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Introduction

As in the previous papers with the same title, the subject matter of the present
paper is the study of the mean value

M(o) - M(F, o,l, k, T, H) (o = t l2),

where F(s) and (.F(s))&/'?are Dirichlet series convergent in o>1. In addition F(s)
is assumed to admit an analytic continuation in o>1f2, T<I<T+H, and there
lfls;1=.*r((log f)100) (the constant 100 is unimportant and can be replaced by
bigger ones if necessary), 10<(log T)tl^=H<_7, l>0, m>1, being integer con-
stants and k a real constant. of course by (r(J»k we mean the analytic continua-
tion, of the series for (r(s»k convergent in o> l, to o>ll2 on all possible lines
parallel to the real axis. Writing

(r1,;yv, : å#, (o = r),

and assuming some fairly general conditions on the sequence {a*l of complex num-
bers we proved in the previous paper I (see [l]) that

M(rl2) > H)-s'v,t, (C;,, > 0),

where C[,, is a constant and T exceeds a constant depending on k, I and ru. (We
proved this under the assumption like lf(s)l=7100, but it is easy to moderate this
condition into conditions like lr'(s)l<exp(0oe z)100)). In II (see[2]) we assumed
that k:l without altering the other conditions and the outcome was

(,],ry) (roe H)'(roeros

,, I z\n=ä
M(r12) ry(roe H)',
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where >> is the familiar Vinogradov symbol.

As a special case of the results of II we can quote

Theorem l. If k and m are positiue integers and I a non-negatiue integer, then

for l0<(loglDtt*=H=7,

= Crr,r (log H)kzla+r,

where Co,r=O depends only on k and I and T exceeds a positiue constant depending

on k, I, and m. If, on the other hand, k is a positiue real constant, the theorem is still
true under the assumption O<l=k and (((s))ot' is analytic in o>112, T<t<T+H.
All these results hold under the respectiue assumptions when in the integral on the

left s:l12+it is replaced by s:o*it with lf2=o=l12+O(lllogH). Further,

if we write s:ll2+(lflogH)*it in the integral, then k can be any real constant

and I any non-negatiue integer, prouided we qssume tnat (((s))ol' is analytic in o>112.

The present paper deals with upper bounds for the mean value. As is to be

expected the restrictions on r' and H have to be very heavy. As a first restriction,

we impose H:T^, where O=)"=1, and )" is a constant, in what follows. Before

proceeding further with general theorems we quote two samples which follow as

immediate corollaries to our general theorem.

Theorem 2. Let I be a non-negatiue integer con§tqnt and H:T^, where )"

is a constant satisfying ll2<).=.1. Then

l(@ 012*it)l dt - o((toe Tfla*'),

where the O-constant is independent of T.

Theorem 3. Let (((r))oP be analytic in 6>1f2, t>20, where kisapositiue
constant satisfying 0<k<4. Let I be a non-negatiue integer constant and i a real

constant satisfying O=l=klz and kf4<)'=.1. Then with H:T^ we haue

dt - o((1og T)r<zta*'),

where the O-constant is independent of T. If we set s:ll2-llllogT*it instead of
s:ll2+it in the integral, and assume that (((s))ktz is analytic in o>1f2, then the

inequality mentioned aboue holds (without the restriction 0=l=kl2) for all inte'
gers l>0.

Remark 1. All the constants in these theorems and also all others mentioned

in this pnper are effective.

T+H

+ { l#((((g)-)1,: ltz+nd'

1 't'Hl

+'[" l#((( (,))o) 
l.: uz+i,
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Remark 2. These theorems are valid when ((s) is replaced by the Z-series
L(s, X), where X is a residue class character, and it is also possible to work out the
hybrid analogues of these theorems.

Theorems more general than 2 and. 3 will be found below in the paper. The
general plan of the paper is as follows. Part A deals with two general theorems on
mean values. Part B deals with a theorem which gives Theorem 3 as a corollary.
Part C deals with a theorem which gives Theorem 2 as a corollary. We will have
occasions to use theorem

(n +o @))lanl,,

due to H. L. Montgomery and R. C. Vaughan. For a simple proof of this version
see [3].

