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INTRODUCTION

A(0l\t,D) and Bj(0l\t,D), .j :1,...,%, be linear paftial difrerential
with complex constant coefficients or, as we shall sim.ply s&y, differential
in R,X,R'. This paper is concerned with the follor,ving initial-boundary

A(010t, D)u :.f in R* X Rn*,

on Rn*,

R* XR'-l:8j on

investigate the existence and uniqueness of solutions to the problem (l)-(3),
suitable function spaces, äs well as the validity of a priori estimates of
(see Section 12)

ll u ll = c(tt f ll + ll ((@*)o , (g;);) ll)

0oul

wl,:o: (P*

B j(010t, D)ul*^_o

with the corresponding norms; note that throughout the paper C is used to denote
a generic positive constant.

The idea of our treatment is in brief as follows: First, we make use of the
Laplace transformation with respect to I to transform the problem (l)-(3) with

er,:O and 8;:0 into a parametrically quasi'ellipric boundary problem

A(r,D) U - F

Bi(z,D)Ul*,,_o :0

in Rn*,

on R'- 1,

where z(C with Re z>0. Second, in order to handle boundary problems of this
type we exploit the results of our previous paper [6]. Third, by means of detailed

analysis of the initial and boundary values of functions defined on .R- XRl , we

are able to treat the problem (l)-(3) in the general case.
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M. S. Agranoviö and M. I. Vi§ik have investigated in [1] the classical parabolic
problem for which the boundary problem

A(z,D)U:F in Ro*,

BiG,D)Ul,^=o: Gi on Rn-r,

is elliptic for every zQC with Re z>0. We shall therefore flnd it natural and
motivated to call our problem quasi-parabolic.

Besides this introductory chapter, which also includes the flrst two numbered
sections, there are three chapters.

The first deals with anisotropic Sobolev spaces, in Sections 3 and 4, and with
Hilbert spaces of holomorphic functions, in Sections 5 and 6. It will turn out that
these spaces form, from our point of view, a natural framework for the study of
the problem (1)-(3).

In the next chapter we give first a result concerning initial values in Section 7.

In Section 8 we then discuss the compatibility of initial and boundary values; the
results are related to those of P. Grisvard [2].

The last chapter is devoted to the realization of the plan sketched above. In
Section 9 we obtain an a priori estimate in the case of homogeneous initial values.

The existence and uniqueness of solutions for homogeneous initial and boundary
values will be proved in Section 10. In each of these sections we make essential use

of the results of [6]. In the general case we first give a necessary and sufficient con-
dition for the existence of solutions in Section 11. The uniqueness of solutions is

also proved. In Section 12 we then study the validity of a priori estimates and
obtain a condition which turns out to be both necessary and sufficient. Finally,
it is illustrative to consider the special case of normal boundary operator systems

{Bt(D)}. This is done in Section 13, and we shall see that the necessary and suffi-
cient condition for the problem (l)-(3) to have a solution takes now a very con-
crete form. In addition, it will be shown that the condition obtained in Section 12

holds; hence an a priori estimate of the form (4) is also valid. We hope to discuss

the general case of normal boundary operator systems {Br(010t, D)} at a future
time.

Acknowledgement. For financial support I am indebted to the Emil Aaltonen
Foundation.
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1. Parametrically quasi-elliptic operator systems

1.1. Let r(R:R" denote the dual variable sf t(R:R, and (:((,C,):
((r, ..., (,-r, Q)(R':R", the one of x:(x', x,):(xr, ... , xn-r, x,)(R":Ri, and

set
(,, () : xt€rl "'*xn(u'

Let m1,, k:0, l, ..., fi, be positive integers, H:max {m1}, qy: pf mx, and

Q:(Qr, ... , Qn).

We set

(/ ) -
\!,/ :
/ J-\\r. /

and

where w

for z €C
Let

for every

1.2.

(r) - lwl't',,

stands for r€R or for a complex number z-Re z*ilm

and for rl: ( or C.

Dk be the operator -i\l\xr, k - l, ..., t1,, D:(D, ) ..., Du),

mutti-index a- (or, . . ., dn)€ l{n.

We assume that we are given differential operators

4(r, D) : Z eoo zk Do (k€ l{, n€ I{')
kqo+ @, q) 

= 
p

z CC; set also

and set

bi,r*4 ,

l(nltt'",
(<c'>u + <c">u)'tu ,
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and
B1Q, D) : 

ono*qfiy=o.bipozkDn, 
i : l, ..., %,

depending on the parameter z(ZcC, where the coefficients a*o and bi6 &re

complex constants, &;=0 is the order of B1(z,D), and x is a positive integer.
The corresponding principal symbols are

Ao (=' 0 : 
ooo*åo): ua*ozk 

("

and
Bik, 0 : 

uro*rÄ=o 
bir,ozk €", i : 1, ..., tt.

The parameter set Z wlll be a sector Z:Z(ar,a4)cC,o)L3e)2,

Z(ar,cor) : {z(Cla1 = arg z = 69z).

1.3. The operator system

(112, n), Br(2, D), ..., B,(2, D)), I = 2,t < rytn,

is said to be parametrically quasi-elliptic in Z if
(l) Ao(2, t)+O for all z(Z and all (€R' such thal h(2, O=0;
(ii) for every z(Z and every ('Epn-r with h(2,(')>=0, the polynomial

Ao(z,t',0 in (the complexvariable) ( hasexactly z roots (!(2,('), j:1,...,%,
with Im (f (2, (')=-0;

(iii) for every z(Z and every (<Rn-' with h(2,(')=0, the polynomials
B](2,€',() in (, i:|,...,x, are linearly independent modulo

A* (2, €', O : ; G-q Q, E)).j:r
(See [6].)

2. Quasi-parabolic problems

2.1. We shall employ the notation

R! : {x - (x', x,,)€R,lx, > 0},

a : -R+ XlRi c R,xR!,

» : R+ XR'-lc RrXR];r.

Let 0, stand for the operator 010t, and let 7, and y, denote the trace operators
with respect to t and x,, respectively, i.e.

yru : ulr=s, ynu : ul*^=s.

2.2. Problem (QP). Let us consider the operators (see 1.2)

A(0,, D) : 2 aoo\! D"
kq,+-(a,q)=P
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and
Bi(0,, D) : 

orr*<]n)=u,bi*nolDn, 
i : l, ..., x.

The formal setting of the initial-boundary value problem (QP) whi«,h we shall

study is now as follows:

A(D,,o)u :7 in Q,

yr\lu:Er on Ro*, k:0,...,ffio-|,
Y,Bi(0,,D)u : 9,i on », i : l, ..',%.

We shall come later on to the realization of this problem, the actual object

of study, by fixing the function spaces to which the data f, ,po, Ei, and the solution
u aretobelong.

2.3. We say that the operator system

(A (0,, D), (y,0!) o, (y, B i (0,, D)) i)

is quasi-parabolic and that (QP) is a quasi-parabolic problem if the operator system

(,172,o1, Br(z,D), ..., B*(z,D))

is parametrically quasi-elliptic in the sector Z:Z(-rl2,nl2).

SOME FUNCTION SPACES

3. ä"-spaces

3.1. If X is a (complex) normed space, its norm will always be denoted by

ll .llx.
The normed space of bounded (linear) operators of a normed space X into

another normed space I is denoted by L(X;Y).
If X,Y, and Z are three normed spaces such that XcZ and YcZ al-

gebraically and topologically, we shall equip the space V:XnY with the norm

llull v : 111 ulli + ll ullD' t'z.

Note that if X and Y are Hilbert spaces, so is XnY.

3.2. Let X be a Hilbert space, and let g be an open set in .Rt.

Let Ci(A;\ denote the space of C--functions z: Q-X having compact
support suppac0, and let C|@;X) be the space of restrictions to O of
C7 (Ro;X)-functions, where O means the closure of O.

