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ASYMPTOTIC YALUES AND ANGULAR TIMITS
OF QUASIREGULAR MAPPINGS OF A BALL

SEPPO RICKMÄN

1. Introduction

If /is a bounded analytic function of the unit disk and/has an asymptotic
limit a at a boundary point b, then a wellknown theorem by E. Lindelöf says that/
has the angular limit a at b, and hence s is the only asymptotic value f can have
at b. ln this paper we shall study the situation in dimensions n >3 for the natural
generalization of analytic functions to Euclidean n-space, namely quasiregular
mappings (for the definition, see [2]). It turns out that, although aradial limit implies
the existence of an angular limit, a limit along a l-dimensional set, like a path, is
in general no longer sufficient to guarantee the existence of the angular limit, and
hence Lindelöf's theorem is not true. In fact, there can be infinitely many asymptotic
values at a boundary point as Theorem 1.1 shows. For the dimension n:4 we
prove (Theorem 1.2) that here paths can as well be replaced by curved 2-dimensional
half planes which have a common edge. On the other hand, Theorem 1.3 shows
that n-2 is the maximum dimension for such results and gives a substitute for
Lindelöf's theorem in a form where the asymptotic path is replaced by an (n -1)-
dimensional set.

Let B" be the unit ball in the Euclidean n-space R'and f: B"-8" a quasi-
regular mapping. As we said above, if the radial limit

a -,Ip f (ty)

exists for some y in the boundary 08", then the angular limit

-JiT,*/{')

exists and equals a for all cones K:K(!,9;:{x€Ä'l(ylQ-x))=ly-xlcosE\,
Q<.E<.nf2 [1, 5.8]. Here (zlu) is the inner product of u andu in R'. In this situa-
tion we say thatf has the angular limit u at y.

1.1. Theorem. For each n>3 there exists a quasiregular mapping f: B"*Bo
and a point b€08" such that
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(1) f has infinitely many asymptotic ualues at b,

Q) f has no angular limit at b.

In dimension 4 we even have a stronger result.

1.2. Theorem. There exists a sequence Ur,Ur,... of 2-dimmsional submani-

folds in Ba such that the projection P: R4*R2, P(x):(x1, xr), maps each Ui homeo-

morphically onto the half disk {l€R'zllyl=112, yr>O}, U,nlBa is the arc

{x(0Balxr:re:0, lxrl<112, xr=0} for all j, and the following holds:

(l) Giuen any sequence aL, a2, ... in {x(Rallxl=ll2} there exists a quasi-

regular mapping f: Ba*Ba for which

**-lifl'u,f (x) : ai '

Q) f has no angular limit at -ez. (ei is the ith standard coordinate unit uector

in Ro.)

It seems likely that a construction can be carried out also for n> 5 similar
to the one used in the proof of Theorem 1.2 to produce an infinite number of asymp-

totic limits along (n-2)-dimensional curved half planes. However, the given proof
depends on a certain 3-complex whose construction cannot canonically be generalized

to higher dimensions.
Our positive result on the existence of angular limits is as follows.

1.3. Theorem. Let n>2, A:{y<08'ly,=0), and let f: B"-8" be a quasi-

regular mapping such that for some a<Bn

nJifrrnlim 
suP l/(x)-al : o'

Then f has the angular limit a at e,

The proof of Theorem 1.3 is a simple consequence of a two constant theorem

for quasiregular mappings ([7]), which is based on estimates on solutions of quasi-

linear elliptic partial differential equations due to Maz'ja. The proofs of Theorems

1.1 and l.2are rather complicated. The basic idea is to use a method developed in

[6] to deform a map through adjacent cylinders into a prescribed behavior. Since

n>3, il is possible to place the "cylinders" so that their sizes tend to zero when

they approach a part of the boundary.
1.4. Remarks. l. The proofs of Theorems 1.1 and 1.2 can be modified so

that the asymptotic limits form any given countable set in the closed unit ball. One

can also obtain some related results on boundary behavior, for example from the

proof of The orem 1.2 the following: There exists a nonconstant quasiregular mapping

f: B,*Ba such that 
l,s/(r): c: constant

for y in the topological disk {z(\Ballz*erl<.|, za:O\.
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2. The Lindelöf's theorem quoted above holds for quasiregular mappings for
n:2. Theorem 1.3 reduces to a special case of this if n:2.