Acknowledgement.'the author is indebted to Professor M. Jutila for much
encouragement and in particular for correcting a number of oversights in the first
draft.

Part A

Theorem 4. Let G(s):)-, bnfn' be absolutely conuergent for o=l (b* are
complex numbers and s:olit) and suppose G(s) admits an analytic continuation
(which we once again denote by G(s)) in o>1f2, T-Hl2=t=T+3H12, where
10=(og T)'l*=H=T and m is a positiue integer constant. Suppose that in the region
o>1f2, T-H12<t<T+3H12, G(s) rs defined and continuous and satisfies lG(s)l=
exp ((log T)to\. For o>ll2 put

M'(o)

t l§ o.d'l'at: å

:+'['l ot' *.],*l'o''

- o[,lfo, r-Hr, H+2H't) (t"r(;)))

+o(rr,,

ond define rlt (r, T, Hr)- MtO 12* r) X' for some X>
the assumption X=H2-ö for any fixed constont ä=0,
ond 0 < rl =l the estimation

t (r, T, H)

(Hr, = 0),

1 and all r > 0. Then under

we haue for 0< r<r'-O(l)

r-H,, H+zr't) (,", (*))r-ä,(r'-')) ,

where the O-constants depend only on q, 6 and the bound for r' and not on T, H, r, r',
and ö, depends only on ö and is positiue.
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Remark. A similar theorem is true if in place of lG(s)-),=*bnfn"lz we

consider for instance lG(s)-(),=rdlln')'!, where )}, d',ln' is convergent for

at least one value of s to lfd@. However, corresponding to these changes we change

the condition on Xaccordingly. For example in the last case mentioned just now we

have to limit X by l<X<Hr-ä in place of l<X<Hz-ö.

Proof. Observe that

,lt(r,7, H) : *r*rltr, where *r: rlt(r,7, H)-rlr(r',7, H)

and. {r:r!t(r',7,H). Next we note that rlrrlla''lz tends to zero (with the required

fastness), as r' tends to infinity. Theorem 4 follows from the following observations.

(1) {,
T+H

=+ { |fl" ep)+r

It*((" ,p*u*it)- z

{
d1
d" Elu) - 2fti

q(w)e@-u)4a+z

@dw,

-lc g p +, + i,) -,z*T*.'l' *')l a,.

(2) In view of llll'z-lBl'l=lA'-B'1, valid for any two complex numbers 1,.8,
the integrand in (1) does not exceed

(3) We can treat u as a complex variable, and if we write the integrand in (2) as

l(dldu)E@)l with an obvious notation we see that

where R is a rectangle containing z in its interior, provided E (w) is regular inside R

and continuous on the boundary of .R. Here a is a positive integer constant (its

largeness depending on how small 4 is) and is at our disposal.

(4) We choose for Ä the rectangle bounded by the lines Rew:O, Re w:@,
llm wl:772 (note that 9(a) tends to zero as a tends to infinity). Here and in similar
circumstances in future the phrase "Re)r:-" refers to Rew being a constant

which is large enough.
(5) When llmw!:I{n, the factor exp((w-a)a'+2) makes the contributions to
the integral in (3) very small.

(6) t
J

- ..*"';o= ..
lffilw"t-o[+) ,

where the O-constant depends only on a.
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The observations (1) to (6) give an upper bound for rltr. To estimate {/z we

make the following observations.

(7) (t,pa,'p : *'i" ,rrr')Hö"tzl dt,

T

(8) E(r)Ha''p:* I@rffor,
R1

where R, is the rectangle bounded by the lines Rew:r, Re w:@, llmwl:g'r.

(e) t l#ltdwt:o(ros(r.-)),
-*å-L-

where the O-constant depends only on a.

The observations (7), (S), (9) give an upper bound for {trHa''lz and this com-
pletes the proof of Theorem 4 with ör:ö12.