Let ?'(Q;X) be the space of X-valued distributions in Q,?'(Rk;X) the
space of tempered distributions, and LZ(Q;X) the Lebesgue space.

33
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Suppose now that no:R! is R,, R*^,RX;L or rR], and set

K(rD: O-t(r»)'t',

where ry is the dual vector of y. For s=0 we then recall the definition of the

anisotropic Sobolev space ä"(O;X) of order s:

First,
a"(Rf ; X) : {u( 9' (R!; x)l x(D qu < L'z (R!,; X)}

with the norm
ll u ll prnu; xr : ll KQ) frrull azlnk ; x) ;

where Fru is the Fourier transform of z,

(frru) (tD : { e- i <n''> u (y) d y,
and then

H" (Q ; X) : {roUlU( H" (Rk ; X)}
with the norm

llallrrro,rr : inf {llUlla'«kllol(I(HS(Ro; X), roU : u\;

here rn is the operator restricting to Q functions (distributions) defined in R&.

Note that H' (Q; X) : L2@ ; X).
When X:C, the symbol C will be omitted.
For trace theorems and other basic results for H"(Q;X)-spaces we refer

to the works of L. Hörmander, J. L. Lions and E. Magenes, L. R. Voleviö and

B. P. Panejah, and other authors cited in Lions-Magenes [4], p. 105, and also

to L. N. Slobodeckii [8] and M. Troisi [9].

3.3. For any z€C the Hilbert space ä,"(A!) is defined to be the space ä"(Ri)
equipped with the norm

ll u ll r,'rn, : ( ll u ll ?. «**r 1 I z)2" ll rr l1 fro, *^,1)' 
t' 

;

the definition of the space fl,"(R'-r; is analogous. (See [6].)

3.4. For ft+:Ar,+ let H§(R*; X) be the closure in H"(R*; X) of
CI(R"; X), and if s:kqo*qol2 with ft€N, set

ädo(R*; X): {a(är'(R+ ; X)lrltz\!u(L'z(R*; X)}

equipped with the norm whose square is given by

ll, ll L" r*. ; xt * l' t-'t' 0! u 1127, 1n * ;x't

(cf. Lions-Magenes [4], Chap. I, § l1). We define then the Hilbert space ä$;(Ra; X)
as the space ä0"(R*; X) if slqol2modqo and as the space äfo(R*; X) if
s:Qol2 mod 40.
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3.5. For R+:R,,* andforany s=0 wedefinetheHilbert space ä"(R+; ai X)
by

ä"(R*; e; X):{u(9'(Ra; X)le-etu(H"(R*; X)}
with the norm

ll ull s"1n* ; o;x, : lle- ot ull ns(Ä+ ;x).

The space f/1"oy(R+; a; X) and its norm are introduced similarly.

4. ä(")-spaces

4.1. For s>0 and r>0, define (see 3.1)

H""(Q): fr"(R+ ; Ho(R"*))nHo(R*; ä'(R!)),

H i6i@) : Ilio; (R* ; ä0 (R!)) n äo(R* ; H' (R*)),

and analogously the spaces ä'''(.t) and .Hi,;i(D.

We set, for any g>0,

H""(Q; q) : 11"(R* ) Qi Ho(R+)) n ä0(R* ; a; ä'(Ri))

or, equivalently,
H',' (Q ; 11 : {u ( 9' (Q\l e- et u ( Ho'(0)}

with the norm
ll ull s ", <a : ot : lle - ot ull s.,, 1e1.

In similar way one introduces the space ä','();g) and further the spaces

ul6i@; s) and äfti(); o)'
The following three propositions can be derived, for example, from the results

of Slobodeckii [8], or directly proved by methods closely related to those used

in Grisvard [2]; see also Lions-Magenes [5], pp. 9-12. Without further mention,

we assume that g ?0 is given.

4.2. Proposition. Suppose §>0,r>0, and kQN,a(N" such that

kqo *(o, 
q) 

= ,.§r
Then \fD' is a continuous operator

H"" (Q; q) * llsx'r"(|Q; q)

with
s1 rd , (kq, , (4, S))
T:7:'-[, - r )

(the operator norm of 0!D" being less or equal to Po(g), where Pu is a positiue

polynomial of degree k in q).
An analogous result holds for the space ä'''(); g)'

35
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4.3. Proposition. Suppose s>O and r>qnl2. If j<N with r-jqn-qnl2=O,
then y,DN is a continuous surjectiue operator

H""(Q; Q) * H"r"t(Z; Q)

(C: (» is dense in H""(Q; q)), where

ti 
-'i :1-l%J3,12 .§rr

4.4. Proposition. Suppose s>qol2 and r>-0. If k(N such that s-kqo-
8ol2=0, then yr}! is a continuous surjectiue operator

H""(Q; q) - lIe*(R*)
and

H""(»; Q) * HP"(R-'),
where

P* , kqo* qol2

4.5. In the sequel we shall employ the ä"''-spaces in the case s:r. It is

therefore convenient to introdur,e the notation .g(s)-gs,s.
The following two results can be obtained from Propositions 4.3 and 4.4,

respectively, by the open mapping theorem, for example.

4.6. Proposition. Let p=0. If s>Qnl2, then the mapping

y",: (yrDi)irn<s-4nt2
is a surjectiue operator

HG) (Q; d * { 
HG -is^-sntz) (Z ; p),

and it has a continuous linear right inoerse (l)"t.
4.7. Proposition. Let q=0. If s>qof2, then the mapping

y"t : (yif)kso<s-qoil
is a surjectiue operator

HG) (Q ; d * { 11s -r<eo- eotz (Rna),

qnd it has a continuous linear right inuerse (yi)^'.

4.8. Let X and I be two (separable) Hilbert spaces forming an interpolation
couple {X,Y}, that is, XcY algebraically and topologically such that X is
dense in Y, and denote the corresponding intermediate spaces by [X, Yfs,O<0<l
(see Lions-Magenes [4], Chap. I). We recall two basic results (see [4], pp.27--28):

First, if {9, q) is another interpolation couple and if

tt€L(X; 9) a L(Y;U),
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then the interpolation theorem says that

leL(lx,Ylr; [9[,U]r), 0= 0 =1.
Second, reiteration holds: For 0<a<B<1,

llx,Yl,,lX,Y)e), : [.X,Y)G-u)n*up, 0 = 0 = l,
with equivalent norms.

We are now in a position to state the following result, obtained by methods
similar to those used in [4], Chap. I, §§ ll, 13 (cf. also [5], Chap.4, §2).

4.9. Proposition. Suppose s=r>O, and let Q stand for Q or Z. Then

[f1(") (o), Ho) (Q))o - I1((1-0)§+0r)(O)
and

tr{dl (o), u [;) (o)1, : ä(gi-a)§+,r) (o)

(with equiualent norms) for e,uery 0,0<0<.1.

5. ,*"-spaces

Throughout this section, let X denote a Hilbert space, and suppose q >0
and s>0.

5.1. For R:R,, we define the Hilbert space äi(R; A; X) by

äi(R; g; X): {u€9'(R;X)lsupp u cE*, e-o'u(H"(R; X)}

with the norm
llullri <n, o, xt : lle- at ull6 

" 6; x1 .

This space is not essentially new. In fact, we have

5.2. Lemma. Themapping

1o:äis;(R+; a; x) * äi(R; Q; X),

Inu: u- (u- : extension ofu by zero for t =0),
is an isomorphism with inuerse

I*:Hi(R; e; X) *äisy(R*; Q; X),
I*u: r*u (r+: restriction operator rpr).

Proof. We are going to show that Io is a continuous bijective linear mapping.
Then, since äfi1(R+; A; X) and ffi(R; q; X) are complete spaces, the open

mapping theorem implies that 1o is an isomorphism.