3. Because of the connection of quasiregular mappings to solutions of quasi-
linear elliptic partial differential equations (see [7]), our constructions give examples

for such solutions too.
4. The existence of angular limits of quasiregular mappings has been studied

also by M. Yuorinen in [8-11]. For example he has shown that for closed quasi-

regular mappings of -B' into itself an asymptotic limit at b(08" implies the exist-
ence of the same angular limit at å, i.e. Lindelöf's theorem holds for these mappings.

2. Construction of the examples

2.1. ln the proofs of Theorems 1.1 and 1.2 we shall use a construction similar
to [6, pp. 542-546). The presentation is selfcontained, hence no reference to [6] is
needed.

We denote by Bo(x, r) the open ball in .P with center x and radius r, by q
the spherical chordal metric in Ro:R'u{-}, and by (or,...,ar) the convex hull
of {ar, .-., aoli. For 1 =k=n, the sets -Rk and JRkX {0}cÄ' are identified by the
embedding (xr., ..., xo)-(xr,...,0, ...,0). We set

Hi : tr€ Rnlx, = 0), - Hrr,n .. . o Hru,

/r:[-e,e] for E=0, f:ft, B'(r):8"(0,r), B":B(l), S,-L-ABn.

All topological operations are with respect to R' if not otherwise stated.

2.2. Proof of Theorem 1.1. Set

x: f0,1lxlO, 1l c R2,

A* - {x(Rl(xr, x2)(A, -xz < xs, ..., xn = xz\ if A c X.

We shall construct a quasimeromorphic mapping (see [3]) of int X* omitting a ball
and with infinitely many asymptotic values at 0. The construction is made separately
in sets C*, C running over the set 7 of all (closed) 2-simplexes in the locally finite
simplicial 2-complex I with underlying space Xas shown in Figure l.

Fix Co(7 and an affine map hso of Cronto the 2-simplex Wt:(-er,, er, er)cR2.
Then there exists a unique set of aff.ne homeomorphisms å.: C*Wt such that
hslCnD:hrlCnD for C, D(y- This follows because each vertex of Z in X\X
belongs to an even number of 2-simplexes of I where .i is the boundary of X in R2.

Let Wbe the closed square (-rr, -rr, e1, er)cRz, for 0=e = I let w: WXI"-g *
B'-1 be the radial stretching (for n:3 we identify W:WXI!-3), and let {tr:
wtidr: (WXL:-\XI*8"-rXI. We choose s so that wgVXt;-'1cBn-ro
(R2X{-3) where er:(21n-311-ttz. We let Er: B'-LxI*En be the mapping

er(r, !, x,):(Q,y, 0) defined by p-4e*"+7, 0:nrf2. Here cylindrical and spherical
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I
I

l

x2

(0,1)

We extend F, to a quasimeromorphic mapping
ing through the faces of the cylinders A, and
gc: e**WrXI:-tX/ by

(1,1)

-+
(1,0)

Figure 1

coordinates are used so that y€5"-' and 0 is the angle between the radius vector
and the xn-axis. Set F:Ero*r. Then Flint(WXry-gXI) is quasiconformal.

Next let

A,: {x(Rldi < xi < di* l, i :2, ...,n} for a({O)XZ'-',
Tr: {x(Anl\ = -2\,

and let F1: AstHn be a quasiconformal mapping such that Ft(r)r=O if x.<0,
4(xL=0 if xr>0, FrTrc$"(-e.,ro) where we fix ro:lll0, fr(rLonn"7+e21\c
R\.8'(-e1, rof2), and

lim F1(x): -er,Xl+-6

lim d(x): er.
*l+ 6

Fo: H2,, -'R'\ {- rr, er],- by reflect-
through 0H,. For C(.y we define

gc(x) : (h"(*r, xr)1, hs(x1, xr)2, exrf xr, ..., exn-,f x2, *^l*).

