zrlflzr-zol the inequality e.27) yields

lr' lrr- zalt lrn- ,rl qlzt- zzi + I 
zt- zzl

lrr- ,rl lrr- ,nl < hmm=L

l- I

lLz- Ltl
_ tq+L.

2

= ; irr.- ,ri

lrr- , nl

This gives t=ll!-il=z. Together with

lrr- znl = lrr- ztlt 14- zEl, = (,.+) v,-,,1

the inequality t=2 implies Q.26) with c:4lq=llqa.
If P:lzr-zolllzr-znl>1f q2, then the same reasoning gives c=!lqn in Q.26).

Finally, if a, B<lf q2, then (2.26) holds with c: llqa. This completes the proof.

2.28. Remark. Lemma 2.25 arÅ the proof for Theorem 2.24 together with
corollary 2.32 below show that a Jordan curve in R2 is a qc circle if and only if it
is of 4-bounded distortion for some q((0, 11.

2.29, Lemma. If DcRz is a uniform domain, then each boundary component
of D in Rz is either a point or a Jordan curue.

Proof. It is well-known (see e.g. [Ne, Theorem 16.3, p. 168]) that it suffices
to show that D is locally connected at each bourrdary point x€R2. This means
that each neighborhood U of x contains a neighborhood V of x such that every
pair of points xr, x, in V a D can be joined in (I n D. Let D(U(a, B). We may
assume f=1.
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Suppose first that x€\D n P.2.

such a way that B'(*, r)cU. Set

D€U(a, p), there is G€J(alrr- xrl,
2§l*r-xzl. Hence for every y€G

ly-xl=ly-xrl+lxr-rl - 2Blxr-x2l+=J- - ?!,2', a r=', :," 4fr+t - 4p+l ' 4B+l
and so GcU aD. Thus the points x1, x2 cl.rt be joined in U nD.

Suppose that x:-€\D and let t/ be a neighborhood of -' Fix r>0'in
such a way that R'\.Bz1r)c t/. Set ,z:R'z\8'z(4rBla). Let x1, x2(.V a D. Pick G

as above. Then x, and x2can bejoined in G by the composed path yi'y, where 7;

isthepathjoining xi, i:1,2, to thecenterof G. If );meets B2(r)at apoint y;:
yi(t), i:1 or 2, then

dist (y,, A» = i t, - lil = #(lr,l- ly,D = fr t+rOla-r)

Let U be a neighborhood of x. Pick r>0 in
V- B'(*, rl@P+ 1)). Fix xt, xz(V n D. Since

frlxr-xrl) with xr, xz€GcD. Now diam G=

a

= Vlxt

-- fi {+rsl"- firla) > 3r.

2.30. Remark. It is not difficult to show that for n:2 a uniform domain

is always åJocally connected; see [G, p. 5671. Thus [G, Lemma 5] gives the same

result as Theorem2.24.

2.31. Proof of Theorem 2.24. Suppose that D€U(a, fi) and let CcR2 be a

boundary component of D. Then by Lemma 2.29 it is either a point or a Jordan

curve. Thus if C is a Jordan curve it suffices to show, in view of Lemma 2.25, that
C is of 4-bounded distortion for some q€(0, 1].

Let q:6ii(ul(a+fr),UO)-2fl)). Suppose that C is not of 4-bounded distor-

tion. Then there is x€C and r=0 such tbat B2(x,4/) meets a component -K,

of Cn B, B:Bz1x,r), which is not the.x-component .K, of C r'tB. Let Ui be the

component of BnD which contains K; as a part of a boundary, i:1,2. Thete

are two possibilities: (a) Ur:Ur. Now it is easy to see that there are points

xr, xr€D\.B'(x, r) which can be joined in D only through Bz(x, qr). (b) Ur*Ur.
Pick xi(82(x, qr) a (Ii, i:l,2.If x, and x, are joined by a path y in D, then clearly

