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QUASI-PARABOLIC INITIAL-BOUNDARY VALUE
PROBLEMS

VEIKKO T. PURMONEN

INTRODUCTION

Let A(9/dt, D) and B;(9/dt, D), j=1,...,%, be linear partial differential
operators with complex constant coefficients or, as we shall simply say, differential
operators in R,XR". This paper is concerned with the following initial-boundary
problem:

(1) A(9/ot, Dyu = f in R, xR,
ak

@) 3—t‘£t=0:¢k on R,

(3) B,(0/0t, D)ul,,—o=g; on R,xR'-.

We shall investigate the existence and uniqueness of solutions to the problem (1)—(3),
posed in suitable function spaces, as well as the validity of a priori estimates of
the form (see Section 12)

4) lull = C(LF 1+ 1@, (€I

with the corresponding norms; note that throughout the paper C is used to denote
a generic positive constant.

The idea of our treatment is in brief as follows: First, we make use of the
Laplace transformation with respect to ¢ to transform the problem (1)—(3) with
¢x=0 and g;=0 into a parametrically quasi-elliptic boundary problem

A(z,D)U = F in R,
Bi(z,D)U|,,.o=0 on R"1

where z€C with Re z=0. Second, in order to handle boundary problems of this
type we exploit the results of our previous paper [6]. Third, by means of detailed
analysis of the initial and boundary values of functions defined on R XR", we
are able to treat the problem (1)—(3) in the general case.
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M. S. Agranovi¢ and M. L. Visik have investigated in [1] the classical parabolic

problem for which the boundary problem

A(z,D)U =F in R%,

Bi(z,D)U|, o =G, on R"-1
is elliptic for every z€C with Re z=0. We shall therefore find it natural and
motivated to call our problem quasi-parabolic.

Besides this introductory chapter, which also includes the first two numbered
sections, there are three chapters.

The first deals with anisotropic Sobolev spaces, in Sections 3 and 4, and with
Hilbert spaces of holomorphic functions, in Sections 5 and 6. It will turn out that
these spaces form, from our point of view, a natural framework for the study of
the problem (1)—(3).

In the next chapter we give first a result concerning initial values in Section 7.
In Section 8 we then discuss the compatibility of initial and boundary values; the
results are related to those of P. Grisvard [2].

The last chapter is devoted to the realization of the plan sketched above. In
Section 9 we obtain an a priori estimate in the case of homogeneous initial values.
The existence and uniqueness of solutions for homogeneous initial and boundary
values will be proved in Section 10. In each of these sections we make essential use
of the results of [6]. In the general case we first give a necessary and sufficient con-
dition for the existence of solutions in Section 11. The uniqueness of solutions is
also proved. In Section 12 we then study the validity of a priori estimates and
obtain a condition which turns out to be both necessary and sufficient. Finally,
it is illustrative to consider the special case of normal boundary operator systems
{B;(D)}. This is done in Section 13, and we shall see that the necessary and suffi-
cient condition for the problem (1)—(3) to have a solution takes now a very con-
crete form. In addition, it will be shown that the condition obtained in Section 12
holds; hence an a priori estimate of the form (4) is also valid. We hope to discuss
the general case of normal boundary operator systems {B;(d/0t, D)} at a future
time.

Acknowledgement. For financial support I am indebted to the Emil Aaltonen
Foundation.
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1. Parametrically quasi-elliptic operator systems

1.1. Let 7€R=R, denote the dual variable of r€R=R, and ¢(=(¢,¢&,)=
(&1, .oos Euor, E)ER'=R} the one of x=(x', x,)=(x1, ..., X1, x,)ER"=R", and
set

(x, & =x8+...+x,8,.

Let m,, k=0,1,...,n, be positive integers, p=max {m}, g,=pu/m, and
q4=(q15 ---> 4n)-

We set
n—1 1
(EN = my
=% 1)
<€n> = |én|1/q"a
(&) = ([(& P+,
and

<W> = lel/qo»
where w stands for t€R or for a complex number z=Re z+iIm z€C; set also

h(z,n) = (2)+ )
for z€C and for n=¢&¢" or £&.
Let D, be the operator —id/ox,, k=1, ...,n, D=(D,, ..., D,), and set
D* = D#.. D,  C*= L
for every multi-index o=(0y, ..., ,)EN".
1.2. We assume that we are given differential operators

A(z,D) = > az*D* (kéN, a€N")

kay+(a,q)=pn
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and
B(z,D) = > by D j=1, 0,
kqg+(x,q)=u;
depending on the parameter z€Zc C, where the coefficients a,, and b, are
complex constants, u;=0 is the order of B;(z, D), and x is a positive integer.
The corresponding principal symbols are
AO(Z> é) = Z aka Zkéa

kqy+{a,qy=un

B(z,¢) = > by e j=1,.