Theorem 5. Let ZTrd'"/"" be absolutely conuergent for o=1, and let
G(s):(ZI=, di,l")' be analytic in o>-l and lrl=100, and here satisfy the

functional equation 
G(s):11r1G(l -s)

and the unifurm estimate G(s):5l1.rn ((log lrll*). ,srppose further that the func-
tion y(s) is analytic in the said region and that for some positiue constant k

.tr(s): o(Vlk(u2-q\, (o-constant:l if o:ll2),
where the O-constant depends only on o and in a continuous way. Next let

M,(o) : +'!"' lcr,r-(.1, 
L)'1":"*,0t, (H,> o),

and for real r define

S(r,7, Hr) : Mr(ll2!r)X', where X - Hr-ö and

ö is a positiue constant less than l. Then if O<rt<r and 0=4-1, we haue

ls(o, z, H)-s(r, r, H)l :, ((n,r, r- H't, H+zlq)(#r)' * r-'*Z='#)+

*,,t, (s10, r-H4, a+2Hn)t'* [aJ, (n,., r-H't, H+2H\(#)'

+x-,"2="#),"r[å))),
where the O-constant depends only on 4 and 6.
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Proof. We write

S(0, f, H)-S(r,T, H) :9(0, 7, ä)-9(r, ,7, H)*S(rbT, H)-S(r,7, H)

and proceed as in the proof of Theorem 4. (For both differences on the right we
have to use the derivative of some function like e@)). In the case of the first dif-
ference we take the left side of the rectangle to be Re w: -r. In the case of the
second we take both the rectangles with sides Rew:0 and Re w:-r- On the
side Re w: -r we use the functional equation for G(s).

From Theorem 5 we deduce two corollaries which are in fact important enough
to be called theorems.

o - I 12 - O (r llog T). Then

T+H+H4

dt-"{+ t w@+it)l

Corollary
T+

Lf
EJ

I T+H

+ { lcttt (rlz*it)l dt -

1. Suppose

H

lG(r12+it)l ctt+,?rn,
and

T+H T+E+HN

) [ rc<,+it)t dt : 
"(+ _ I o,lt2+it)to,*,2 ff),

T T_H4

where the O-constant depends only onrl and the O-constant in O(lfiogT).

Proof. It suffices to prove with o>ll2 and then apply the functional equa-
tion. To prove the second part choose r, small but with r/r, bounded, and then
take only the first term in min (..., ...). To prove the first part choose r, such that
rrnearly equal to r and take only the second term in min(...,...).

Corollary 2. Let Q<.k<2, kl2-),=.1, H:T^. Then for l>0, an integer,

we haue

where the O-constant is independent of T.

Proof. lt suffices to prove the corollary with /:0. (Cauchy's theorem makes
possible the extension to any integer />0). For this we note that G(o-lit):
O,(tkla+1 (by the functional equation) holds for every e>0 (O" indicates that the
constant depends on e) and o-ll2:O(lllogr) and hence (UH) I lG(o+it)ldt,
the integral being over any I interval of length Ha contained in (Tl2,2f) is o(1).
Hence by Corollary 1, the integrals (1/,H) Il+H lc(o+it)ldt arc of the same order
if Corollary2 is false with /:0, provided o-ll2:O(lllogT). We now denote
the last integral with o:ll2 by I, put X-HI-ö and H7-26 in Theorem5 and
subtract. We get, letting r:Kllog 7, where Kis a large positive constant,

o(,z,ryooe n'),

lI(ä"rr_2ö)-H,o_ä))l:o(,(#'),?+I(#)',o*h)
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by taking the second term in min (..., ...). Let us fix r, to be rl2. This gives

t : o((4:)'),
which is a contradiction (unless ).<kl2; note we have assumed that kl2<)'-.1).

Corollary 2 trivially gives Theorem 2. However, we show in Part C that the

more general proof in Part B also gives this and more.

Part B

In the remainder of this paper l'(s) has a meaning other than what it had before.

F(s) shall be represented in o> 1 by the square of an absolutely convergent Dirichlet
series fl, d,fn'. lt shall be regular in o>112, Vl>10 and continuous in o>1f2,

lrl=tO. We now describe the next restriction. There exist a finite set {f,'(s)} of
functions analytic in lll>10, each represented in o>1 by an absolutely convergent

Dirichlet series. Next each of the functionsfl(s) is required to satisfy a functional
equation