5.2.1. From the definition of f1,"0,(.R +i a; X) it easily follows that 1o maps
äö(A+; a; x) into ä| (R; o; x).

37
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5.2.2. Let us suppose that ueäi(R; s; X). Then V:e-a'ueH"(R; X) sat-

isfles supp VcR*, and if we set u:I+o:t+u, we have

U : e-et u : r +V (H"(R* i X).

Now, it is not difficult to see that
U(Hå(R*; X)

Therefore, at least,
f +u : a(äd(R* ; A; X).

In the case s:kqn*qsl2,k(N, we must continue. To do this, set Vr,:01V. Then

(l) VoEHeotz(R; X) and srtppYo c R*.
Furthermore,

Wy: r,,VoqHeol2(R*; X), w*: \lU.

By (1), we flrst conclude (cf. [4], p. 52) that

{r-,0, I llvkQ+x)-vkQ)ll211dt =*.
Hence, in particular,

t

I r'at I lwrt\lTa, --.
00

From this it follows (cf. Hewitt-Stromberg [3], § 18) that

Thus we obtain U(Hö(A+; X), so that

f at:: z€Ilio1(R*; A; X).

5.2.3. If u(Hiq(R+; a; X), we obviously have lqlsu:r*tl-:t't. Since

suppucE* for u€ä|(R; Q; X), we have also .Io1*u:(r+u)':u. Accordingly,
r - t-lt + -to

Finally, the definition of äis;(R+; X) implies that Io is continuous.

5.3. We now introduce the normed space /{"(Cr; X), where

Cr:{z€ClPiez>g},

as follows: We say that U€af,"(Cr; X) if
(i) U: Cn* Y is holomorPhic,

: t"+j* -(ii) sup J- @+it)2"llu(o+it)ll]*dr: sup T I (z)2"llU(z)llz,adz <*,
o>e -a 

o-e I o!i*

and equip //"(Co; X) with the norm whose square, for U(a?(Cr; X), is given

by the expression of (ii).

! 
/-1 ll 0f ull?dr : 

! 
r-tllwo(r)ll ?d, < oo.
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From Theorem 7.1 of Agranoviö-Vi§ik [] (the proof of this result for X-
valued functions is essentially the same) it follows that the Laplace transforma-
tion 9,

(gu)(z): i e-"u(t)dt,

is an isomorphism of ä| (R; o; X) onto /f,'(Cn; X). In view of Lemma 5.2

we thus have (an adapted Paley-Wiener theorem)

5.4. Proposition. The Laplace transformation I (or 9oI) is an iso-

morphism of Hio)(R+; a; X) onto /f"(Cn; X) with inuerse 9-1.

5.5. Corollary. af,"(Cn; X) is complete.

5.6. Corollary. If U</l'(Cn; X), then

llu ll'*" <c,, *t : I k + ir)2' llu (s * iflllr, dr

with (I(q-lir):fi(e- etg-LU)- (see Lemma 5.2).

Proof. First,take U(ffl(Cn; X) and set u:g-r t/. Then

U(q+ir) : fr,(e-a'u)- (Lz(R,; X).

By the Parseval formula we now obtain

e-zpt llull|, dt

: !lute+iflll'zydr.
Next, suppose (I(tr"(Cr; X) with s>0. Then z"tqou€fft(Cs; X), so that

llu lllx, <c,, *t : ll z s t u o (J 
llzs o 1c, ; xt : I k + iry'" ll u (e + ir)ll'* d.r .

In the following statement we use the notation and concepts introduced in
3.1 and 4.8.

5.7. Proposition. Let Y be a Hilbert space such that X and Y form an

interpolation couple {X,Y}, and suppose s>0. Then for euery r,O<r<s, the

maPPing 
(I + 2rttog

is a continuous operator

afo(Cn; X)a.tr"(Cn; Y) - tro(Ce; lX,Yl,,")o/f,'-'(Cn; Y).

Proof. The idea of the proof is as follows: Let ,4 be a self-adjoint positive
operator in I such that lX, Yl, is the domain of lr-e,0=0=1. Making use

of the diagonalization of I by a unitary operator of I onto a direct hilbertian
integral with respect to a positive Radon measure, we are then able to transform

ilu ll bo<rn;x)::lf I nr(o*,r)ll '*d, -r* i
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the assertion into a scalar inequality. Since the proof is not far from the one given

in [4], pp. 14-18, for intermediate derivatives of l2-functions, we omit the details.

5.8. If ft€N such that kqo<s, then it follows from 3.5, 4.8 and an analogue

of Proposition 4.9 that, for any u(H[or(R+i Q) X),

A!ucHirka"lR*; e; X).

Thus we have, by Proposition 5.4,

9(afu)ef,"-*ao(Cn; x).
Moreover,

g@!u): zkgu
(see Schwartz l7l, p. 246).

6. ffG)-spaces

Let us assume g >0.

6.1. For every s>0, we define (see 3.1)

il|t(s)(cs,Q): tr"(cn; äo(o)) a//o(cn; ä"(o)),

where O stands for .R| or .R'-1. Notice that Corollary 5.6 (see also 3.3) yields

llu ll2x7«» G,, q : I lu {e + i)ll!r,.,.ro., tu.

As a consequence of Proposition 5.4 we obtain the following result.

6.2. Proposition. For any s=0, the Laplace transformation I is an iso-
morphismof HS)(n+xo; e) onto /f,<")(Cn,Q), where g is R'* or R"-1.

Also the next four lemmas will be needed in the sequel; the proofs are

given in 6.7.

6.3. Lemma. Let l(0r,D) beadffirentialoperatorof order )., andsuppose
s>)". Then A(2, D) is a continuous operator of /f,@(Ce, R"*) into 37G-1) (Cn, R'+).

6.4. Lemma. Let A(Dt,D) and s be us in Lemma6.3, and supposefurther-
more s>), if ),:qol2 mod 40. Then

9Ä(0,,D)u: A(z,D)9u
for att ue u$](Q; d.

6.5. Lemma. If s>q,f2, the trace operator yn is defined and continuous

on hfG) (Ca, R"+) with ualues i, gE6-o"lz)1cn, R-').

6.6. Lemma. If s>q,12, then

9ynu : yn9u
for au ucn[f](e; d.

40
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6.7. The proofs of Lemmas 6.3 to 6.6.

6.7.1. Proof of Lemma 6.3. Rewrite tl(2, D) in the form

A(2, D) : 
o^Z= 

^1<*t 

(D) zk,

where z1(&)(D) is a differential operator of order =l-kqr. By Proposition 5.7

we see that Ul+zk(J is a continuous operator

lf,GJ(Ca, Ri) * ,g'1'-r'eo)(Cn, R'+).

Since l@(D) is obviously a continuous operator

lf,o(Cn; r"-te.1Ri)) * tro(Cni H'-^(Ri)),

we obtain the assertion by 6.1 and by Lemma 2.2 of 16l.

6.7.2. Proof of Lemma 6.4. First, we have

6.7.3. Lemma. For anY sZ0, the set

CZ'(Q) : {uccf (Q) Isupp u c R* xRi}
is dense in u$/0 and in H$l(Q; d.

To see this, it suffices to use basic properties of ä,["] and intermediate spaces.

Next, by 4.8,4.9, and Lemma 6.7.3 we have

6.7.4. Lemma. If the hypotheses of Lemma 6.4 are satisfied, then

A(0 t, D) < L(n IåJ Ql ; n tå; ^) 
(D)

and
t(At, D)< L(u lål @ ; e) ; H.(di') (0 ; s)).

Now we see, by Lemma 6.7.4 and Proposition 6.2,that gl(|bD) is a con-

tinuous operator of n[;]@;d into 7g'G-D(Cn,R"a), and so is l(0r,D)9,
by virtue of Proposition 6.2 and Lemma 6.3. Since these two operators coincide

on the dense set CZ,(Q), they do so on flff](O; o).

