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ASYMPTOTIC VALUES AND ANGULAR LIMITS
OF QUASIREGULAR MAPPINGS OF A BALL

SEPPO RICKMAN

1. Introduction

If fis a bounded analytic function of the unit disk and f has an asymptotic
limit « at a boundary point b, then a wellknown theorem by E. Lindel6f says that f
has the angular limit o at 5, and hence « is the only asymptotic value f can have
at b. In this paper we shall study the situation in dimensions n=3 for the natural
generalization of analytic functions to Euclidean n-space, namely quasiregular
mappings (for the definition, see [2]). It turns out that, although a radial limit implies
the existence of an angular limit, a limit along a 1-dimensional set, like a path, is
in general no longer sufficient to guarantee the existence of the angular limit, and
hence Lindelof’s theorem is not true. In fact, there can be infinitely many asymptotic
values at a boundary point as Theorem 1.1 shows. For the dimension n=4 we
prove (Theorem 1.2) that here paths can as well be replaced by curved 2-dimensional
half planes which have a common edge. On the other hand, Theorem 1.3 shows
that n—2 is the maximum dimension for such results and gives a substitute for
Lindel6f’s theorem in a form where the asymptotic path is replaced by an (n—1)-
dimensional set.

Let B" be the unit ball in the Euclidean n-space R" and f: B"—~B" a quasi-
regular mapping. As we said above, if the radial limit

o= lim f(1y)
exists for some y in the boundary dB", then the angular limit

lim  f(x)

x>y, x€K

exists and equals « for all cones K=K(y, p)={x€R"|(y|(y—x))=>|y—x] cos o},
0<@<m/2 [1, 5.8]. Here (u|v) is the inner product of u and v in R". In this situa-
tion we say that f has the angular limit « at y.

1.1. Theorem. For each n=3 there exists a quasiregular mapping f: B"—~B"
and a point beOB" such that
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(1) f has infinitely many asymptotic values at b,
(2) f has no angular limit at b.

In dimension 4 we even have a stronger result.

1.2. Theorem. There exists a sequence Uy, U,, ... of 2-dimensional submani-
folds in B* such that the projection P: R*—~R?, P(x)=(x,, x5), maps each U; homeo-
morphically onto the half disk {y€R¥|y|<1/2, »,=0}, U;n0B* is the arc
{x€0B*|x;=x,=0, |x5|=1/2, x,<0} for all j, and the following holds:

(1) Given any sequence a',a?, ... in {x€RY|x|<1/2} there exists a quasi-
regular mapping f: B*—~B* for which
. i
x-»—]g}ceujf(x) a-
() f has no angular limit at —e,. (e; is the i'® standard coordinate unit vector
in R".)

It seems likely that a construction can be carried out also for n=5 similar
to the one used in the proof of Theorem 1.2 to produce an infinite number of asymp-
totic limits along (n—2)-dimensional curved half planes. However, the given proof
depends on a certain 3-complex whose construction cannot canonically be generalized
to higher dimensions.

Our positive result on the existence of angular limits is as follows.

1.3. Theorem. Let n=2, A={ycdB"y,>0}, and let f: B"~B" be a quasi-
regular mapping such that for some o€ B"

lim limsup|f(x)—a| =0.
y>e,y€d x>y

Then f has the angular limit o at e,

The proof of Theorem 1.3 is a simple consequence of a two constant theorem
for quasiregular mappings ([7]), which is based on estimates on solutions of quasi-
linear elliptic partial differential equations due to Maz’ja. The proofs of Theorems
1.1 and 1.2 are rather complicated. The basic idea is to use a method developed in
[6] to deform a map through adjacent cylinders into a prescribed behavior. Since
n=3, it is possible to place the “cylinders” so that their sizes tend to zero when
they approach a part of the boundary.