? meets lB2(x,r).
In both cases (a) and (b) there is a domain G(J(ul*r-xrl,plxt-xrl) with

x1,x2QGcD. Let yi: lo,d)*6 be the paths joining x, to the center xo of G. In
the case (a) one of the paths, såy ?r, meets.B2(x, qr). Let 7r(s)(82(x,4r). Then

s>r(l-q) and since Blxl-x2l>-d, we have

i,rr-il: l#,l-q) =A*s < dist (y,(s),oD) < qr,

whichyields a(l-filB=.q. This is a contradiction since q=ul@+fr). In the case

(b), dFr(I*q), i:l or 2. Thus

,(l -q) = d, = §l*r- xrl -. 2prq,

which gives l-q<2Bq contradicting q=ll1*2fr). The proof is complete.
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2.32. Remarks. (a) The proof of rheorem 2.24 shows that every boundary
oomponent of a domain D(u(a, B) in Rz is of g-bounded distortion, where q depends
only on uand B.
(b) Theorem 2.24 shoald be compared with a theorem of Gehring [G, Theorem 6]:
Let DcRz be a domain with the following property. There is ä>0 such that
supz€D I*(z)l dist (2,0D)2-ö implies thatf is injective in D whenever f is analytic
in D. Here $ refers to the schwarzian derivative of f in D. Then every boundary
component of D is either a point or a K-qc circle, Kdepending only on ä. This result
with rheorem4.24 of chapter 4 gives an alternative proof for Theorem2.24.

Theorems 2.15 and 2.24 yield,

2.33. Corollary. Let Dc.Rz be a Jordan domain in R2. Then D is uniform if
and only if 0D is a qc circle.

3. Approximation anil injectivity theorems in Rn

An "inverse mapping" approximation theorem due to Ju. Resetnjak is presented.
Proposition L l is then applied to obtain injectivity theorems for locally bi-Lipschitz
mappings in N, n=2, and for quasiregular mappings in R", n=3.

3.1. Approximation theorem of Resetnjak. Let GM(n) be the set of all Möbius
transformations 7: R'*Rn and let .fi be asubset of GM(n). suppose that f: D *Ro,
Dc.R" a domain, is a continuous mapping with the following property: there are
numbers ,1>0 and O<.q€l suchthatfor each B,(y,r)cD there exis§ Le.,/./ with
(3.2) lLo f (x) - xl = 1r for x€ B" (y , qr).

We then say that/has an "ff(q,l)-approximation property.
The theorem of Re§etnjak [R, Basic Lemma] can now be rephrased as ibllows.

3.3. Theorem. Suppose that D€J(a, fr) and O<q=1. There is 1o=0 tlepend-
ing only on ulB and q such that if Q<.),=)o and if f: D*Ro has the fi@,l)-
approximation property, then there exists T€"dl with

(3.4) lrof (x)-xl 
= popl

for all x€D and 1to depends only on alp and q.

3.5. Remark. The proof of [R, Basic Lemma] can be used to show

^,:*(i)', ^:#(*)'.
3.6. Locally bi-Lipschitzian mappings. A mapping f: G-N, G a domain in

R', n>-2, is alocally L-bi-Lipschitz mapping if for every xsCG and L,>L there
is .B'(xo, r)cG such that

tlL' = lf @-f @lllx-yl = L,
for all x,y€B'(xo,r), x*y.
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' F. John [I has proved:

3.7. Theorem. Let f: B"(xo,r)*N be a locally L-bLLipschilz mapping l<
L<2. Then there exist a rigid motion T: Rn*R" such that

lTo f (x)-xl < c,r(L-l) for lx-xrl = qr,

where q:(l+(L-1\tzlQ-L))-L and cn depends only on n>2.

Theorem 3.3 can now be used to prove global approximation results in John

domains. In fact, a theorem of this type was proved by F. John; see [J, Theorem II].
However, he stated the approximation in the form lf(x)-f@)l<,u.1, which makes

no difference to tJre form of Theorem 3.7 if T is a rigid motion.
In the next theorem we combine Theorems 3.3,3.7 and Proposition 1.1.