6.7.5. Proof of Lemma 6.5. For any U€/f,@(Ce,Ri), we have

u(z)(H"(R"+), z(cp,
so that

7,u(z)(H"'s"tz(Rn-L)
and

lly, (I (z)ll r' - a.r 2 1p* - t1 = C ll U (z)ll, 
" r*"*,

by the trace theorem (see Slobodeckii [8] and Troisi [9], for example). It therefore

follows that ynU is holomorphic in Cn with

ddu
fi(t"u) : t,i.

4t
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In view of Lemma 1.9 of [6], we then conclude that

Y,(J(ff G - q"t'11C, R'-')
and that

ll y * U ll *<" - n.t z) 
1c n, nn - 11 = C llU ll * «»(cc, r1i )

6.7.6. Proof of Lemma 6.6. Using Proposition 4.9 and an analogue of Theo-
rem 4.2 of [4], p. 24, one can prove

6.7.7. Lemma. If s>q,f2, then yn is a continuous operator

H (å) (g; d * H El,r') (z ; e)
( see Proposition 4.3 ) .

Now we see that 9yn is a continuous operator of tt$\(a; d into
tg(s-e"12)(Cn,R'-'), by Proposition 6.2 and Lemma 6.7.7, and that so is yn9,
by Proposition 6.2 and Lemma 6.5. Since gyn and y,9 coincide on Cio(@),
the result follows.

6.8. Suppose lhat we are given the operators B1(A,D) of order Fj,
j:1,...,x, as in 2.2. Let s€R be such that

s>pi*q,f2, j:1,...,x.
Let us now introduce the space

H[åJ,,(Q; q; : {u(ä[d)(Q; dly"Bi(0,,D)u:0, j : t, ...,x),

a closed subspace of n$l@;Sl (see Lemmas 6.7.4 and,6.7.7), and the space

trÅq(Cn,Ri) : {(l€/f,("\(Ca,R*)ly,Bi(z,D)U :0, j :7, ...,x},

a closed subspace of /f,(")(Cn,R|) (see Lemmas 6.3 and 6.5). Then we have

6.9. Proposition. g (Hfr].r(Q; d): at'G\ (Cn, fti).

Proof. For any ue H[i)r,r(Q; p), we have, by Proposition 6.2,

9u(lf,{st(Qp, Ri),

and furthermore, by Lemmas 6.4,6.5, and 6.6,

ynBi(z,D)9u : 9(y,81(0,,D)u): g,

so that
9u<trjo(C* Ri).

On the other hand, it U€il|(Ca,A|), then a similar reasoning shows that

s-tu€H$],u(Q; d,
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INITIAL AND BOUNDARY YALUES

7. Initial values

7.1. Let AI(A,D) be the differential operator given in 2'2, andwtite

mo

A(At,D): Z AG)(D)O!

with
A(k\(D): Z akoDn, k: O, ..., lrto.

(a,q)=p-kq,

Assuming now that a-o,o:l, we have
uo-l

(1) 0ro: A(0,,D)- 
3_^ 

1<r"t(D)0!.

Note that the preceding hypothesis is essentially satisfled if, for example, A(2, D)

is parametrically quasi-elliptic, i.e., satisfies condition 1.3 (D.

Given u(H(")(Q;s) with s>p, q>0, we set

f : A(0,,D)ue H<"-t't19' n1

and
iLo: yr0!u(Hs-kso-col2(Rn+) for kqo< s- qof2;

moreover, let
Qr,:@t" when 0=k<mo-7'

Ry (1), we see that now
uo-1

Q^o*,: y,A'rf- 
å4 

Atk)(D)O,+k

for every r€N with rqo<s-trt-qof2.
Let us next introduce the operators

S-r:0, r:1r2,.,.,

So: -Id (Id: identitY),

s, : -^§' A(ft)(D) S"-,,0*r., r : 1,2, ...,

and 
^ 

o:o 

-_ r 1T-r:lJ, l':1,2.,..)

To: !,,
,tro- 1

T,: yr\l- z A$)(D)7,-,,o*0, r : 1,2, ... .

k:o

Then for any s>0, ,S, is a continuous operator of ä"(R!) into 
'"-'qo(R"a)when r4o<s, and T, is a continuous operator

H"(Q; q) * g"-,qo-eol2(Ra) when rQo= s- 4o12.
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With our previous notation, we now have the following result about initial
values.

7.2. Theorem. Suppose that the coefficient of 8y" in the operator A(0,, D)
is equal to one, and that s>1, e>0. Then, giuen any uEH{")1e; d, the relation

Q*o+,: 7,7+-§' s,-, oj-' 
n o)(D)q,*o

holds wheneuer o=rqo<s-rr-qil2: 
0 Ir:0

Proof. The assertion can be proved by induction on r; however, we omit
the details.

8. Initial and boundary values. The spaces G"(S), F"(S), and E"(q)

we assume throughout this section that the operators Bj(a, D), j:1, ...,%,
are given as in 2.2, and write

B1(0"D): Z B|k)(D}r,

where 
kqo3Ps

Blk)(O1 : . . Z bi1,oDo, 0= kqo=pr.
\d,q)=pj-kqo

Suppose also that g =0, and that

s > pi*q,12 for every j:1,...,t<.
8.1. Let us now introduce the Hilbert space

G"(q): G"(9, B) : fl gs-keo-r"tr(R*)X{ ,11"-r,,-e"tz)(Z; q)

where k€N with /cqr=s -qol2 and j:1, ..., z. Then the mapping

Y : ((t,01)o, (y,81(0,,D)))

(with k and j as above) is a continuous operator of H@(e;q) into G"(e).
Thus we have, for any uqH{")(Q; p),

Y u : ((i0 *)t, (s7)i)< c"1q)
if we use the notation

iD1,: yr}!u, kqo = s- qol2,

9i: !nBi(\r,D)u, i : l, ..., x.
Let us also set

_ t.ö: itqo*q,).
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The initial and boundary values now satisfy the following local compatibility
relations (cf. Grisvard [2]):

8.2. Theorem. Suppose Fii-tqo-s-ä, v€N. Then

yrli gi : ,, 
oooZo,r,o) 

(D),D"*o

for euery ueH@(Q; p),Yu:((@o)u, (g;)).

Proof- Employing Propositions 4.2, 4.3, and 4.4 (in addition to the usual

trace theorems), we see that the mappings

u * y,|lgi
and

u * r, 
ooo4o,B:k) 

(D) o, + k

are both continuous operators of H@(Q; d into H"-arv40-ä(,Ra-I). Since they
coincide on the dense subset C; (A), the statement follows.

The preceding result is completed by the following global compatibility rela-

tion (cf. Grisvard [2]):

8.3. Theorem. Suppose s-pt=ö mod4o, say, s-pj-ö:vQo with v€N.
Then

{ I I rrz-,rB:k) 
(D) Qn+*)(x'd§l40) - exp (- so"tnl(0i gi)(o"/o', x'1lz 71' !!

= CllullL,,<a.c)

for all u€H@(Q; g), Vu:((aD*)*, (g;).i).

Proof. For the proof we need the next lemma which can be proved as a result

of P. Grisvard (see Th6oröme 5.1 in [2] or Theorem 2.2inLions-Magenes [5], p. 13).

8.3.1. Lemma. Let X be a Hilbert space. Suppose I-;XIR*cR,XR,,,
and define (cf. a.l)

gta)(Ra XR+ I Qi X) : Ho(R* I Qi ä0(R+; x)) 
^ 

Ho(R*; q; ää(R* ; X)).

Giuen any u€H@(R*xR+i Q) X), set

.f : yruQVq"l2(R",, * ; X),

g - ynu€Hqol'(Rr, * ; Q; X).
Then

J ll f {oo 
r o q - exp (- qoö t u) 

s @o 
/';)il? 

* = c lullzp < » 1p- x R, ; o ; X)

for all uqHrJ)1R*YR*; p; X).