1.4. Remarks. 1. The proofs of Theorems 1.1 and 1.2 can be modified so
that the asymptotic limits form any given countable set in the closed unit ball. One
can also obtain some related results on boundary behavior, for example from the
proof of Theorem 1.2 the following: There exists a nonconstant quasiregular mapping
f: B*~B* such that

’lciiny f(x) = ¢ = constant

for y in the topological disk {z€0B*||z+ey|<1, z,=0}.
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2. The Lindelof’s theorem quoted above holds for quasiregular mappings for
n=2. Theorem 1.3 reduces to a special case of this if n=2.

3. Because of the connection of quasiregular mappings to solutions of quasi-
linear elliptic partial differential equations (see [7]), our constructions give examples
for such solutions too. ‘

4. The existence of angular limits of quasiregular mappings has been studied
also by M. Vuorinen in [8—11]. For example he has shown that for closed quasi-
regular mappings of B" into itself an asymptotic limit at 5¢dB" implies the exist-
ence of the same angular limit at b, i.e. Lindel6f’s theorem holds for these mappings.

2. Construction of the examples

2.1. In the proofs of Theorems 1.1 and 1.2 we shall use a construction similar
to [6, pp. 542—546]. The presentation is selfcontained, hence no reference to [6] is
needed.

We denote by B"(x, r) the open ball in R" with center x and radius r, by ¢
the spherical chordal metric in R"=R"U{e}, and by {(a, ..., a,) the convex hull
of {ay,...,a,}. For 1=k<n, the sets R* and R*X{0}cR" are identified by the
embedding (xq, ..., x)—>(xq, ..., 0, ..., 0). We set

Hi = {XER"[.XI, = 0}, Hil:-u,ik = Hilﬁ vee ﬁH

o
I, =[—¢¢ for ¢e=0, I=1, B'"(r)=B"0,r), B"=B"(1), S"~1=09B"
All topological operations are with respect to R if not otherwise stated.
2.2. Proof of Theorem 1.1. Set
X =10, 1]1x]0, 1] < R?,
A* = {XER(X1, X)€EA, —X3 < Xgy ..0s X, < X5} if A CX.

We shall construct a quasimeromorphic mapping (see [3]) of int X* omitting a ball
and with infinitely many asymptotic values at 0. The construction is made separately
in sets C*, C running over the set y of all (closed) 2-simplexes in the locally finite
simplicial 2-complex L with underlying space X as shown in Figure 1.

Fix Cy€y and an affine map /¢, of C; onto the 2-simplex W, =(—e;, ¢;, €,) CR2.
Then there exists a unique set of affine homeomorphisms A.: C—W, such that
he|CAD=hy|CAD for C, Dcy. This follows because each vertex of L in X\ X
belongs to an even number of 2-simplexes of L where X is the boundary of X in R2.

Let W be the closed square (—e;, —e,, €, €;)CR?, for O<e<1let w: WXI!' 3~
B"~! be the radial stretching (for n=3 we identify W=WxXI'"®), and let ;=
wXid;: (WXIP®)XI-B"*XI. We choose ¢ so that wWxXI"®cB" 'n
(R*XI}™%) where ¢=(2(n—3))""". We let ¢,: B""*XI—~H, be the mapping
¢1(r, ¥, x,)=(0, y, 0) defined by g=4e™*!, 0=nr/2. Here cylindrical and spherical
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Xy ‘
©o1! (1,1

—_

0 (1,0
Figure 1

Xy

coordinates are used so that y€S"~* and 0 is the angle between the radius vector
and the x,-axis. Set F=¢,o0y;. Then Flint(WXI'"®XI) is quasiconformal.
Next let

A, = {x€R"o; < x; <oy+1, i =2,...,n} for ac{0}xZ"-1,

T, = {XEAO'X1 = “‘2},
and let F;: A,—~H, be a quasiconformal mapping such that F;(x),<0 if x;<0,
Fy(x),>0 if x,>0, F,T,CB"(—e;, r) where we fix r,=1/10, F;(4,nB"(4e?))C
Rn\Bn(_—ela r()/z)’ and

lim F(x)=—e,
Xy~ —oo

xiim Fi(x) = e,.