3.8. Theorem. Let GcP, n>2, be an (u, B)'uniform domain and f: G-R"
a locally L-bi-Lipschitz mapping. There is c>0 depending only on n, a and B such that

f is injectiue in G wheneuer l=L=l+c.
Proof. Let .d{ be the set of all rigid motions 7: Äo*rR", fl=2. Suppose that

G(U(a,B). Write q:(l+l/r)-'. Let ,to>0 and po>Q be the constants of Theo-

rem 3.3 depending onn, uf B and 4 defined above. Let c:min (112, (4pofrc,1-r, 7olc,),

where c, is the constant of Theorem3.7.
Suppose that f: G*R" is locally L-bi-Lipschitzian with l=L=l*c. We

show that / satisfies the condition (1.2). Proposition (l.i) then implies that / is

iqjective.

First we observe that/satisfies the .fr(q,,1)-approximation property (3.2) with
),:cnc. This follows from Theorem 3.'7 since

lTo f(x)- xl = c,(L- 1)r = cncr : )"r

for lx-xol<4r whenever B"(*o, r)cG.
Suppose now that xr, x2(G, x1#x2. Since G is (or, B)-uniform, there is

DQJ(ul*r-*rl,filxr-xrD with xr, xrQDcG. Themapping flD hasthe "ll(q,1)-
approximation property for A<).o; hence, by Theorem 3.3, there exists TQ.il with

lf of (x)-xl = Fol§l*r- *rl : t-to§tnr lrr-rri
This is (1.2) and the theorem follows.

- xzl.

3.9. Remark. F. John proved an injectivity theorem of type 3.8 for bounded

convex domains which are uniform by 2.13 (o). However, his method was different
from ours.

3.10. Quasiregular mappings in N, n>3. A mapping f: G*N, Gc.R"
domain, n>2, is called /(-quasiregular if/is ACL'and

1,
zl*,

1<_
4

(3.1 1) lf '@)l' = KJ(x, f)
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for a.e. x in G. The smallest K for which (3.11) is true is denoted bv K(f).For the
theory of quasiregular mappings in -R,, n=3, we refer to [MRV l-2].

As a counterpart of Theorem 3.7 we prove (see also [Ä, Lemma 3])

3.12. Theorem. Let f: B"(xo,r)*Rn,n>3, be anon-constant K-quasiregular
mapping. There is afunction ).,: fl, -)*[0, *f and q,€(0, l) both depending only
on n such that

(3.13) 2"(l)\0 as t * t, and

(3.14) there is T(GM(n), depending onf, such that

lTo f(x)-xl < rÄ,(K)
for lx-xol<q,r.

Proof. By IMRV 2, Theorems 2.3 and 4.6] there are Ko>l and q€(0, l), both
depending only on n, such that any non-constant ro -quasiregular map ping f: B, * R,
is injective in ,B'(q). Let q:qo-p12. For such/define

and let

iL,,(K) -

We claim that

(3.15)

)"(f) - zinf {,:Lr, lrof @)-xl : r€GM(")}

,1,* 2"(K) - 0.

{*, if K>Ko,
I trp {i(f): K(f) = K), if 1 = K< Ko.

if Kr=K, and by Liouville's theorem in Ä,, n>3, A"(l) - 0.

suppose that the limit in (3.15) is ,l.o>0. Then we can choose a sequence
fi: B'Qq)*Ro, i:1,2, .,., of non-constant K,-qc mappings such that

(3.16) r,\l and )(f,) = ).s12> 0 for all i.

Choose Möbius transformations in such a way that T1ofi(y):y for /€ {0, qel2, qe}
and for all i where e€,sn-1 is fixed. By a normal family argument (see [v, corollary
19.5 and Theorem 37.21) we may assume that the sequence Trofi converges uni-
formly in B'(q) to a Möbius transformation Z. Then T(y):y for y( {0, qel2, qe}
and hence 7 is a rotation keeping the axis {te: t(R} fixed. This implies

=,slrp l7"-,oT,"f{x)-xl - sup lf (f-roT,ofi@)-r)l
lxl=q lxl=q'

lxl=q

contradicting (3.16). This proves (3.15).