Fix now §=-fro=l and M<11,2[ where the bound fo will be chosen suffi-
cientlylargelater. Letobethehyperbolicmetricintheupperhalf plane. Fix 1=pr<

xr

tata

I
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v, and set

Yo: {x(Xlxz= xf, or x, € xll},
Yo: {xqXlP(/c-l) = o(x,Y) = Bk}, k:1,2,... .

Let ä€]0, ll2l and ,r6fl'\B'(-e1, ä). In the flrst step we shall construct a mapping
f,: X**R\B'(-rr,rr) which is K-quasimeromorphic in intX*, where K and
frlY{ are independent of c1, where rr>0 depends only on ä, and for which

li: ,'33* 
th@)-clt : o'

Choose a sequence zo:€r, zL, .,., zs:zs*l:...:c1 in R' such that

M-L = Q.(:!,,,-"r), 
= ,, k : o, ..., s,q(zk*L, -9r) -

and q(zk, -er)=q(c,, -e1),k:1,2, .... Also a sequence xo:0, xt, xz, ... isdefined
as follows. For I =k<s let lobe the minimizing geodesic arc from -erto zk and,
let I be the middle point of 11,. (lf zk:e,, we let I be the geodesic through 0.) If
t=s, we let *<1" be so that q(xk,ct)lq(xs,ct)-2s-k. Let,Se be a Möbius trans-
formation of Rn such that ^9e(-er):-er, 51,(er):2k,,S&(0):1, k:0, 1,... . There
exists a Kr-quasiconformal mapping cro: R,*R,, K, independent of k, such that

aolB(- er, ro) : SrlB'(- 4, ro),

colrlH, : S**rlär.

We need a map or: Er,n*Er,n defined by

or(x) : (xr-xr, xz, xs, ,.., xn) if O < x2 < 2,

or(x) : (xr-2,xz,xsr...,xr) if xz> 2.

If z is a vertex of the complex Z, we define

P": {h;L(e)lu€D, Dey}.

We are now in a position to be able to define for each C€y the restriction
to C+ of themapf, to be constructed, call it 2.. Fix C(7. Denote (:hil (-er),
4:hct (er), a:h;'(e). Let F be Fo if hc is sense preserving and u o Fo if å. is sense
reversing where u is the reflection in åä,. Set

Qc : v {P"lu(D, €<D, D(y}.

For sufficiently large Bo, independent of c, there exists a largest integer ft such that
Q"cYovYe*r. In different cases we define r" as follows:

(1)

(2)

(3)

(4)

Tc:^-SooFoFog,

Tc : Sro F ooro Fo g,

Tc:o)*oFooroFog,

Tc : o)*oF o Fo g,

if Po c Yo,

if 1€Yr, PoaY*+t * 0,

if 7€Yrr+t; PaaYx * g,

if Po C Yk*r.

189
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We want to check that the maps rc coincide on common boundaries. It is enough

to consider D(y such that CaD is a l-simplex. Let p be the largest integer such

that QocYrvYr+r.
Suppose flrst that CoD - (€, n).

only in the appearance of the map o,1

0H, and o, is the identity in \Hr.

Then p:k. It follows that r c and r D may differ
in the formulas (1)-(4). But F o gc(C* n,D*) c

Suppose next that CoD:((, a). Also hete p:ft. We claim that FooroFo

96 (C*nD*) c B"(- rr, ro). It is enough to show or(z)r= -2 whenever z(Fgg(C* aD*).