"fi(s) 
: r;(s)*(l -s),

where zr(s) are analytic in lll>10, and further xr(s):Olplsiot2-o)), where the

O-constant is I if o:ll2 and depends only on o and in a continuous way. (It can

also depend on7). With positive constant k, we define the function (4(s))u, as ttre

one which results from analytic continuation starting from a right half plane where

ft(s)*0, along all possible lines parallel to the real axis. We impose on[(s) the

further condition that in o> -l,lll=t0, it should satisfy[(s):O(exp (0og lll)'oo))
where the O-constant is independent of l. The restriction on F(s) can now be stated as

F(s): { 
(ft@)o,

for a suitable finite set of functions 4(s) and constants ki=O. Now F(s):
z (s) lr(l -s), where neither ,F(s) nor z (s) need be single valued but z (s) : @ (ltlk<t-zo)tz1

with k:Z9iki, and the constant implied by the O-symbol is I if o:ll2 and

depends only on o and in a continuous way.

We are now in a position to state

Theorem 6. Let F(s):(;,-=, d,ln)' in o>1, and let 0<k<4, kf4=)"=1,
H:71. Then we haue

o(|3,ry) (roer),) ,

prouided @tlds\ (r(r))u' is analytic in o>112, Vl>lO, and continuous in o>ll2
and ltl=10. (Infact the oalidity of the last two conditions in T-Hl2=t=T+3H12
is enough for the ualidity of the theorem.)

151

+'J' ,r"'(tt2*it)t dt -
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We prove this theorem by a series of lemmas of which 1,2 and 3 are standard.
They are to be found in Titchmarsh's book (see p. 180, §5. 65;p.125, §3.61; and
p. 311, §9.623 of [5]) on the theory of functions. We give the proofs only for the
sake of completeness.

Lemma l. We haue fi@+tt1:g.(ltlsi(G-")t2)+), where 0<o=1, lll=10
and the O-constant depends only on e=0, which is arbitrary.

Proof. W e have f, (1 + I + it) : O 
"(1) 

and fi G e + tt) : O 
"(lt l{e 

i +z"ttz). Next with
s:o*it we have

,fi(s) : * [r,rrltlsi«w-s)tzt e(w-s)2o #,
R,

where,R, is the rectangle bounded by the sides Re w:-t, 1*e, IImwl:log lll.
Rough estimates now lead to the lemma.

Lemma 2. Letf(z) be analytic in lzl<r and let Q run ouer all the zeros of f(z)
in this disc. Then

log lf ?r'"'u)l d0.

Proof. lf there are no zeros, logf(z) can be expanded as a power series (in

lrl=r) in z, which is convergent. Writing z:re2niq and integrating term by term,
we get

log/(0) - log f (rr'"'u) d0.

ros(rror ilå) : i

!
Taking the real parts on both sides we get the result required. Brtt if f(z) has zeros
in lzl<r, we replace f(r) by

fG)rr{(:==r',
Notice that on lrl:r, i.e. zZ:rz (bar denotes complex conjugation), this func-
tion has the same absolute value as f(z). This completes the proof of the lemma.

Lemma 3. Let Eo(t) be a continuous function defined in a<t=b. If EoQ) is

non-negatiue throughout this interual, then

1b

* i rog eo(r) dt = tos(fi,t«o a).

Proof. Let g:vo<.vro<.x2...<xr:b, Then we have

(qo (r, ) Eo(*r) . . . Qo(**))'t' = 
-E'@ + E'@ +' " + E'@)
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ie.

å ("r(,,,,,» (*)) = "'[;(,.(,.,(;))J
This proves the lemma by the obvious limiting process.

Lemma 4. If s:o*it is any complexnumberwith ltl=tOO and Xr>O, then
1

lF(s)l= [ lrb+r"'riellyrcos(zno) d0 (we assume 0<r<2).

Proof. Apply Lemma 2 with f(z):fr(s*z),fr(s*z), ... and. f(z):Xi and
take an appropriate linear combination. Denoting by q, the zeros of fij*z) in
lzl=r, we get

rog 
{1 

r1r11 q { 
(ä)r'} : i 

log (l r(s + re zrie11 y r cos (zre)) d0.

Applying Lemma 3 we get

,"«'lr ({ (f (#,)-')) = f t"G*' eznio)txtcos(zno) d0'

This completes the proof of Lemma4 since here the LHS is =lf(r)|.
Lemma 5. Let s:llZ*it and T-Ha<t=T+H+H4, where q is a constant

satisfying 0<11<1. Then

lr'(s)l = 
j V{, *r"'nie117&r cos(zret)P d0

(we assume O-r=2).