We extend F; to a quasimeromorphic mapping F,: H, ,—~R™\{—e;, ¢;} by reflect-
ing through the faces of the cylinders 4, and through 0H,. For C¢y we define
gC: C*»W1XIE"_3XI by

gC(x) = (hC(xl’ x2)1’ hC(xl, x2)29 8x3/x2’ cees sxn—l/xz» xn/xz)-

Fix now p=p,>1 and M¢€]l, 2[ where the bound B, will be chosen suffi-
ciently large later. Let ¢ be the hyperbolic metric in the upper half plane. Fix 1<py;<
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v, and set
Yo = {x€X |x, = x§* or x, = x}1},

Yo={xcX|fk—1)<o(x,Yy) =Bk}, k=1,2,....
Let 6€]0, 1/2[ and c*€R"™\B"(—e,, §). In the first step we shall construct a mapping

fii X*>R™B"(—e;, r,) which is K-quasimeromorphic in int X*, where K and
f1Yy are independent of ¢!, where r,>0 depends only on 8, and for which

lim sup |f;(x)—cl| = 0.

k—co xey;:

Choose a sequence z'=e;, 2., ..., z2*=2z""1=...=¢! in R" such that
1
k
z* —e
M‘lé%éM, k=0, ..,s,
q(z**, —eyp)

and q(z*, —e))=q(c', —e,),k=1,2, .... Alsoasequence x°=0, x, x2, ... is defined
as follows. For 1=k=s let /, be the minimizing geodesic arc from —e; to z* and
let x* be the middle point of J,. (If z*=e,, we let ], be the geodesic through 0.) If
k=>s, we let x*¢l, be so that g(x*, cY)/g(x*, c)=2""%. Let S, be a M&bius trans-
formation of R" such that S,(—e;)=—e;, Si(e;))=2%, S,(0)=x*, k=0, 1, .... There
exists a K;-quasiconformal mapping o,: R"—~R", K, independent of k, such that
| B"(—ey, 1) = S;|B"(—ey, 1o),
| Hy = Sy 14| H; .
We need a map o,: H,,~H,, defined by
01(X) = (X, — X5, X5, X3, .0vp X,) if 0=2x,<2,
01(X) = (X1—2, X5, X3, ..., X,) I x5 = 2.
If u is a vertex of the complex L, we define
P, = {hy'(enlu€D, Dey}.

We are now in a position to be able to define for each C€y the restriction
to C* of the map f; to be constructed, call it .. Fix C€y. Denote E=hzl(—ey),
n=hg'(e)), a=hg'(e;). Let F be F, if hc is sense preserving and vo F, if ke is sense
reversing where v is the reflection in dH,. Set

Q¢ = U {P,|ueD, €D, Dey).

For sufficiently large f,, independent of C, there exists a largest integer k such that
QcC Y, UYy,y. In different cases we define 7. as follows:

) 7c = SyoFoFog, if P,CY,,
) Tc = SyoFoo0Fog. if 3€Y,, P,AYy; # 0,
(3) Tc = wyoFoo0Foge if n€Yy,q, P,0Y, # 0,

“ 7c = woFoFog, if P,CYiyq.
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We want to check that the maps 7 coincide on common boundaries. It is enough
to consider D€y such that CnD is a 1-simplex. Let p be the largest integer such
that Qp,CY,UY, 4.

Suppose first that CnD={(¢, n). Then p=k. It follows that 7 and 7, may differ
only in the appearance of the map o, in the formulas (1)—(4). But Fogc (C*nD"C
OH, and ¢, is the identity in 0H,.

Suppose next that CnD=(¢, a). Also here p=k. We claim that Fog,0Fo
gc(C*nD*)C B"(—ey, ry). It is enough to show a,(z); = —2 whenever z¢ Fgc(C*n D).
Such a point is of the form z=(oyi, ..., QVu=1,0); V35 o0s Yu-1€1,, Iyl=1, y»=0,
$,=0, 4=0=4e%. We may assume 0=z,=2, whence 0,(2);=2,—2z,. We have
y,=1/2 and y2=1-—e2(n—3)—)i=1/2—y;. This implies y,=—1/2 and z;=-2,
hence ;(z);=—2. In the cases (1) and (4) we have the same definition for 7p,
so the assertion is clear. Suppose that we have (2) for C and (3) for D. In this case
we use the fact that w,|B"(—ey, ro)=Si|B"(—e1, o), and similarly if we have (2)
for D and (3) for C.