kgy+a, q)=p;

and

The parameter set Z will be a sector Z=Z(w;, w,)CC, 0, =w,,
Z(wy, wy) = {z€Clw, = arg z = w,}.
1.3. The operator system
(A(z, D), By(z,D), ..., B,(z,D)), | =x=m,,

is said to be parametrically quasi-elliptic in Z if

(1) A%z, £)=0 for all zeZ and all £€R" such that k(z, £)=0;

(ii) for every z€Z and every &€R"! with /i(z,£)=0, the polynomial
A%z, &, () in (the complex variable) { has exactly x roots C;.’ (z, &), j=1, ..., %,
with Im (f (z, &)=0;

(iii) for every z€Z and every &€R"-' with /h(z, £)=0, the polynomials
Bg(z, &, 0 in ( j=1,...,2%, are linearly independent modulo

AH D= S ()

j=

-

(See [6].)
2, Quasi-parabolic problems

2.1. We shall employ the notation
R, = {x = (x', x,)ER"|x, = O},
Q =R, XR. CRXR%:,
2 =R, XR'"-'C R XR"

Let 9, stand for the operator d/d¢, and let y, and y, denote the trace operators
with respect to ¢ and Xx,, respectively, i.e.

YU = Ulmg, YuU = Ulx,=0-
2.2. Problem (QP). Let us consider the operators (see 1.2)
A(a,,D)Z 2 akaafDa

kgy+{(qy=p
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and
Bj(at’D)z 2 bjkaafDag J:15 sy Ko

k‘Io"'(‘zv q>§ﬂj

The formal setting of the initial-boundary value problem (QP) which we shall
study is now as follows:

A@,,Dyu =1 in 0,
70FU = @y on R., k=0,..,my—1,
YnBj(ar’D)u:gj on 2, j:l,...,%.

We shall come later on to the realization of this problem, the actual object
of study, by fixing the function spaces to which the data f, ¢,, g;, and the solution
u are to belong.

2.3. We say that the operator system
(4@, D), (7:0%)> (74 B;(0r, D));)
is quasi-parabolic and that (QP) is a quasi-parabolic problem if the operator system
(4(z,D), By(z,D), ..., B,(z,D))

is parametrically quasi-elliptic in the sector Z=Z(—n/2, n/2).

SOME FUNCTION SPACES
3. H*-spaces

3.1. If X is a (complex) normed space, its norm will always be denoted by
I lx.

The normed space of bounded (linear) operators of a normed space X into
another normed space Y is denoted by L(X; Y).

If X,Y, and Z are three normed spaces such that XcZ and YcZ al-
gebraically and topologically, we shall equip the space V=XnY with the norm

lully = (lull%+lul D2
Note that if X and Y are Hilbert spaces, so is XNY.

3.2. Let X be a Hilbert space, and let Q be an open set in R*.

Let C7(2;X) denote the space of C*-functions u: Q—X having compact
support supp uC @, and let C(2;X) be the space of restrictions to @ of
CZ (R*; X)-functions, where @ means the closure of Q.

Let 2'(Q;X) be the space of X-valued distributions in Q, &’(R*; X) the
space of tempered distributions, and L?*(Q; X) the Lebesgue space.
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Suppose now that R*=R} is R, R, ,Ry"' or R}, and set

K@) = (1+m)"=,

where 7 is the dual vector of y. For s=0 we then recall the definition of the
anisotropic Sobolev space H*(Q; X) of order s:
First,
H*(Ry; X) = {ue &’ (R}; X)|K(n)* F,u € L*(Ry; X)}
with the norm
Null orsres ) = 1K (n)° Fyull 2re; xy»

where Z,u is the Fourier transform of u,
(Fw) () = [e=ionu(y)dy,

H*(Q; X) = {roU|Uc H*(R*; X)}

and then

with the norm

lullzs@;xy = Inf{|U|| e | U HS(R¥; X), rqU = u};

here r, is the operator restricting to @ functions (distributions) defined in R

Note that H°(Q; X)=L2(Q; X).

When X=C, the symbol C will be omitted.

For trace theorems and other basic results for H*(Q; X)-spaces we refer
to the works of L. Hormander, J. L. Lions and E. Magenes, L. R. Volevi¢ and
B. P. Panejah, and other authors cited in Lions—Magenes [4], p. 105, and also
to L. N. Slobodeckii [8] and M. Troisi [9].