Now,1, defined above satisfles (3.13). To prove (3.14) let f: B"(xs,/)*.1R,
be as in the theorem. Put g(x):/(xo*rx) for x€.8'. Then by the definition of

!t'u,)
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,l,(rQ there is TrCGM(n) such that lTrog(x)-xl=)""(K) for lxl€4. Now for

lxl=q and T(y):rTr(y)+xo we get

(llr)lTof (xn*rx)-(xot rx)l: lTrof (xo*rx) f (1/r)xo-(llr)(xo*rx)l
: lf og(x)-xl= A"(K).

This implies the inequality in (3.14).

As in Theorem3.8 letting "r/{:GM(n) Theorems 3.3, 3.12 and Proposition
1.1 yield

3.17. Theorem. Let G be an (u, B)-unifurm domain in N, n>3. There is a
constant c>O depending only on n, u and ff such that f is injectirse in G wheneoer

f: G*N is K-quasiregular and non-constant with l<K<t+c.

3.18. Remarks. (a) In [S] Theorem 3.17 was proved, by a different method,

in the case G:Bn(xo,r), n>3.
(b) For R2 Nehari [N] proved: if f:, 82*Rz is analytic and sup,,,=. lSrk)(t -lrlTl=
2,thenf is injective. L. Ahlfors in [A] generalized this as follows: if f: GtRz is

analytic and 0G is a qc circle, then there is ö=0 such that/is injective in D when-

ever llsrll:sup,e c l*(z)ldist (2,0D)2=6. Now the result in [S] and Theorem 3.17

can be regarded as extension of the theorems of Nehari and Ahlfors, respectively,

to Rn, z=3, since the Schwarzian norm can be replaced in any domain GcR",
n>3, by logK(f) for a non-constant quasiregular mapping f: G*Rn. Observe

that log K(f) ad ll$ll enjoV the same fundamental property: they vanish if and

only if f:TlG for some TeGM(n).

4. Injectivity theorems in plane

4.1. In this chapter we apply Proposition l.l to plane analytic mappings to
get injectivity theorems similar to Theorem 3.17. Instead of the dilatation K(f)
we use f"lf' andthe Schwarzianderivative Sr:(7"17')'-Ol2)(f"lf')' ut distor-
tion measures. For them the existence of an approximation of type (1.2) can be

proved directly without Re§etnjak's Theorem 3.3, and this leads to injectivity results
quantitatively better than the application of 3.3.

4.2. Let f: D*C be analytic in an open set DcC, zo(D and T an analytic
function in a. ncighborhood of f(zo). Consider the following series expansion:

(4.3) T o f(z)- z : aoi- atQ - zo) * az(z - zo)'+ ...

If the first coefficients ao, a!, ..., ap yanish, we may consider 7 a local approxima-
tive inverse mapping of f at zo. The approximation is the better the larger k is.

Especially, we may look for the best possible approximation 7 in a given function
class ..,/{. Three classes are of special interest here: .//r: {TCGMQ): 7 is translation},
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..d/L:{T€GM(2): 7is affine} and .d/r:614(2). Itis easy to see that the best approxi-
mation T€.,/4o exists and is uniquely determined by the condition ao:O ir (4.3),

and for this 7 we have ar:f'(zo)- 1. The following lemma shows that also in the
classes ilo, k:1,2, the best approximation exists and it is uniquely determined by
the conditions d;:01 O<i=k. Here f"(z)lf'(zo) and §,(zJ aPpear as (k*l)!,aea,
k:1,2, respectively.

4.4. Lemma. Let f: D*C be analytic, zo€D and f'(z)*O.
(i) There is a unique T€.d, such that T'of(zo):zo and (Tof)'(z):l. For

this T we haue (Tof)"(zr):f"(z)lf'@).
(ii) There is a unique T€'(/2 such that Tof(zo):zo, (Tof)'(z):l and

(Tof)"(zo):0. For this T we haoe (Tof)"'(z):St(z).

