
r-et {yr}}, be any sequence of complex numbers. The infinite matrix -l' given by

(Y, Y, Ys ...\
lr, ,, yn ...1.: l;; ;,; ;; |: (ri*o-,),

['i ':. ' 

; ::. 
)

is called a (inflnite) Hankel matrix. If, when we let l- operate ort 12 in the usual way,

we obtain a bounded linear operator from 12 into /2;we say 'l'(G-' The following

theorem completely characterizes G-.

Theorem 1.1 (Nehari) fl}l. Giuen I:(h*o-r) then f €G- if and only if there

exists F(L* such that

,r: t* j"ikeF(o)do,
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L. Introduction

for k:1, 2, .... Moreouer,

ilrlt -,,, r, - sup ll|(ll' - dist(4 H-) =,iqf llr-all-.
,,!fi:o ll(ll' 

' h€H*

Using the notation of the above theorem it will be convenient to identify an

arbitrary matrix in G- with f F, F(L- . Of course F is not unique but for our pur-

poses, any member of the corresponding coset in L*lH- will suffice.

Nehari's theorem establishes a connection between the problem of approximat-

ing a given Z- function by H- functions and, that of determining the norm of
a corresponding operator on /2. A generalization of the flrst problem that has been

investigated by several authors is to consider approximating an I- function F
by functions of the form h(z)lp,@) wherc h€H* and pn is a polynomial of degree r.
It is this more general approximation problem that draws attention to studying

multipliers of Hankel matrices for as is shown in Section 4, it is equivalent to

finding a multiplier of a certain type whose product with I, has minimal norm.

The problem of characterizing all multipliers thus arises and is solved in Section 2

where we show that these multipliers are isometrically isomorphic to I/-. In Sec-

koskenoj
Typewritten text
doi:10.5186/aasfm.1980.0520
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tion 3 we relate the properties of a given multiplier as an operator on G- to the
properties of the corresponding ä- function. we conclude in section 5 by making
some remarks and discussing an open problem.

One may wish to compare this characterization of the multipliers of Hankel
matrices with the corresponding theorem for Toeplitz matrices which was given
by Brown and Halmos [5]. Although it is not explicitly stated in their paper, the
multipliers in both cases are identical, that is, as in the case of Hankel matrices,
the space of multipliers of Toeplitz matrices is isometrically isomorphic to I/-.
The similarity between these two spaces of matrices seems to stop there with regard
to their multipliers for there doesn't seem to be any theorem for Toeplitz matrices
which corresponds to Nehari's theorem. It is also somewhat interesting to compare
the proofs of these two characterizations for in the case of Toeplitz matrices it is
somewhat elementary whereas in the case of Hankel matrices, it is defrnitely non-
trivial.

2. Multipliers

An influite matrix M:(ai)i,i is said to be a multiplier of G-, the set of all
(bounded) infinite Hankel matrices, if for every f<G*,Mf<G- where M,l- is
ttre usual matrix product of M and f .

lf M is such a multiplier we define the norm of M by

llMll: ffi llurl.
ltr[ =1

If llMll-.- we call M a bounded multiplier of G-. Let.,il denote the set of all
such multipliers. We shall see in Section 5, that every multiplier is apriori bounded.

It is not difficult to show that a necessary condition for M to be a multiplier
of G- is that M be of the form: M:(ai_)i,i where a_o:g ge1 k:1,2,...,

(2.L) i.e. fuf-

I i' l: ,:]
Thus, each multiplier M is an, upper triangular Toeplitz matrix and can be identi-
fied with a sequence {**}åo of complex numbers. The following theorem shows
that each multiplier is in fact a bounded Toeplitz operator on /2.

Theorem 2.1. The matrix M is a bounded multiplier of G- if and only if there
exists E(H* such that

(2.2) dk: * f E@iu)eike d0, for k - 0, 1 ,2, ...

where {oo}Lo corresponds to M as in (2.1). Moreot)er, llMll -ll Ell*.
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Proof. Let M be a (bounded) multiplier and ln:l(z-"). the matrix corre-

sponding to z-n by Theorem 1.1. Then Mfn-f (z-"En) where q*(z):)i-f,a1,2k.
Since

dist(z-"rpn, H-) : llMf "ll = llMll,

it follows that there exists å,(I1- such that llz-"E,,-h"ll*=llMll for n:1,2, ....
Thus the sequence {E,-r"h*}7, has a weak x limit cp,whete EQH-. It is clear

that E satisfles (2.2).