Proof. Follows from Lemma 4 if we put o: ll2 and take Xr:7*lz.
Lemma 6. In the notation of Lemma 5, we haoe

lr(s)l : o (1 11111'+ rx*ir/-r-;\l+lrG+rr- irlr-Al)Tkrxtz\ d* )I7G)'
Her? 0<r<2, and the O-constant is independent of r and s.

Proof. Follows if we break up the interval 0, I into four parts depending on the
four quadrants in which e'"io lies, use the functional equation for

lr'(s-r cos Qn|)*ir sin (220))l

and then make the substitution x:cos (2n0).

Lemma 7. In the notation of Lemma5, we haue

l,a(s;1rrz : o [1ftrf s+rx+irfi -fl|',' +lrG+r, - irl t: x,)lr/z)r*rxta\ d* |, ,1nv).
Here 0<r=2 and the O-constant is independent of r and s.
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Proof. Prove Lemma4 with lF(s)l replaced by lf'(s)lttz and with X1 replaced

by 7*la. Next proceed as in Lemmas 5 and 6.

Lemma 8. Let E:Zn=nld*l'ln,

/*(1 l2+r) :

and J(r):l*(1121r17"'t'. Let us agree to choose that ualue of the square root

which makes (,n'1s1'l':2- ,dJn' when real part of s is >1. Then for O=r<2,
we haoe

I

It.r 
tp+r+ir))ttz- ,4#*l' 0,, (r > o),

J(rx)#+Ero'n)

. T+Hlntr!

/(0) - o

Proof. In Lemma 7 use lF(...)lt/'= l(r'(...»u' -2, =, 
dnln"' l*lZ,=u d,ln "' l,

on the right side of the inequality. Next apply Hölder's inequality to obtain an

upper bound for (1/.H) IT+H lF!l2+it)ldt. The expressions which bound this

integral involve not /*(rx) but things which differ from (ll/1) I;*" l...ldt by

amounts (UH) I l.-.ldt, where the integral is over an interval of length Hq con-

tained in T-Hl2 and T+3H12. Since 4 is arbitrary, it follows from Lemma 9

that we can replace (with negligible loss) the new limits of integration back by 7,

T+H. Hence Lemma8 follows from LemmaT and Lemma9 (to follow) and the

observation that in 0<x< l, llltl-x':O(t1/t-x1.
Lemma 9. In ltl>10 and 0<a<l we haue

I F (o + i t)l : O 
"(17 

lx(r - 
o) tz + e1

where e>-0 is arbitrary and the O-constant is independent ofo and t but depends on e.

Proof. Lemma 9 follows as an immediate corollary to Lemma I.

Lemma 10. There exists a positiue constant å>0, depending only on )', such that

(

{
where Jr(r):J(r)Tö'.

Proof. L.H.S:[f, lr(rx)T-6*dx1/t-v and the error in replacing Jr(rx) by

,rr(r) is O(/(0) [! r-ö" dxllT-), provided ä is small (this follows by an argu-

ment similar to a step in the proof of Theorem 4). This proves Lemma 10.

In Lemmas 11 to 16 (below) our main task is the estimation of lr(r). The method
followed is an extension of the method of proof of Theorem 4 and our results may

be stated as a general Theorem but we do not do it. Note that "f(0):,f.(Q).
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Lemma ll. For any fixed positiue number u, put r,: r (I * u)n (n:0, l, 2, 3, ...).
Suppose that 0<rs<112. Then for any positiue constqnt ö we haue

# : åu,, where u,:H--!]9L,
prouided that Jr(rn)T-ö'" tends to zero as n tends to infinity.

Proof. Trivial.

Lemma 12. We haue

J1Q) : o (ur b J @) + u J,(r) + a,f_,#+),
where the O-constant is independent of u and r.

Proof. By an argument similar to a step in the proof of rheorem 4 we have

u,: o(ur(o)), uz: o(,W), us: rb#l), u4: o("r:9l),...
and so on. Hence

#- o(*p1+"ff+,.ä#),
and this gives the lemma.