Proof. The proofs are easy to obtain by the Taylor expansion of f at zo. We
consider only the case (ii). We may suppose that f(z):Q and zo:9. Leta,b, c, dqC,
ad-bclO, and consider the Möbius transformation T(z):(az+b)lkz+d). Because

/(0):0 and (7o/)(0) should vanish, å:0 and d*0. We may suppose d:1.
Substitute the expansion

f (z) : f , (o) , +l f 
, 

{o) ,, ** 1,,, (o) ,, +lrnj

into the expression Tof(z)-z:af(z)(cf(z)+1)-'-r, and observe that it is of the
form arzslaEza*... if and only if a:llf'(O) uni6 s:(ll2)f"(A)lf'(0\2, whrch
coefficients yield

., : *(r& - +(#ffit)l : å ",,0,
The lemma is proved.

4.5. Remark. For the Schwarzian derivative the above lemma gives an alterna-
tive characterization which emphasizes the connection to the approximation of
(a.3) with ai:O,i-0, 1,2. Notethatfromthischaracterization oneeasilyobtains
the basic relations: Sro/:S.r and ,Sr:g for all T€GMQ).

4.6. lf f: D-C is analytic and injective in a domain DcC, then

(4.7)

(4.8)

if" Q)l"f '(r)l dist (2, 0D) = 4 and

isr(r)l dist (2,|D)z = 6

for all z€D, and the bounds are the best possible. For (4.8) see [G, Cor. 1]. To
prove(4.7)let z(D with r:dist (2,0D1=.*. Define g(w):lf(z*rw)-f(z)lllrf'(z)1,
lwl-|, and write g(w):wla2w2+arw8+.... Because g is univalent in -82, we
haye 2>lari:Q12)rlf"(z)lf'k)|, and (4.7) follows. The function zl(l+z)2,lzl<1,
shows that 4 is the best possible in @.7). These relations suggest the use of the left
sides of (4.7) and (4.8) as distortion measures rather than lf"lf'l and lSll in
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the following discussion. The followingTheorems4.g and 4.14 show that in John

domains the local approximation results of Lemma 4.4 can be made global as in
Re§etnjak's Theorem 3.3.

4.9. Theorem. Let DcC be an (a,B)'lohn domain, Qaq=B<.a, f: D*C
analytic, f'lz)+O for all z€D and

(4.r0) l#dist (2, aoll= u - i for att z(D.

Let zo(D be the center of D and T(z):aLr6, for z€C with a:zo-f(z)l.f'(rr)
and b:llf'Qo), i.e. Tof(z)-zo and (Tof)'(z):l. Then

lrof(z)-zl=+(f%P for att z(D.

Proof. Let zQD, z*zs. Let yr: 10, drf *p be a rectifiable path with arc length

as parameter and such that yt(0): zs, yr(d1):2, dr=fi and

dist(7r(r), 0D)= fffar-r» for o = t < dt.

Let kB<u'<.a. It is not difficult to see that we can replace yr by a rectifiable Jordan

arc y: 10,d1*p with arc length as parameter and such that y is (finitely) piecewise

affine, y(0): zs, y(d):2, d=dr, and

(4.11) dist(r(r), 0D) =- tr-, for o < t = d.

Then it is easy to choose a simply connected domain GcD in such a vzay that
ylO, dlcG. Observe that the function

E(u): i ",rJ ffia*)au+,o, u€G,

is a solution of the equatio'rl 
zo

(4.t2) n"@)-#f y'(u) : o, u(G,

with <p(z):zo and E'(zo):|. Because Tof is also a solution of (4.12) with
the same initial values atzo,we have, by uniqueness, Tof(u):E@) for a€G. Set

h(d: i #*d,, u€G.

We obtain

lr o f (z) - zl : 
I f r*p (h" y (4) - 1l y' (t) dtl
oo

= uf 
[.*p ltrov(t)l)- tf dt-

(4.13)
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On the other hand, by (a.10) and (4.11)

lr,(),c»t :l! ##r,G)d,l =ilmil,'
o,

= f ,,4u-s)-,ds :r*[(r1)-],
{a"

where k':kB/a'. Substitute this into (4.13) and get

lrof(z)-zl= #d-d =fr0
Finally let u'-a. and the theorem follows.

4.14. Theorem. Let DcC be an (u, B)-lohn domain, 0=c<f =-, f: D*C
analytic, f'(z)*O for all z€D and

(4.r5) 2ls7@)ldist(a 0D)2= u=(i)' for au z(D.