Such a point is of the form z:(Qyu ...t eln-t;O), .7a, ..',yn-1C.Isr, Lyl:1, !t30,
!240, 4=q<4e2. We may assume O<zr<2, whence o1(z)r:7r-22' We have

!z=ll2 and yzr>l-e!(n-3)-yi=ll2-y'zr. This implies lr€-ll2 and Zr=-2,
hence or(z)r5-2. In the cases (l) and (4) we have the same definition fot ro,
so the assertion is clear. Suppose that we have (2) for C and (3) for D. In this case

we use the fact that arlB"(-el,ro):SolB"(-er,ro), and similarly if we have (2)

for D and (3) for C.

Finally, let CaD:h,a). lf p:k, the cases for D coincide with those of C
in (l)-(a). By symmetry with respect to c and D it is enough to consider the case

p:k-L. For a sufficiently large Bo, independent of C, we must have QccY*.,
and we have case (1) for C and case (4) for D which fit together on C*nD*.

We have shown that there exists a maPft of X* such that frlC*:r" for C€y'

It follows from the definition of the maps rc that fr: X**R'\B'(-er, rr) for
some rr>0 and has the other required properties for the first step; filintX* has

cl as an asymptotic value at 0. For this we observe that

'*ol'fl'.Å(x): 
t"

where d: {x(Xlxr:v!,), Ft=),r=v1 , ärd Ef nint X* contains paths tending to 0.

Let then (ci) te any sequence in R'\,B"(-er,ö), and let l-)"r<)"r<... .

If l<pr<)tr<vr=.1tr<.).r<ttz1 ..., we may deform fi in the sets yi*,yi-
{x(Xlxit=xr<.x!;}, j:2,3,..., by applying the construction from the first step

to obtain a quasimeromorphic mapping fo: intX**R'\B'(-er,rr) such that

,*jipu*/o(x): ci,

where Er: {x€Xlxr:fii}. The required mapping satisfying (1) and (2) in Theorem

1.1 is then f:hofoog where g is a suitable quasiconformal mapping of Bn onto

int X* and å is a Möbius transformation.

2.3. Remark. The paper [6] was for simplicity written for n:3' The above

proof shows how to do the appropriate modifications to obtain the result in [6] for
general n>3.

2.4. Proof of Theorem 1.2. We replace the square [0, l]X10, ll in the prool

of 1.1 by the cube X':l0,1lX]0, 1lX[0, 1] and form the locally finite simplicial
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3-complex Z' as follows. In Figure 2we let the square (po, pr, pr, pr) be in the plane
xz:ll2 with po:(0,112,0), pL:(112,112,0), pr:(ll2,ll2,ll2), ps:(O,112,112).
Let (qo,4z,Qz,qr,) be the square obtained from (po,pr,pz,pr) by the translation
x*x+e212, hence for example 46:(0, 1,0). The 3-simplexes of Z' in the part
(qr,pr,pr,pr) of X'are the 3-simplexes of the form (qr, s,t,u) where (s, t,u) is
a 2-simplex in the 2-complex in Figure2 with underlying space (po,ps,p2). The
3-simplexes of L' in the part (po, pr,1s, Qz, qo) of X' are given in Figure 3. We

Figure 2

complete the construction of Z' in the cube (po, pr, pr, ps, qlo, qt, qz, qs) by reflecting
through (po, pr, Qz, Qo). We continue the construction to three similar cubes with side
length ll2 by first reflecting through the squares (pr, pr, Qz, Qs) and" (p1, p2, ez, Qr),
and tlren through the square (pr,qr,pn,4a) where pn:(l12,l12,l), qo:(112,1,1).
We have completed the construction of L' in the layer {x€X'lll2=xr<t}. The
construction is continued in the layer {x(X'lll22=xr=ll2} by a similar construc-
tion in cubes with side length 1122. Obsewe that for example the 2-simplexes in
(p6,pl,pr) (Figure 2) are obtained from the 2-simplexes in (qr,Qs,Qz) (Figure 3)
by a similarity mapping. This gives a canonical way to continue the construction of
L' to all layers {x€X' ll l2k = xr=l lZr'-tr.