8.3.2. We shall prove a formally more general result.
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Let l:tl(0,,D*,) be a differential operator of order l=s-pi-6, and
write

n: 
"å^lo)Oi 

with 11{r) - ,1tu)(D,,),

and similarly, for brevity,
Bi: Bi(O,,D), B5o) : Btk)(D).

Let now u<H@lQ; g). Then, by Propositiot 4.2,

lBiu(H{ö)(Q; d c gta)(R+ XR+ i Qi ä,(R'-')),
where the inclusion is both algebraic and topological. Thus it follows from Lemma
8.3.1 that

I I l@B fl) (0, x', 66 t eo1 - exp (* p oa t u,) (tl B, g @a 
h^, *', 0)1,' a r' Io

where 

o 
= cllull211«t1g''1

(ABtu)(O, x) : y,(tlBtu)(r, x) : 
"n?=^on,Zo,(l(") 

B|k) o"+)(x)

and
(ABru)(r, x',0) : y,(/.Bru)(t, x) : (tlg,)(t, x')

(cf. the reasoning in the proof of Theorem 8.2). Thus we finally obtain, by substitut-
ing o" for oå,

I I I Z ^ Z (lot Btk) aly+y)(x', 6"teo1-exp (- qo"/e,) Qtg,)(o"/e^, x'1lz 476' !!
{ "'vqo=).kqo=y,

= Cllullzp<"ts.n1,

which at once implies the desired inequality; notice that the implication holds
also vice versa.

8.4. Let F"(g) denote the space of such ((@o)0, (g)J€G"(o) that the con-
ditions (LCR) and (GCR) are satisfied:

(LCR) lf pi*vqr<s-ä with v(N, then

yrll gi : ,,, oo\r,B:k) 
(D) @"*k.

(GCR) If pi*'vqn:s-ä with v(N, then

\ t--, s/u \ s/, \ /^u \ / ctd ,tl, , , dO

I J I rrå r,(Btk) 
(D) a, * o) (*', r" t oo1 -exp (- Er6'/4" ) (0i s ) G" r q 

", x)l' a x' 
- 

< @.

If we now set, for every ((@r)r, (s);)e F"(s),

ll((oJ*, (g))lli.,.r : ll({oo», (sil)llå"«.r

+ Z t fl Z(Btk,@)o,+*)(x',o"tqo)
lilvqo:5-5 { " 'kqo=Pi

-exp (- qo§/ q^)(0igr)16"ra,, 
x'712 dr' E ,



Quasi-parabolic initial-boundary value problems

then r'"(q) is a Hilbert space with the norm so defined. one can show this by

using the crrmpleteness of G"(q) and the fact that

le"rz(R\) c LT(R*; äo(R'-.)),

11eo/2(Zi q)c Lz(R*; q; äo(R,-1));

we omit the (somewhat tedious) details.

8.5. To conclude this section, define

E"(q): Y(nat19' ,11.

The space ,8"(q) wilt be regarded not only as a vector subspace of G"(q) but also

as a normed subspace of ,F"(q), which is possible because of Theorems 8.2 and

8.3. Consequently, the operator

v: H@(Q; s) - E"(s)

is surjective and, by Theorem 8.3, continuous. Furthermore, if the kernel of Y

is denoted (for informative and uniform notation) by H$(Q; d, and its ortho-
gonal complement by HP(Q; q)1, we see that Y induces in a natural way a con-

tinuous bijective operator
Yo: H$)(Q; s)r *8"(s).

Note that H[å),r@;dcH§P(Q;d; in particular, if slqol2mod4o, then

HE],,(Q; d:HP(Q; d.

QUASI-PARABOLIC PROBLEMS

We return now to the quasi-parabolic problem (QP) of Section 2'

In the following sections we shall study the existence, uniqueness, and a priori

estimates of solutions to Problem (QP).

Irt us therefore assume that the operators A(A,, D) and B i(At, D),

j:1,...,x, are given as in 2.2, and that the operator system

(A(A,, D), (y,0t)0, (y *B 1@,, D)) )
is quasi-parabolic in the sense of 2.3. We assume also that the leading coefficient

o-o,o of A(0r, D) is equal to one (see 7.1).

For brevity, we shall use the notation

Å : Ä(p, l.;) : {s€Rls = p, s = max {pt\+ q,l2},

Rro : {s€Rls * Sol2 mod go}.

4i
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9. A priori estimates 
^ 

ag{s)(Cs,Ri) and ntål@; e)

In this section we derive some basic inequalities from the results of [6].

9.1. Theorem. If s€R, then for p>0 large enough the estimate

llu ll sr «» c 
", 

ni) = C (ll A (z, D) u ll s« - » 1co, Ai ) * ) lly, B i Q, D) U ll t G - t j - a^r 2) G n, 
p.-\)

holds for all [I€nf,@(Cn,R"+); in particular,

llU ll s«> po, n" 1 = C llA(2, D) U ll s<" - o s n, nit

for all u€/f§) (Ce, R"+).

Proof. We flrst observe that everything in the statement is well-defined by
virtue of Lemmas 6.3 and 6.5. By Theorem 4.3 of [6] we can now find g>0 such

that, for any U€/f,G\(Ca,.R|) and for all z(Cn,

llu(r)ll|:<*".t= C(llA(2, D)u(z)ll'zr;-.ro".r* 
4 lly,BiQ, o)u(z)lli;-u;e^tz6^-,1).

But by 6.1, this yields at once what we wanted.

9.2. Theorem. Suppose s(R, and let p>0 be as in Theorem 9.1 . Then

llulla1."|ro;er =C(llA(0,,D)ullp;6rap,^+llly,Bi(\t,D)ullr;"oyat-e^tz)6,0y)

for att ucuS)@; d.

Proof. For ucn$)(Q;g) we have, by Proposition 6.2,

U : gu(ff(")(Cn, Ri),

and furthermore, by Lemmas 6.4 and 6.6,

A(z,D)U: g(A(0,,D)u),

y,B i(2, D) u : I (ynB 1(0r, »1u).

Applying now Theorem 9.1 and again Proposition 6.2, we obtain the asserted

inequality.
In the same manner one verifies the following theorem, using, in addition,

Proposition 6.9.

9.3. Theorem. Suppose sQR, and let q>0 be as in Theorem 9.1 . Then

llulla,«;]ro; cr = CllA(At, D)ullu6;"»p. 
n1

for att "$tål,r(Q; d-

9.4. Note that the converses of the estimates in Theorems 9.1 to 9.3 hold
for any g=0.
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10. Existence and uniqueness of solutions for homogeneous initial and

boundary values

10.1. Theorem. Let s€R be giuen. If q>0 is sfficiently large, then for
eoery F(ff{s-,) (C* Ro*) the problem

A(z,D)U : F

has a unique solution U<lf,§)(Ce,R"+).

Proof. First of all, we choose g=0 such that we are free to apply Theorems

4.3 and 4.4 of 16l.

10.1.1. Suppose ,rg!'«-d(Cn,Ri). Then F(z)eH"-t"(Ri) for every z(Cn.
Thus it follows from Theorem 4.4 of [6] that the problem

(l) A(z,D)u : F(z),

(2) ynBi(2, D)u : 0, i : l, ..., %,

has a unique solution u:U(z)(H'(R"+).
We are now going to show that the mapping z*U(z) is holomorphic.

l0.l-2. The mapping

z-A(2, D):c * L(H"(R+); ä"-r(Ri))
is holomorphic, and

d
E A(r, D) : A'(2, O): 

o=fi=rkzk-1A(k'(D);

likewise, for each j:1, ..., x,

d
l, atG, D) : BiQ, ,) : 

o-ol=o.kzk-L 
aikt lol

(of course, Bi:O it B i: Bf)).
Thus we have, for every z€Cn,

A' (2, D) U (z) ( Hs - u (R*),

Y, Bi Q, D) U (z) I I " - u i - s"tz (Rn -t)'
moreover,

dFF'(z): fi(z)<U"-r(Ri).
Applying Theorem 4.4 of 16l, we may therefore conclude that the problem

(3) A(2, D)u : F'(z)- A'(2, D) U(z),

(4) y,Bt(z,D)u:-y,Bj(z,D)U(z), i:1,...,x,
has a unique solution u:V(z)(H'(R"+).