Finally, let CnD=(n, a). If p=k, the cases for D coincide with those of C
in (1)—(4). By symmetry with respect to C and D it is enough to consider the case
p=k—1. For a sufficiently large f,, independent of C, we must have QcCY,
and we have case (1) for C and case (4) for D which fit together on C*nD*.

We have shown that there exists a map f; of X* such that f|C*=1. for C¢y.
It follows from the definition of the maps 7. that f;: X*—~R™\B"(—e,, r;) for
some r;>0 and has the other required properties for the first step; filint X* has
¢! as an asymptotic value at 0. For this we observe that

lim _fi(x)=cl,
x+0,xCE]
where E,={x¢X|x,=x}}, ;<72 <v;, and Efnint X* contains paths tending to 0.

Let then (c¢’) be any sequence in R™\B"(—e;, ), and let I<lj</Ay=<....
If l=py<A<Vi<py<Ag<Vy<..., we may deform f; in the sets Y'* Y/=
{x€X|x)i<x,<xW}, j=2,3,..., by applying the construction from the first step
to obtain a quasimeromorphic mapping fy: int X*~R"™\B"(—e;, ;) such that

lim _ fy(x) = ¢/,
x>0, x€E;
where E;={x€X|x,=x}7}. The required mapping satisfying (1) and (2) in Theorem
1.1 is then f=hof,og where g is a suitable quasiconformal mapping of B" onto
int X* and 4 is a Mobius transformation.

2.3. Remark. The paper [6] was for simplicity written for n=3. The above
proof shows how to do the appropriate modifications to obtain the result in [6] for
general n=3.

2.4. Proof of Theorem 1.2. We replace the square [0, 1]1X]0, 1] in the proof
of 1.1 by the cube X’=[0, 11X]0, 11X[0, 1] and form the locally finite simplicial
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3-complex L’ asfollows. In Figure 2 we let the square {p,, ps, ps, p;) bein the plane
x,=1/2 with p,=(0, 1/2,0), p,=(1/2,1/2,0), p,=(1/2,1/2, 1/2), p3=(0, 1/2, 1/2).
Let (qy, g3, 42, q;) be the square obtained from {(p,, ps, ps, p;) by the translation
X—>Xx+e,/2, hence for example ¢,=(0, 1,0). The 3-simplexes of L’ in the part
(43> Po» D3> P2y Of X’ are the 3-simplexes of the form (g, s, ¢, u) where (s, t, u) is
a 2-simplex in the 2-complex in Figure 2 with underlying space {p,, ps, p,). The
3-simplexes of L’ in the part {py, ps, s, 42, o) of X’ are given in Figure 3. We

Do D1
P
Ps , § 2
D3
Figure 2

complete the construction of L’ in the cube (py, p1, P2, Ps> o, 415 92, g5y by reflecting
through (py, ps, 45, o). We continue the construction to three similar cubes with side
length 1/2 by first reflecting through the squares (ps, ps, ¢, gs) and {(p;, ps, Gs, q1),
and then through the square (p,, q,, p4, g5) Where p,=(1/2,1/2, 1), g,=(1/2, 1, ).
We have completed the construction of L’ in the layer {x€X’|l/2=x,=1}. The
construction is continued in the layer {x€X’|1/2®=x,=1/2} by a similar construc-
tion in cubes with side length 1/22. Observe that for example the 2-simplexes in
(P4 D3> Py (Figure 2) are obtained from the 2-simplexes in (g, g5, ¢,) (Figure 3)
by a similarity mapping. This gives a canonical way to continue the construction of
L’ to all layers {x€X’|1/2*=x,=1/2""1}.
Let y” be the set of 3-simplexes of the complex L’. Now we set

A* = {x€RY (X1, X5, X5)€A, =Xy < X4 <X}, ACX'.
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‘()

a3 \ q:

Do

P2
Figure 3

We fix Cy€y” and an affine map A, of C, onto the simplex W] =(—ey, e;, e;, e5) CR®.
It follows from the construction of L’ that there exists a unique set of affine homeo-
morphisms hc: C—W, such that hc|CnD=hy|CnD for C, Dey’.