Lemma 13. We haue

J 1(r) : o (ur b 
401 + u J r(r) + u,:§__,Wr#U1

Proof. By arguments similar to a step in the proof of rheorem 4, it folrows
that Jr(r,):Jr(r)+o(un"r(O)), and this proves Lemma 13.

Lemma 14. We haoe

fir) : o (ur* t 101 +, t,(i + #. #+) .

Proof. Follows from Lemma 13 if we use

åx":-r- and år*, bothvalidin 0<x<1.n-=t I -X ,1-t (l -X)'
Lemma 15. There exists a positiue constant 6 such that

r1(r) : o (r - * (t 1o) + r,@) + #. #r)
P r o of. In Lemma I 4 choose o : f - 2ör and note tha t I I (T 6* - l) and 7,6", I (T 6tD - l)z

are O(l) if 7ö">10, btfi O(tl(urlogZ)) and O(tl@rtogr)r) otherwise. This
proYes the lemma.
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Lemma 16. We hque

ltr):r(d#F).r(#)
Remark. Lemma 16 follows from Lemma 15. Note that Lemmas 11 to 16

(in fact also Lemma l0) are independent of the rest of the paper though they are

useful in the proof of Theorem 6 as will be seen. These lemmas require that kl4< )''<l
and ä depends only on L-k14.

Lemma 17. If rlogT exceeds a constant C, then

j,oo6:0(#)
Proof. lf rlog lis large enough (say >C), then the second O-term in Lemma

16 is negligible and so "Ir(r):9(t(O)lO log I)'z). Hence Lemma 17 follows from
Lemma 10.

Lemma 18. If rlogT exceeds a large constant C (depending on )"-kl4), then

-r(o) :, (#). o (rr,,,,2=,Y),
and so

/ r ld,lr)
"I(0): Olf*'rz 

,=o, n ).
Proof. Apply Lemmas 8 and 17.

Remarks concluding Part B. The second statement of Lemma 18 proves Theo-

rem 6 with /:0 (we have only to take r:2Cllog 7). The case />0 can be proved

by a modification of our method. From Lemmas 16, 18 and 8 it follows that
I* (1 121 r):o (E) for all r lying between 2Cllog T and 4Cfiog 7. A simple applica-

tion of Cauchy's theorem gives (by use of this result)

- 0(u'6o9 r)'),

where o:3CllogT*112. But then the integral on the left differs from the cor-

responding integral with o: ll2+lfloeT by an amount O(E(logD') by an argu-

ment similar to a step in the proof of Theorem4 (we have to use I*(ll2):J(O):
O(E)). These remarks prove for instance that, for all integers />0,

T+H

+{l#r61la'l

T+H

+ { 1 

."' (+ . rh + it)lo, : o ((.?,ry(roe rl)
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Part C

Theorem 7. Let F(s) be represented in o>l by (Z|rd,ld)' and let the

notation of Part B before Theorem6 be inforce. Let 0<k-2, kl2=),=1, H:T^.
Then we haue

ry) (roen),f i' 1pe)(rl2+it)l d,t - o((,+
HJ I

T

prouided ptD(s) is analytic in o=112, Vl>10 and is continuous in o>1f2,lrl=tO.
(In fact the ualidity of the conditions are enough in T-Hl2=t=T+2H for the

oalidity of the result asserted aboue.) Also we haue for all non-negatiue integers I

-o((.+ ry) (roen)

Proof. We argue as in the proof of Theorem 6. Instead of Lemma 7 we apply
I-emma6 and instead of Lemma8 we have a similar lemma with l*(ll2+r)
replaced by

and this necessitates the condition kl2=l-.1 in the rest of the argument. These

considerations complete the proof of Theorem 7.

We note a curious corollary to Theorem7. Let (*(s) (we may also consider

I-series etc.) be the Dedekind zeta function of an algebraic number fleld K of degree

d. Let ll2<1<l and H:7.1. Then

where ((" (r))Lt@d) -
o>112, t>|.

ld"l'\

" )'

that ((^ (r))t'o is regular in

+7"1o,, t2+r+it)-(.2,

+'f l("( tlz+i)Y,dt - o(,1=,

ZTrdnln' in o>1, provided only
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