Let y' be the set of 3-simplexes of the complex Z'. Now we set

p;

A* : {x€Anl(x, , xz, Jrs) (.A, _-x2 < x4 <. xz}, A c. X'

Po

191
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Pa

Figure 3

We fix CoQy' andan affine map h"oof Co onto the simplex Wi:(-er, er, er, er)cRg.
It follows from the construction of L' that there exists a unique set of affine homeo-

morphisms hs: C*Wi sachthat h"lCaD:holCnD for C,D(y'.
Let W' be the closed octahedron (-"r., 

"r, -€2, €2, -er, er)cR3,letw': W'*Ba
be the radial stretching, and let rlt'r:vt'yidy: \Y'XI*BBXI where 1:[-1, l].
The maps gr, Fo and F are defined as in the proof of l.l. We set F':Qrorlt', and

define for C(y' gc: e* -W|XI by

gc(x) : (h"(*r, xz, xz)r, h"(*r, xz, xz)2, h"(xr,, xz, xs)s, xnlx).

As in the proof of l.l let ä(10, ll2l and let (ci) be any sequence in
R4184(-er, ä). Let us only consider the flrst step and give the definition of a

map fr: intX'**R4\Bn(-"r,rr), rr>0. The rest is similar to the end of the

proof of 1.1. The sets Io are defined as before, so are the Möbius transformations
,S1 and the quasiconformal mappings cr4.
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In each C*, C€y', we shall now deflne a map 26. We need sliding maps
oi: Hr,r,o*Ii2,8,4, i:1,2,3, defined as follows:

o1(x) : (*r-*r, xr,xr, x4) if O = x, < 2,

or(x) : (xr-2, xr, xs, xa) if xz = 2,

or(x) : (x, -x., xr, xr, xn) if O = xt = 2,

o2(x) : (xr-2, xr, xr, xn) if xs =* 2,

q(x) : (xr- xr- xr, x2, xs, xa) if 0 < x2* xs < 2,

o3(x) : (xr-2, xr, xu, xn) if x2*xs > 2.

For a vertex u in the 3-complex L'we set as before Po:{h;l (er)lu(D, D(y'}.
Fix C(y' and denote (:hi'(-er), q:hc'(er), a:hc'@r), b:h;a(er), and

Qc : v {P"luQD, €€D, D€y'}.

Let n: R3*Å2 be the orthogonal projection. For a sufficiently large Bo, independent
of C, there exists a largest ft such that nQrcYovYo*r.

The possible cases are as follows:

(1) nPo, nPo c Yo,

(2) nPonYl,*1 * 0, nPu c Yo,

(3) nPo c Yo, nPuaY1,11 * A,

(4) n(n)(Yo, nPoay1, 11 I 0, npuayyn, I 0

(5) rPoaYl" I A, nP6 C Y1,a1,

(6) ftPo c Yo*r, nPoaYo * 0,

(7) n(q)EYu*r, nPonYl, * 0, nPuaYo # A,

(8) nPo, rPu C Y**r.

We define rs in these cases to be the following maps:

(l) Sl,oFoF'ogr,

(2) Sl"oFooroF'og.,

(3) S1,o F o oro F' o g, ,

(4) Sl,oFooro F'ogr,
(5) @*oFaofF'ogr,
(6) o)roFoo2oF'ogs,

(7) ayoFooroP'ogr,

(8) crrloFo F'o g".
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Let us now check that rglC*nD*:rolC*oD* for all D(y'. We may sup-

pose that CnD is a 2-simplex. Letpbe the largest integer such that rQ»cYrvYo+r.
Suppose first CnD:(€,q,a). Then p:ft. The maps rg and r, may differ

only in the appearance of the maps o;. We observe that F'og"(C*nD*)c0Hr.
Since å;1(er):hi'(er):a, all possible maps o, coincide on \Hu. In fact, if the

formula for 16 differs from that of tp, then the possible pairings are the following:

(1) for C and (3) for D.