Let zoQD be the lohn center of D and T the unique Möbius transformation with

To f(26):zn, (To f)'(z):l and (To f)"(z):O. Then

(4.16) lror(z\- zl = . 
k9l,!^).','r\-, -, - 1-k(frld), fr for all z(D.

Proof. Let z(D, zfzo. Let y: l0,dl*p be a rectifiable path with arc length
as parameter such that y(O):zo, ?(d):2, d=p and

{4.17) aist (r(r), 0o) = frro-, for 0 = t = d.

The reasoning in the proof of Theorem 4.9 shows that we may assume y to be a
piecewise affine Jordan arc.

Let 9:767: D*e . Then g is meromorphic and

(4.18) g(zo) : zo, g'(zo): I and g"(zo):0.

Furthermore, Sr(z) : S uk) : G" I s' )' - (l I 2) ( g" I g')2, and so

(4.1g) w'(z): SlQ)+|wQ)'z, w(zo) :0, where w(z): -f#, z(D.

We show that

(4.20) l,(rfrl)l =- o#* for o = t < d,

after which we can proceed as in T'heorem 4.9. To prove (4.20) begin with observing

that E Q) :ft (§ I a)'z (d - t)-1, 0 = t < d, satisfies the differential equation

(4.21) E'U): *1t +!r,OG)', 0 = , = d and EQ): #,
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where z (r ) : (k (B I a), - (t I 2) (k Bz I ur),) (d - t ) -2. Let

a(t1:lr(y(r))l *ffi for o=t<d.

t., 5:{s€(0,d): r(y(t)) boundedfor r([0,s]] and tr:supS. Note that S+0
by (a.18). Because w is meromorphic we only need to prove (4.20) for 16[0, lr) since
then we have tr:d.

Now ar: [0, rr)*R is absolutely continuous on closed subintervals of [0, rr).
We get for almost every r€[0, t ) by (4.19), (a.15) and (a.17)

a'(t) =lw'(y1t))y'(t)l 
: lr'(y(0)l : l"r(rU»* **0At),|

= lsr(y(0)l *i,@, = *u(*)'r-,,-,+)as1, = xe)+l./,@,.

Next, define for r€[0, rr)

,tt(t): #. i[,r,]*],q0,]a, =-#* { a,g)ds: a(t).

Then ry': [0, rrl*11 is continuously differentiable and

(4.22) *'(t):*ttl+laQ)z =x1t)+|r1t1t1'z fc,r o= t< tr

and rlr(O):41§,la,d. Then a standard differential inequality reasoning (see e.g. [BR,
p. 221) yields

lr(y(r))l = a(t) = {/(t) = EU) for t€.10, t).
This proves (4.20).

Let s€(0, d) be arbitrary. Because y is a piecewise linear Jordan arc, we can
choose a simply connected domain GcD in such a way that y[0, s]cG. By (a,20)
w:g"lg' is analytic on y[0, s], and therefore we may assume that g,,f g, is analytic
in the entire G. Now, g is in G the unique solution of the equation

v"-?!':o
with g(zo):zo and g'(zo):1 by (a.lS). This implies, by uniqueness,

g(u) : i "*o( i fi at)au + ,n, u€G.

write 
zo 'o 

u

,ru, : 

"! #& 0,, u(G.
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Then due to (4.20) we get

,: t

lfr (?(,))l :l I,tror)y' (r) drl=- ! n # * * : "rl(*).1, 0 <, = s,

where k':k|1o'. rurttermore, we get, as in Theorem4.9,

(4.23) lg(vG))-vG)l:l/[exp(å17(r))) -t]v'(t)dtl

= ! U*)-'-'J o' : fi to- 4t"' (it- s)r-!-s = fi o-''

Let s*d and, because g:Tof is meromorphic, (4.16) follows from (4.23). The

theorem is proved.

4.24. Theorem. Let f: D*C be analytic in an (a, fi)-unifurm domain DcC,
O<a<B<.*, and f'(z\*O for all z€D. If either

:åB 
)ffidist (2, oD) = # QP+ 1)-"

:åB 
is7(z)ldist (z,DD), < +(#)'Qp+r)-"

(i)

or

(iD

thenf is injectiue in D.