49
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10.1.3. Let now zCC, be fixed, and suppose /z€C, /210, such that
z*Äz(Cn. Let us write

/F(z) : F (z* Åz)- F(z),

/U(z) : U(z'f /z)- U(r),

/A(2, D) : 1(7 t / z, D) - A(2, D),

If we then set 
/Bt(z'D) : Bi(z*/z'D)-B;(z'D)'

w(2, /z): oYL? 
-ve)<H"(Rn+),

we have, by (l) and (3),

A(2, D)w(2, A z) : ('!l'' - o' Ur)

_(4#P _ A, (,. »1) u e + t,) _ A, (2, D) lu (z),

and similarly, by (2) and (4),

y,Bi(2, D)tu(2, /z) : -r,('ui:r'" -niQ, \)(JQ*Åz)-y^Bi(2, D) lu(z).

By virtue of Theorem 4.3 of [6] we thus obtain

(s) |w(2, /z)fia"<n^s= "(\ry- o'e)|,1,.-,,*-.,

\ff? - A' (,, »1) u p + t,y 
ll,"-, *r,

* ll A' (2, D) ÅU (z)ll p" - 
" 6"*1

. i ll. eL*D -aie, e)uk+/4ll,s-uj-cntz(Rn-,)
\

+ ) lly,Bj(2, D) lU (z)ll *"-p,-o^tz1p _5) .

To handle the right side of (5), we now observe, by (1), {2), and Theorem 4.3

of [6], that there exist M>O and 4>0 such that

llu(z*/z)llr"<ni1= M if llzl= 4.

Since (l) and (2) yield

A(2, D) lU (z) : / F(z) - /A(2, D) U (z * / z),

y,B,(z,D)lU(z) : -y,/BiQ,D)U(z*/z), j : l, ..., %,

we also obtain, again by using Theorem 4.3 of [6],

lllu(z)llr'r*i) *0 as .4z * O.
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But then it follows from (5) that

ll au(') -r,,rll * o as lz * o.ll l, ' .-,lln"tnil

Thus we have proved that the mapping

s * U(z): Co * ä"(Ri)
is holomorphic.

10.1.4. It is now obvious (see 6.1) that U€/f@(Ce,ft!) since

llU (z)ll u : tnlj = C ll F (z)ll p ;-, 6"*1

by virtue of Theorem 4.3 of [6]. Hence we have, by Q),

u€.*å(co, Ri).

Therefore, by (1), this U is a solution. Since the uniqueness follows at once from

Theorem 9.1, the proof is comPlete.

10.2. Theorem. Suppose s(.tR, and let q>0 be as in Theorem l0'1' Then

for euery ffl$;t')(Q; q) the problem

A(0,,D)u:f
has a unique solution ue Htål,r(Q; d.

Proof. Suppose f€Hf;D (Q;q), and take

F: gf qSg$-u)(co,R+)

by means of Proposition 6.2. By virtue of Theorem l0.l we then know that the

equation
(1) A(z,D)U: F

has a solution u€/f,|,(ca, Ri). If we now apply Propositions 6-2 and 6.9, we see

that
u:9-rU(H8,r(0; S).

Thus it follows from (1), by Proposition 6.2 and Lemma 6.4, that

A(0,,»)u :7.

since the uniqueness is implied by Theorem 9.3, the assertion is proved.

As a consequence of Theorem 9.3, 9.4, and Theorem 10.2 we immediately

have

10.3. Corollary. Let s and q be as in Theorem 10.2. Then A(\r,D) is

an isomorphism of Hfi,B@; p) onto Uf;d(Q; q), whose inuerse will be denoted

by A(0,, D)-1.

51
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11. Existence and uniqueness theorem in the general case

11.1. Let s€rR, and let g>0 be as in Theorem 10.2 (or 10.1).
This section deals with the existence and uniqueness of solutions in ä(")(Q; g)

to Problem (QP) in the general case, that is, for the data

(l) f (H{"-ut12t n1,

(2) e*(H"-kqo-qol,(R*), k : O, ..., ffio- l,
(3) Ei(HG-t'i-a"t»(Z; q), j:1,...,x.

Let us first deflne

(DoEH'-*eo-t /,(Ri), 0 = kqo =. s- qof 2,
by setting

(4) Q*: gx for k : 0, ..., ffio-l,
and (see 7.1)

(5) @^o+,: r,y+*§'s,-,-oi-'oro)(D)g"*o
when o=rqo <s-rt-Qol2. 

u:o t:o

Assume now that Problem (QP) has a solution in H@(Q; q). Then Theorem
7.2 implies that necessarily

((@Jo, (cj))(u"(a).

For the converse we have the following result:

11.2. Theorem. Suppose that s(Aro, and that q=0 ls giuen as in Theorem
10.2. Then Problem (QP) with the data lIJ(1)-11.1(3) has a solution in H@(Q;a)
if (and only if)

(1) ((@Jr, (ri)i)e r"iq;,

where the (D1, are giuen by 11.1(4) and 11.1(5)
Moreouer, there is qt most one solution.

Proof. The sfficiency of condition ( I ) .

ll.2.l. Assume that condition (1) holds. Then there exists u€ä(")(0;e) such
that

vu : ((a)*,G)).
Now, setting

we have 
f,: A(\r,D)u ena-'»19' n1

Yr[?o+'u : T,-fu*5'"'-, -o-'-' 
AG)(D) E'*o,

so that' by 11'1(5)' 
T,.f : T,fuu,,o ,ro =i- u- r,,
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Thus (see 7.1)
mo-l uo- I

y,\if- 2 A(kt(D)7,-mo+nf :y,\if,- Z A@(D)7,_mo+tcfo,
&:0 &:0

and hence
y,\i(f-f") : o, rqo < s - p- qrf 2.

This in turn implies

f-f,<H{ö r)(Q; d.
11.2.2. We are now in a position to apply Theorem lO.2 and see that there

is we {!l,a(Q; q) such that
A(0',D)w:f-f".

Consequently, the function u:u*w€H@(Q; g) is a solution of Problem (QP).
It remains to prove the uniqueness of the solution.

11.2.3. Let us suppose that Problem (QP) has two solutions u and u in
ä(")(O;o). Then

w : u-u(H(")(o; g)
satisfies the conditions

f- : A(0,,D)w :0,
rlt1,: yr}!w : 0, k :0, ...,tno-1.

But by virtue of Theorem 7.2, we now have also

yr4lo*,w : T,f-l^|'r,-,'5-' A<k)(D1,1r "*o: g
*=0 &:0

if rqo<s - p- Qol2. Since furthermore

ynBi(\r,D)w : 0, j : 1,...,tt.
we conclude that

w€H[fi),r(Q; d.
Thus Theorem 10.2 (or Theorem 9.3) implies w:0 and hence u:u.

12. A priori estimates in ä(')(0; S)

12.1. Let s€R and q>0 be given. From 8.4 and 8.5 it immediately follows,
by Theorem 8.3, that

(l) ll.flln,"-",o.nt+ll((oJ*, (g))llr.r.r = Cllullrt"»,n.r.,

for all ueH@(Q; q), where

f : A(O,,D)u,

iD1,: yrDfu, 0 = kqo < s- qof2,

9i : l,Bi(\r,D)u, i : 1,...,x.
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Setting

Q* : Qt, for k : O, .,,, wo-|,

we have, by Theorem 7.2,

Q*o*, : r, 7+-§' s, - "^oi- 
u 

r'u) (D) E 
" 
* r

for o=rqo<s-tt-Qol2. fni. -"urr:,n* ,o"l.r, side of the estimate (l) actually

depends only on f,(Eo)o, and (g)i.
Next we shall study the validity of the reversed estimate of (1).