(2) for C and (4) for D,

(5) for C and (7) for D,

(6) for C and (8) for D,

plus the interchange of C and D. The case CnD:((,n,b) is similar.
Suppose next that CaD:(€, a, å). Also here p:ls. If the defining formulas

for z" and rD are different, the only pairing which can occur is (4) for C and' (7)

for D plus the interchange of C and D. But FooroF'og"(C*oD*)cBa(-er,ro),
and we use the fact aolBa(-et,ro):SelBa(-er,ro) to conclude that ts and rp
coincide on the common part C*aD*.

Suppose finally that CaD:(q,a,b). If p:11, the cases (1)-(8) coincide

for C and D. By symmetry we may assume p:k- 1. For a sufficiently large Bo,

independent of C, we must have rQcc Iu, and we have case (l) for C and (8) for D.

These fit together on C+nD*.
We have shown that there exists a map Jr of X'* such that fllC*:r" for all

C(y', frlint X'* is K-quasimeromorphic K not depending on ct, and f, omits a ball
Bu(-er, rr). For AcX:l0,llXl0, ll we denote now

fi : {xEX'l(xr, xr)e A\.

We observe thet frlYf is independent of cl and

'*li.Ttu1Å(x): 
ct'

where xo:srl2. Ei is as before a set {x€Xlxr:xlil. This completes the first step

of the proof. The construction is completed as in the proof of 1.1 to obtain a quasi-

meromorphic mapping f{: irtX'**R4\Bu(-rr, rr) such that

,*l11.nrl6{'): "'
The required mapping is f:7"fio7 where g: Ba*intX'* and h: Ra*Ra are

suitable quasiconformal mappings. The 2-manifold t/, is the preimage by g of a

part of the 2-manifold {x€Eilxa:0}. The theorem is proved.
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3. Existence of angular limits

To prove Theorem 1.3 we need a two constant theorem for quasiregular
mappings. lf f: GtR" is quasiregular, then the function u(x):tog171*71 is a
solution of a quasilinear elliptic partial differential equation [5]. By using estimates
for such solutions due to Maz'ja [4] we proved in [7] the following result which is a
local two constant theorem.

3.1. Theorem 17,4.221. Let f: G*N be a quasiregular mapping of a domain
G in R", let O<m<M, let U be a ball B"(2, q), and suppose

(i) lf (x)l = M il x(G nU,
(il) liTjlplf(x)l=m if !(0GnU.

Then

lf@)l= exp(Blog m+(I-$logM) if x(GaB"(z,yq)
where 0<y<yr,

§ : c cap (U, B'(z, ra)\G;'rt' -t) log (1/y),

and yo-.112 and C are positiue constqnts depending only on n and the maximsl dilatq-
tion K(f) off. The capacity in the expression of B is the n-capacityfor condensersl2f.

3.2. Proof of Theorem 1.3. We shall use Theorem3.l in a simple iterative
method. We first form a sequence Dr, Dr, ... of subdomains of B' inductively by
setting

Dr : Bn o U B"(r, yd(2, 0B\A)),
z(A

Di+r: ,'n 
,rUo,B'(2, 

yd(2, AB'\l)),

where y:yo is the constant in 3.1 and dis the Euclidean metric. Let K be a cone
K(er,E), 0=E=n12. There exists a positive integer k and ,r=0 such that
KnBn(er,s)cDo. Given e>0 let ä>0 be such that ä<s and

limsup lf(x)-ul < e if y( AnB,(er, 6).

Then Theorem3.l applied to balls B'(z,d(2,åB'\l)), z(AaB"(er,ö12), and, to
the mapping /-a gives

l.f (x)-al < sabee if x(DraB,(er, ö13)

where B:(%11(n-t) log(1/y), C being the constant in 3.1 and x the capacity of
the Grötzsch ring B'\{te,l0=l=7}. By repeated use of this we obtain

lI@)-ql <. s|ktoEe if x(DonB"(er, ål3o).

Hence

**Lig,*f(*): o'

3.3. Remark. By the method in the proof of Theorem 1.3 it is also possible
to prove a global two constant theorem for general domains.
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