Let W’ be the closed octahedron (—e,, e;, —e,, €5, —e3, €5y C R3, let w': W’ —~B?
be the radial stretching, and let y;=w’Xid;: W' XI—~B3xI where I=[-1,1].
The maps ¢,, F, and F are defined as in the proof of 1.1. We set F’'=¢,0y; and
define for C¢y’ gc: C*—>W/XI by

gc(x) = (hc(xp Xoy X3)1, Bc(X1, X2, X3)a, (X1, Xa, X3)3, x4/x2)-

As in the proof of 1.1 let §€]0,1/2[ and let (¢/) be any sequence in
R™\B*(—e,, d). Let us only consider the first step and give the definition of a
map f;: int X’* >R\ B*(—e;, r1), r;=0. The rest is similar to the end of the
proof of 1.1. The sets Y, are defined as before, so are the Mobius transformations
S, and the quasiconformal mappings .
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In each C*, Cey’, we shall now define a map 7. We need sliding maps

0;0 Hy 5 4~H, 5,4, i=1,2,3, defined as follows:

01(X) = (%= X3, X3,X3, Xy)
01(x) = (X1 =2, X3, X3, Xy)
05(X) = (X1 —X;3, Xa, X3, Xy)
02(%) = (X1—2, X, X3, Xg)
05(x) = (X;—Xp— X3, Xp, X3, Xy)

03(x) = (X, —2, X5, X3, Xy)

if 0=x,<2,

if x,=2,

if 0=x;<2,

if x;3=2,

if 0=x,4+x;<2,

if Xo+xy3=2.

For a vertex u in the 3-complex L” we set as before P,={h;"(e,)lucD, D€y},
Fix C€y” and denote ¢=hc'(—e,), n=hc'(e,), a=hz"(ey), b=hz*(e;), and

Oc =V {PJueD, (€D, Dey'}.

Let n: R®*—~R? be the orthogonal projection. For a sufficiently large f,, independent
of C, there exists a largest k such that nQ.C Y,UY,,,.

The possible cases are as follows:

M nP,, nP, C Y,

2 aP,nY, #0, P, CY,,

3) aP,cY,, nP,nY, ., #0,

O] t(MEY,, nP,NYiq #0, TP,"Y #0
(5) nP,nY, #0, P, C Yy,

6) P, C Yy, wP,NY, #0,

@) T(MEY, 1, TPNY, %0, nP,nY, #0,
®) nP,, P, C Y;.1.

We define t. in these cases to be the following maps:

1) SyoFoF ogc,

) SyoFoo,0F ogc,
3 SyoFoo,0F 0ge,
4 SyoFoo,0F og,,
%) wyoFog0F og,.,
6) woFog,0 Foge,
@) woFogs0F og,,

®) woFoFloge.
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Let us now check that t.|C*nD*=1,|C*nD* for all D€y’. We may sup-
pose that CnD is a 2-simplex. Let p be the largest integer such that nQ,C Y,UY, ;.
Suppose first CnD=(&, n,a). Then p=k. The maps 7c and 7, may differ
only in the appearance of the maps o;. We observe that F’og.(C*nD*)C0H;.
Since /5t (e;)=hg'(e;)=a, all possible maps o; coincide on 0H,. In fact, if the
formula for 1 differs from that of 7, then the possible pairings are the following:

(1) for C and (3) for D.
(2) for C and (4) for D,
(5) for C and (7) for D,
(6) for C and (8) for D,

plus the interchange of C and D. The case CnD=(&, n, b) is similar.