We begin by stating and proving the basic result of this section.

12.2. Theorem. Suppose s€lRro, and let q>0 be as in Theorem 10.2. Then

the a priori estimate

(A) llallrr,,,n.n, = c(ll/lla(,- d(e;or* ll((@o)0, (g))llr.r.r)

with the notation

f : A(\r,D)u,

@*: e*: lrAf u, k :0, ...,ffio-L,

e*o*,: T,f+*§' s,-"-oi-' no)(D)E"**, 0 < 16o= s- p-qsf2,
v=0 k:0

gi : !,Bi(\r, D)u, i : l' "'' x'

holds for all u(HG)(Q;d if and only if the condition (RI) is satisfied:
(RI) The mapping

V: HG\(Q; S) * E'(S)

has a continuous linear right inuerse YlL,

YYILV:Y, V€E"(q).

Proof. The sufficiency of condition (RI).

12.2.1. Let u(HG)(Q; q), and set

v : ((iD*)*,G)).

Then V€U"(q), and we have, by assumption,

a : YnlV(H(")(O; S)
and
(l) llalls(.)«o,sr = CllVllE @).

Ifwe now put
w : u-u e HG)(ei a),

then
y,ilfw :0 for kqo = s- qol2
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and
y,Bi(\r,D)w :o for i :1,...,x,

so that
w€H(i,),r(e; g.

By virtue of Theorem 9.3 we thus obtain, using (1),

llull n s o. nt = C ll Awll 
"< 

"-,)ro; or * ll ?ll a (.)ro; 
sr

= C (ll /ll 
"«"- 

n, o, n» * llV ll n" <p»),

that is, the estimate (A).

The necessity of condition ( RI ) .

12.2.2. Let us suppose that

v : ((iD)*,(g)i)€ E"(e).
Then we have (see 8.5)

u : YiL V€H§»(Q; dL.
If we set

.fu : A(0,, D)u< H{" - ut 7q' n1

and E1,:iLu fot k:0, ...,mo-1, then

(2) @,,o*,: r,1+ §' S,-n'oi-' Oro)(D)q"*o- v:0 k:0

when 0<r4o<s-lt-Qol2.
By Proposition 4.4, we now have

yr}i fr( H" - u -reo-tolz(ftn*), f 4o < s - lt - 4o12.

Thus Proposition 4.7 implies that

(3) ,f : (Yi-')^'Yi-t'f,(H§'r)(Q; g)

satisfles

(4) llf 11,,,"-ap.n =- C 
4lll,0if"llr"-o-ruo-sot2(R\).

It follows from (3) that f-f,<Hf;D(Q;d. Therefore we have, by applying

Corollary 10.3 to f-f",
w : A(0,,D)-'(f-f) $(3),8(Q; d.

12'2'3' Let us now set 
u : u*w <n<"t(Q; d.

Then
A(0,,D)u :7

and

(5) Yu :V: ((@Jo, (g)).
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By (4), the estimate (A) therefore yields

llallr,,,,n.n, ="(,no="]_o",rll^l,0if,llus-1t-rqs-qntz7tt")+llZllE,(n)).

In view of 7.1 we have here

lll,0; f ,ll r, - o - ry o - e s t z e{*1 = r, :å _ rU, ".f 
ull u, -, - u ro - sol z (R +) 

.

But by (2),

ll T, f ,ll s 
" 
- a - v q 

o - q ol 2 ( Rn+) = ll @.0 a, ll r" - p - v qo- col z(R\)

*- 5' 
- ",)- ^ 

W 
" - ^ 

o@ (D) rp 

^ 
* oll u s - p - v q 

n - o nr 2 1ai1 .,1:0 k:O
where (see 7.1)

Il ^S, - 
^ 

Z «tl i2; Q p yll 11" - p-,qs- eot z la\) = C ll A 

^ 
* oll rs - ( + k) cto- sot z(R\ ) )

Thus we obtain

(6) llullr«.r,n.r, = CllrllE.(a).

Finally, combining (5) and (6), we see that the mapping

V*u : u*w

gives the desired inverse Y11, that is,

v.[' : Y;t +a(il,r)-,((yi-r);'yi-, A(0,, D)- A(at, D))v;,.

This completes the proof.

12.3. Corollary. Under the same hypotheses and with the same notation as
in Theorem 12.2, condition (RI) is satisfied if and only if the estimate

(B) llulli,,,rs ,n)s c(il,rll;,,-,,,, n+-5'lEoll2.s-*qo-qstz*rr* ,ätlgill11<"-u,-o^rz11r,o1

* 
,,*åo"-o ! I lrr,4,,tr,*r (a) ö,*o)(x', ostsq -exp(- so'to,)(ai gi)(o"to^, x'1lz 4*'Ll

holdsfor all u€H(")(Q; d.

Proof. By virtue of Theorem 12.2, it is enough to show that rhe estimate (A)
implies (B) because (B) immediately implies (A). This, however, follows from the
inequality (see 7.1)

( 1) ll @ 

^ oa,ll u" -, - rqr- asr z 1p^*1= 
c ( ll,r lt r,"- *t (e ; o, *5' kl oll u" - ooo- rot, 611) .

It is worthwhile to note the following special case:

56
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12.4. Corollary. Suppose that the hypotheses of Theorem 12.2 are satisfied,
and that s-Fi*ö mod4o for i:1,...,x. Then

llulla(,)rs, nr = c (lA(a,, D)ullu«-,trr. n

+,. Z-. ll y,0! ull 
H 

" - * q.- 0.1 z G\, + 4 lll,B, (0,, D) ull 16 - p, * q *t z) e ; d)

for atl u€H@(Q;n).r='o

Proof. By Corollary 12.3, it suffices to prove that condition (RI) holds.
To do this, let

v : ((@)0,(si)r)e z'"1q;.
Then (see 8.5)

u : YiL V(Hgt(q' 6t,
and further

f : A(0,,D)u <HG-p)(Q. d.

By Propositions 4.4 and 4.7 we see that

.fo: (yi-u)itys-t' l:€HG-u)(Q; d,
and that

(1) llfillo,"_*,1q.nr= C 
4ll"t,0;f llr"-r-tqo-cotz(R\).

Now it follows from 7.1, Theorem 7.2, and Theorem ll.2that the problem

A(0,, D)u : fo,

yr}f u : Q*: iD*, k:0, ...,ffio-1,
y,Bi(0,,D)u : gi, j : l, ..., x,

has a unique solution u€HG)(Q; q) which satisfies also

Yu:V.
Next, again by Propositions 4.4 and 4.7, we know that

uo : (yi);l(@ )o€ HG) (Q ; o)
with

(2) lluoll7r,,1q.ny =" 4lli01,lls"-*eo-aotz1p71.

If we now set w:u-uo, then

*(H[å)(Q; d,
and Theorem 9.2 gives

llrllr,.,1e.ny = c(llA(0,, D)wllr,"-*,<a,o* Z llt,B,(0,, D)wll16-p,-q^tz)e;d).

Therefore

(3) llullrurle.nl = C(lluollr«\(e;d*llfnllr,"-*,1e,0,*Z llsillrr,-ai-q^tz)e;d).
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Hence it follows from (1) and (2) that

llull u, u <a,, = c ( ? lliL oll r " - 
t q o - a 

"t 
r o1,+ 4 ll g 

ill p<" - u, - o 
^1 

21 p, 11

+ Z llyr|if llH"-p-,qo-qnt\p^1),

where, by 7.1,

lll,0; f ll, 
" -, -, q 

o - q ot 2 (R\) =- C 4 lliä oll r" - r"e o- e,l 2 
GRi ) 

.