Now suppose q(H* where E(z)- Zloaoro. Let Mr:fu, where M corue-

sponds to {«o[]o as in (2.1). If i-:.1-r:(t i+x-t)€G-, then since Ef<L-, it follows

that f ,1:(ti*o_r)€G- where

yi: ; djyk+i.
j:0

However, the matrix fui*i-r) coincides with formal product M*1. Thtrs M, is

a multiplier of G-. Now as we have just shown Mrly:lEy, and so since

;lrryll : dist(<pf , H*) = llEll- dist U, H-): llgll-llryll,
we have llMall=llEll- and hence M, is bounded. The following lemma completes

the proof of the theorem.

Lemma 2.2. Giuen E€H*,llEll-:7 and t'>0 there exists F€L*, llFll-:1
such that dist(gfl H-)=1-r.

Proof. Let er>O be given. Choose a sequence {r,Y, from the open unit disk

D such that lim,*- g(2,):»'0, where 1-er=lwol=1 and where

l. lwo-E(z*)l<e, and,

2. l -lzn+tl€|12(l-lz,l) for n:1, 2, ....
The sequence {2"\L, is therefore uniformly separated and so 16, 9 p. l48l

there exists G<H-,llGll- =ke, such that

G(z-\ : wo-Erkr) 
for n : l, 2, ..., where e2: -;. --:+-v \.il - woE(2,) , '---' -a (l _e)(l _2e)

and k is independerLt at e2. Now set F(z):fi1r1t(z) where

B(z) : i,+(G), and g(z) :#ffi
The function

L t -\ _ ll*;' * Gll--'_ s(4! (4 
e u*n\z): ---- U(4

and is in fact the best ä- approximation to EF. This follows since

EF-h - llw;t+Gll ;L B(1

disr (EF,H*)= I -#;.
which implies that
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3. Properties of multipliers

Each E(H* defines a bounded linear operator from G- into G- by f +M*f .

The following proposition relates the properties of the operator M, to properfies

of the corresponding fI- function E.

Proposition 3.1. Let E€H-. Then

l. M* is onto G- if and only if the outer part of q is inuertible in H-,
2. the inuerse (Mr)-t exists and is a (bounded) multiplier if and only if rp is

inuertible in H*,
3. M* is one to one if and only if q is an outer function and,

a. if E has a non-constant inner factor s, then the kernel of M, is the set of mat-

rices corresponding to SH-.

Proof. 1. Let E€H-, then we may write E:sk, where s is an inner function
and k is ao outer function. Assume k-L€.H*. To show M*is onto, it suffices to
show by Theorem 1.1 that every f(L- can be written as Eg for some 8:€Z-. The

implication follows if we let g:fsk-I. Now suppose M, is onto and k-|+H*.
Then there exists a sequence {aofire D such that k (ar) r=- 0 and ff=, (1 - la;l) = -.
Let

B(z\: fi Yn( 
=ot ='lilt ai \l-aiz)

and suppose there exists /€Z- such that M*ly:f s. This would imply that

Ef+lx:B for some he.H*, and hence kg:7-Bh<H* where g:s31. Write
kg:s1k1, where s. is inner and k, is outer. Set kr:ftr1ft. Then g:srkz and so

g<H*. However this is impossible since ftg(ar)*l and k(ar)*0.

2. Suppose M* is a (bounded) multiplier with an inverse (Mr)-' which is

also a (bounded) multiplier. Then (M*)-L-M{, for some {t(H*. Since (i-(,4):
(MeMvf*4) for all f€G- and (,qd' we have [1] that

{
rlt q Fg d0 Fg d0 for all F€L* and g€ HaL.

Hence {rp:l a.e. which proves our assertion.
Conversely, if E-tEr*, then Mr-, is a (bounded) multiplier, and by the

previous argument (Mq-rMefC,rl):(l(,4) for all (,4Q12 and for all f€G-.
Therefore (M*)-L : M*-r.

3 and 4. Again let E: sls where s is inner, k is outer and suppose there exists

ft, fr(L* suchthat: MrlTr:Mr.l'rr. Thisimplies s(fr-fr):hk-1 where hcH*.
A similar argument as that in the proof of part (1) shows that s(fi-f2)€ä- which
implies that (fr-frx3ä-. Thus we see that if 9 is outer, i.e. s is constant, then

fr-fr(H- and so f .r,:f tr.

9*

-{
0
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4. Diminishing multiPliers

Theorem 4.1. Giuen any f p(G- and e>O there exists a multiplier M* such

that llM*f ,ll<e.