Proof. Observe that if z(GcD, then dist (2,\G)=dist(2,0D). The proof fol-
lows now from Theorems 4.9 and 4.14 and Proposition (1.1).

4.25. Remark. Let D be the unit disk and f: D*C analytic with f'(z)*O
for z(D. By Becker [B] and Nehari [N"f is injective if sup,., lf"k)lf'Q)l(l-lrD=
ll2 or supzeD lS/(z)l(l -lrl)'=112. We can compare this to the above theorem.

By 2.13(a) D€ U(112, l2lZ) anafor these a and B (they are not the best possible)

we get (al DQfi +l)-':0,292... and (llz)(alD'QP+l)-1:0,103... . The above

theorem also extends Ahlfors' theorem [A], because a plane domain whose boundary
is a K-qc circle is (a, B)-uniform with a and B depending only on K; see Theorem 2.15.

Observe that the proof of 4.24 (ii) is different from that of [N]. Especially, we did
not use the well-known fact that if St:2Q, then f:yr1yr, where !i, i:1,2, ate

solutions of y"4Qy:9.

4.26. Theorem4.24 can be improved if it assumed that lf"lf' I and lSrl are

uniformly small in the domain D. This leads us to consider quasiconvex domains.

We say that a domain DcRo, n>2, is o-quasiconuex, oz l, if any x,y€D can

be joined in D by a rectifiable path whose Iength does not exceed olx-yl. Note
that an (a, B)-uniform domain is 2B-quasiconvex.
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4.27. Theorem. Let DcC beao-quasiconuexdomain, diam(D):fl<.*, and
f: D*C analytic with f'(z)*O for all z€D.

(i) If suP,€D 
I f"k)lf'@)l:k<xrf (doz), then -f is injectiue.

satisfies €xl:l +2xr.
(ii) If sup,., I Sr(z)l:k=2x\l(d'ou), then f is injectiue. Here

Here %L:1,256..,

%z:1.165... sat-
isfies 2t<r:1va yr.

Proof. Suppose that f(zr):f(zr) for some 21, z2(D, zr*zr. Let GcD be
a simply connected domain and y: 10, llt6 a rectifiable curve, arc length as para-
meter, such that y(O):rr, y(l):2, and l<or, r:lzr-zrl>0.

To prove (i) let TCGMQ) be affine such that Tof(zr):zr and (Tof)'(zr):l
By reasoning as in Theorem 4.9 we get

y : lzr- z1l : lTof (z)- zr-(zr- zr)l :l i' l"-r( i # n)- larl
I

= { Ieo,-tf dt : irro,-l)-, = ,,rrur,rooor,

where g(x):*-z(ex-l*x), x>0, which implies

* = krp(kod).

Note that E(xr):xl'. By assumption k<xrl(i62), which yields kod<%r6-r<
xr. Therefore, kxlt:lsq7*)>kE(kod)>11@2d) by (a.28). This is a contra-
diction.

To prove (ii) let T<GM(2) such that g(zr):zr, g'(zr):l and g"(zr):O for
g:Tof. Observe that E|):stan(atl2) satisfies E(0):0 and E'Q):k+(tl2)q(t),
for O<ta<n and a:(2k)u2. By reasoning as in Theorem4.l4 we get

, : lz,- zzi : lg4)- r,- (r,- r)l :l i' l*ri #3 d")- \d"l

(4.28)

(4.2e)

z1 z1

iu

= I[.*o (t atan(+)0,)-r)0" : *tan (+)-,:
:o or lr rl, @; = uz oz rB {t (aod),

where a- alz and t @)- x- 3(tan x - x) for x>0. This implies

1

M = a,Zr!(doa).

Note that *(ttr):x;'. By assumption k=2xf,d-zo-,, which implies aod:
(kl2)L/2od=xro-rlr=nr. With (4.29) this yields o-sd-2=a2*(dou)<az{t(tar):
klQx§, which is a contradiction. The proof is complete.
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