Thus we have

llullr«,r,n. n, = C llV ll n,<rt,

and a reasoning quite analogous to the one used in 12.2.3 completes the proof.

Remark. One can also prove the assertion, more directly and a little more
briefly, by applying Theorem 9.2 to w:u-uo (u is arbitrary and oo as above)
to obtain (3), and by making then use of (2) and the inequality 12.3(l).

13. The case of normal boundary operator system {Bt@)}

This section is devoted to an important special case in order to illustrate the
substance of the results of the preceding sections (see Conclusion 13.6).

The boundary operators Bi, j:1,...,%, with which we shall deal here are

of the form
B i : B i(D) : 

ro, nZr_o.b,no'.

We notrce that q*lpi (i.e., pi is a multiple of q,) if and only if Bj(D) is formally
normal (to R'-1) of order p7:

Bj(D): friOit'rUoorOr,

where ri=FilQn, Fi:bi,p,n,1, and the order of 8,9'(D) with respect to D, is

less than ,a;.
The system {Bt(»)} of the operators Br(D),...,8,(D) is called normal

(to R'-1) if
(i) q)p, and §i + 0 for ; : l, ...,x)

(ii) p1* p* (or t, * v1) for j * k.

In what follows we assume (explicitly but superfluously, in fact) that the
system {Br(D), ..., B,(D)} is normal, and that .r>max {pi}+q"12, q>0.

13.1. Lemma. The mapping

(y"Bi(D))i: HG){Q; d * 
1I 

g{s-rt1-u,12)(2; q)

is a continuous surjectiue operator which has a continuous linear right inuerse B|L.
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Proof. Assume flrst that Fo(D), O=kqn=s-q,f2, are operators of orders

kqo, respectively. By Proposition 4.6 one can then show that the operator

(y,Fo(D))or..s-ent2i tt(o(Q; d * II HG-ksn-snt2)(»' Q)

has a continuous linear right inverse .F^ 1.

Let us now choose

Fo(D):3,qp1 if k: v j: FjlZn,

Fk(D) : Dt; otherwise,

Then we can deflne ,B*1 as the restriction of F;1 to II HG-tti-s"12)(»' s).

13.2. From Theorems 8.2 and 8.3 we see that .u"r, 
"l"rri.rrt 

of ,8"(q) satisfies

the compatibility relations (LCR) and (GCR) of 8.4. These conditions now charac-

terize the space E"(q) completely. Indeed, we have

13.3. Theorem. E§(q):F"(S)'

Proof. Inview of the definition of E"(g) we have to show that,F'"(q)cE"(q)
(see 8.4 and 8.5).

13.3.1. Assume that
((@Jo, (si)i)e r"1q;.

Using Lemma 13.1 we set

(1) u: BF'(g)ieH<"t(Q;d.

Define furthermore
{t o, XoCH"-oao-aol2(Rr), O = kqo - s - qol2,

by
t* : lr0lu, Xn: iLr,-t*.

13.3.2. Let äj(R!) denote the closed subspace of I/"(fti) which is given by

äå(Ri) : {X(ä"(Ri)ly,Bi(D)x: 0, J : 1, ..., x}.

Then by (an analogue of) a result of P. Grisvard (see [2], Thdoröme 8'l) we have:

13.3.3. Proposition. For any 0,0<0<1, tä;(Ri),äo(fii)lo is a uector

subspace of H'o-e\(p"*) consisting of functions y such that

(i) y*Bi(D)y:o if p1<s(l-0)-q,12;

(ii) x-rtzn.1D)x er(R\) if tti:s(l-0)-q"12.

The square of the norm of x€lHå(Ri), äo(fti)lo can be defined by

lllllfl",,-,,,a, ,* u,:o,4-r,,rI I lBi(D:)lt(x', o)p dx' {.
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13.3.4. We now have
(W)0, (g;);) (E'(q),

so that
((x)0, (o);)€ l''(e).

Hence (see 8.4)

and 
?nBi(D) Xn:0 if Fi*kqo < s-ä

{ t Vi@)xx(x', o)l'dx' +< oo if tti*kqo- s -ä.

Thus Proposition 13.3.3 implies that

x*(.lH"n(R*),äo(Ri)lr. with fu : (kq6*qol2)ls.

13.3.5. Let {X,7} be an interpolation couple of Hilbert spaces X and, y.
one can then show, for example by using methods similar to those in [4], chap.
I, §§ 3, 4,tbat the trace mapping

(y,0f)*r0."-nop: H"(R+; e; y)nI10(R* ; o; X) * [ l*,yl,eqn+qn1z11s

is a continuous surjective operator which has a continuous linear right inverse.
Take now

X : HÅ(R+), Y: äo(Ri),

denote the above-mentioned inverse by 1^, and define

w - I*(x)o.

Yw - ((x)0, (0)r).

u - u*w€ä('l (Q; d.

Yu - ((@*)0, (s;);).

((o)0, (g;)r.)€ E'(e),

13.4. Keeping Theorem 12.2 in mind, we are next going to show that con-
dition (RI) is satisfied in the case considered.

13.5. Theorem, The operator

y: 17$)(e; q) * E'(q)

has a continuous linear right inuerse Y^'.

Then w€HG, (Q; q) and

13.3.6. Let us now set

Then it is evident that

Consequently,

and the proof is complete.
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Here we have, by 13.3.1 and Theorem 13.1,

llxoll'r"-ono-oop(R^+)<- c (lliaoll2r"-*0"-eslz1ri)+ ) llsrll'rr"-o -q*tz)(»;o)),

and by Theorem 8.3, 13.3.1, and Lemma 13.1,

: ^ flpdx,{J J tB1@)xx@',
o-

=- , { I l@,1»1oo)qx', 6slao) -exp 1- po"te)(01g1)(o"to,, x')12 dx' !!

+ Z lls jllL1_a1-o^rz)p;p1).

Therefore
llIafu1)ollr«,r, a;da C ll((@o)0, (g))llr'«o.

Thus we see, in view of Lemma 13.1, that

llY 
^LV 

ll r«» rn, ot = C llV ll r, <nt.

Remark. The existence of a continuous linear right inverse of Y follows
also from the fact that, by virtue of 8.4, 8.5, and Theorem 13.3, Y is now a con-

tinuous surjective operator of HG)(Q; g) onto the Hilbert space E"(q):F"(Q).

13.6. Conclusion.

13.6.1. Combining Theorems 11.2 and 13.3 we see that, under the hypotheses

of Theorem 11.2, Problem (QP) has a (unique) solution in HG)(Q; q) if and

only if conditions (LCR) and (GCR) of 8.4 are satisfied.

13.6.2. Combining Theorem 13.5 with Theorem 12.2 and Corollary 12.3,

we reach the conclusion that, under the hypotheses of Theorem 12.2, the estimates

12.2(A) and 12.3(8), respectively, are always valid.

6l

Proof. By making use of Lemma 13.1, the proof of Theorem 13.3, and its
notation, we set, for every V:((iD)k, (s;);)ef"1q;,

y ;t V : I 
"(Ao- 

y,Ol B;' (gi);)o +.B"'(g;);
: Ip(y)y-fB;t(g);.

We claim that this definition yields what we want.
First of all, Y;l is a linear mapping of ,8"(q) into ä(")(O; s) satisfying

YY;|V:V, V(E"(d.

To prove the continuity of Yl'l, let us consider the inequality

llY 7L V ll *«» ro, o = ll 1* (n)r ll a(,)1q; sy * ll B^' (gi)i ll rr*,«c, nr .

From 13.3.5 and Proposition 13.3.3 it follows that

ll/afuo)ollfr«,1 e;e) s c Z(llxoll'r"-oes-ootzlR^*)+ ,,:"4^-rr [ @,(D);/4o@',o)f a.'f).
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