Proof. We may assume without any loss of generality that llfoll< 1 and [2]

that lFl:1 a.e. There exists Blaschke products Br,B, such that llF-BrBrll*=e
[8] and so if we let E:3, it then follows that llMrTrll:lll-rpll=e'

The proof of the last theorem shows that every j-(G- can be ,'diminished"
by multipliers of a special type, namely, M*where E is an infinite Blaschke pro-

duct. This naturally leads to the question of whether a given matrix l- can be ar-

bitrarily reduced in norm by multiplication with even more elementary multipliers.

In particular, multipliers of the form M* where I is a flnite Blaschke product' Such

a multiplier corresponds to a matrix which is the finite product of matrices of the

form:
a,2

EFT 
a az Ng

a20 ,+ , .t :{'2lul"-t 
,a'

0 0 -ffi ct

lll- - I
q

0 0 0 !' ..
lal'- |

oa

aa

aa

0<lal <1

If this product contains n terms, that is if g is a finite Blaschke product of degree r,
then we call M*a geometric multiplier of degree n. Let the set of all geometric multi-

pliers of degree n be denoted by -//".
It is obvious that given any.l-(G* and any M(flo then llMfll=flfll and

hence every multiplier in. .//, can be viewed as a diminishing multiplier for G-.
The next theorem establishes a relationship between diminishing geometric

multipliers and approximation by generalized rational functions.

Theorem 4.2. For each fr€ G*,

351

Ko

where

K*:-at#) and

o'#:ll' *l-
PnQ 9n

where gn denotes the space of algebraic polynomials of degree n or less.
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Proof. If MaQ//, then rp is a flnite Blaschke product of degree n and so

*)\f*.llM*f'll - ;!å,. 
dist (EF' H*)

: 
,U^dist(F, @H-)

inr ll"--- 1-ll
r?'ii* ll' [f i=,Q-a)ll-

oj"tt:.1..,,

where on denotes the set of finite Blaschke products of degree r. Now in each case
F(L- we have that

,,j*tl, ll' -qt"h=rlll- :,:$,, ll.-* ll-k:1,...,n

If we apply a result obtained by Adamjan, Arov and Krein in their paper [3] in
which they extensively studied the problem of approximating a given F€I- by
functions of the form hf p,,h(H*,pn(gn, and its relationship to the properties
of f. as an operator, we can state the following

Corollary 4.3. Giuen any f (G- and n€N, there exists Mo€.il, for u,hich
ifr*r*^llMfll is attained. Moreouer, lMoffi:,S,(l-), where S,(f) is the n-th s-
number of f pl.

We are naturally led to ask for which Hankel matrices l-,
limn*- iffrr*^llMafll:0, since as we have already observed, given any f,
ifi llMrf ll:0 where the inf is taken over all Blaschke products.

Theorem 4.4. If f F€G*, then lim,*_ irtfuen.llMf ,y:g if and only if
F(H*+C, where C is the algebra of continuous functions on 0D.

Proof. If lim,*- inf*r*, llMf rll:0, then there exists a sequence of functions
{ho+ro\i, where ho(H-, ro is a rational function having all of its poles in D,
and such that limo*- llF-(/zofro)ll-:6.

The functions ho1r1,(H- *C and hence [ll] since ä-*C is closed the suffi.-
cient portion of our theorem follows.

The converse follows immediately upon applying Weierstrass's theorem.
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5. Remarks

As we mentioned in Section 2, it is not necessary to assume that a multiplier

M, is bounded. That is,|f M, is of the form (2.1) and M,|CG- for all r(G*,
then

suP llMrl-li--'
il.',flå

This is not difficult to demonstrate for such a multiplier must by necessity also be

an operator deflned on all of 12 and so is a bounded operator since it has a matrix

representation [4, p. 50]. (The same reasoning shows that any 'oHankel" operator

is bounded.) Let
llM*ll"o: ;lB llMaCll.

ll ( ll2=1

Then
llM*ll =.tr& Il M,,4: sr;g- 

1uu,, 
llM*r(ll = llMEll'o'

ilril=1 lllll =1 116112=1

One can in fact show that llMrll:11Mrll,o fot if M, is a (bounded) multiplier then

E(H* and so the Toeplitz operator M*has norm llM,pll"r:llqll- [7, p' 179]' Our

claim now follows since by Theorem 2.1, llMrll:llEll*'
A problem which arose in proving Theorem 2.1 which seems to be open is

whether given any FQL* with llFll-:1' does there exist G(L- such that

lcl:lrl a.e. and dist(G, H-):1.
It is not difficult to prove this in the case where lFl:1 on some arc. one can

also view Lemma 2.2 as a partial solution to this problem'
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