Suppose next that CnD={¢, a, b). Also here p=k. If the defining formulas
for 7. and 7, are different, the only pairing which can occur is (4) for C and (7)
for D plus the interchange of C and D. But Fooy0F ogc(C*nD*)CB*(—ey, 1),
and we use the fact wy|B*(—ey, ro)=Si/B*(—e;, ry) to conclude that 7, and 7
coincide on the common part C*nD*.

Suppose finally that CnD={y, a, b). If p=k, the cases (1)—(8) coincide
for C and D. By symmetry we may assume p=k—1. For a sufficiently large f,,
independent of C, we must have nQ.C Y,, and we have case (1) for C and (8) for D.
These fit together on C*nD*.

We have shown that there exists a map f; of X’* such that f;|C*=1, for all
Cey’, fi]int X’* is K-quasimeromorphic K not depending on ¢!, and f; omits a ball
B*(—e,, r;). For 4 X=[0, 1]x]0, 1] we denote now

A = {x€X"|(xy, x5)€A}.
We observe that f,|¥ is independent of ¢! and

lim __fi(x) = ¢,

x—-xq,x€E}
where xo=e3/2. E; is as before a set {x€X|x,=x{}. This completes the first step
of the proof. The construction is completed as in the proof of 1.1 to obtain a quasi-
meromorphic mapping f;: int X’ *—~R*\B*(—e;, r;) such that

lim _ fi(x) = c’.

x—xg, x€E}
The required mapping is f=hof; og where g: B*—~int X’* and h: R*-~R* are
suitable quasiconformal mappings. The 2-manifold U; is the preimage by g of a
part of the 2-manifold {x€ £%|x,=0}. The theorem is proved.
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3. Existence of angular limits

To prove Theorem 1.3 we need a two constant theorem for quasiregular
mappings. If f: G—~R" is quasiregular, then the function u(x)=log|f(x)| is a
solution of a quasilinear elliptic partial differential equation [5]. By using estimates
for such solutions due to Maz’ja [4] we proved in [7] the following result which is a
local two constant theorem.

3.1. Theorem [7, 4.22]. Let f: G—~R" be a quasiregular mapping of a domain
G in R", let O<m<M, let U be a ball B"(z, ¢), and suppose

@O f®I=M if xeGnl,
(i) limsup |f(x)=m if yedGnU.
x>y
Then
If()] = exp (Blogm+(1—p)log M) if x€GnB"(z70)
where 0<y=y,,
B = Ccap (U, B*(z, yo)\G)""" "V log (1/y),

and yy<1/2 and C are positive constants depending only on n and the maximal dilata-
tion K(f) of f. The capacity in the expression of B is the n-capacity for condensers [2].

3.2. Proof of Theorem 1.3. We shall use Theorem 3.1 in a simple iterative
method. We first form a sequence D;, D,, ... of subdomains of B" inductively by

setting
D, = B"n | B"(z, yd(z, dB™\4)),
z€A4

Di+1 =B"n U B"(Z> yd(za aBn\A)),

z€D;
where y=y, is the constant in 3.1 and d is the Euclidean metric. Let K be a cone
K(ey, ), 0<=¢p<m/2. There exists a positive integer k and s=0 such that
KnB"(ey, s)c D,. Given e¢=0 let 6=>0 be such that d<s and

limsup [f(x)—a| <¢ if y€AnB"(e, ).
x>y

Then Theorem 3.1 applied to balls B"(z, d(z, 0B"™\A4)), z€AnB"(e;, §/2), and to
the mapping f—a gives

[f(x)—a| <efloges if x€D,n B"(ey, d/3)
where B=Cx"""Vlog(1/y), C being the constant in 3.1 and » the capacity of
the Grétzsch ring B™\{te,[0=t=y}. By repeated use of this we obtain

[f(x)—a| <efloge if  xc D, B"(e,, 6/3%).
Hence

x—»lelll:l.}CEKf(x) =
3.3. Remark. By the method in the proof of Theorem 1.3 it is also possible

to prove a global two constant theorem for general domains.
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