3.3. Forany z€C the Hilbert space H2(R") is defined to be the space H*(R",)
equipped with the norm

the definition of the space H;(R"™") is analogous. (See [6])

3.4. For R.=R,, let HJR.; X) be the closure in H*(R,; X) of
CZ(R,; X), and if s=kq,+q,/2 with kEN, set

Hy(R,; X) = (e Hi (R, ; X)| =120k uc LA (R, 5 X))
equipped with the norm whose square is given by
lullfre e, 0+ ulliae, s

(cf. Lions—Magenes [4], Chap. I, § 11). We define then the Hilbert space Hg) (R ; X)
as the space HJ(R,; X) if s#gq,/2modg, and as the space Hy(R,; X) if
s=q,/2 mod g.
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3.5. For R, =R, , andforany ¢=0 we define the Hilbert space H*(R.:¢; X)

by
H*R,; 0; X) ={uc2P'(R,; X)|e~¢uc H*(R,; X)}
with the norm
lull sk, o0 = lle™ ¢ ullms, s x)-

The space Hg,(R,; ¢; X) and its norm are introduced similarly.

4. H®-spaces

4.1. For s=0 and r=0, define (see 3.1)
H>"(Q)=H*(R,; H*(R"))nH°(R,; H'(RY)),
H(Q) = Hiy(Ry; HORY))NHO(R, 5 H'(RY)),
and analogously the spaces H*'(X) and H(Z).
We set, for any ¢=0,
H*"(Q; )= H*(R.; ¢: H'(R%))n H*(R,; ¢; H"(R?))
or, equivalently,
H*"(Q; 0) = {uc 2’ (Q)|e~*'uc H*"(Q)}
with the norm
lull zrsr @i = e tll o (-

In similar way one introduces the space H*'(X;¢) and further the spaces

H3'(Q; 0) and H' (X5 0).

The following three propositions can be derived, for example, from the results
of Slobodeckii [8], or directly proved by methods closely related to those used
in Grisvard [2]; see also Lions—Magenes [5], pp. 9—12. Without further mention,

we assume that ¢=0 is given.

4.2. Proposition. Suppose s=0,r=0, and keN,a€N" such that

kap  @a)
N r

Then 0¥D* is a continuous operator
H>"(Q; 0) ~ H™+(Q5 0)
with

Sk=£=1_(@+w]
r N r

(the operator norm of 0¥D* being less or equal to Py(¢), where Py is a positive

polynomial of degree k in ¢).
An analogous result holds for the space H*'(Z; 0).
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4.3. Proposition. Suppose s=0 and r=gq,[2. If jEN with r—jq,—q,/2=0,
then v,DJ is a continuous surjective operator

H*"(Q; 0) ~ H*r"i(Z; 0)
(C=(Q) is dense in H*"(Q; 0)), where

5j

s | St 9:/2
N

r

_p

4.4. Proposition. Suppose s=q/2 and r=0. If k€N such that s—kq,—
q0/2=0, then v,0% is a continuous surjective operator

H>"(Q; 0) — HP(R%)
and
H>"(X; 0) - HP«(R"-Y),
where
Pe _ | _kaotqo2
r N

4.5. In the sequel we shall employ the H®"-spaces in the case s=r. It is
therefore convenient to introduce the notation H®=HS*,

The following two results can be obtained from Propositions 4.3 and 4.4,
respectively, by the open mapping theorem, for example.

4.6. Proposition. Let ¢=0. If s=>q,/2, then the mapping
’Vft = (ynDi)jqn<s—q,./2

H®(Q; 0) ~ [[ HE-1%=0/D (X g),
J

is a surjective operator

and it has a continuous linear right inverse (y3)z'.

4.7. Proposition. Let ¢=0. If s=>qo/2, then the mapping
y}g = (ytaf)kqo<s—qo/2

H®(Q; 0) ~ ]kY He= o= %/2(RY),

is a surjective operator

and it has a continuous linear right inverse (y$)g*.

4.8. Let X and Y be two (separable) Hilbert spaces forming an interpolation
couple {X, Y}, that is, XY algebraically and topologically such that X is
dense in Y, and denote the corresponding intermediate spaces by [X, Y],, 0<f<1
(see Lions—Magenes [4], Chap. I). We recall two basic results (see [4], pp. 27—28):

First, if {%, %} is another interpolation couple and if

AEL(X; Z)nL(Y; %),
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then the interpolation theorem says that
A€L(X,Y)y; [, %)), 0<6<1.
Second, reiteration holds: For O<a<fi<l,
[[X, YL, [X,Y1plo = [X, Y]a-0ps0p» O <0 <1,

with equivalent norms.
We are now in a position to state the following result, obtained by methods
similar to those used in [4], Chap. I, §§ 11, 13 (cf. also [5], Chap. 4, § 2).

4.9. Proposition. Suppose s=r=0, and let Q stand for Q or X. Then

[H®(Q), HO(Q)], = H-95+00(Q)
and
[H((g)) (Q)a H((or)) (Q)]O = H((O()l—e)s+9r) (Q)

(with equivalent norms) for every 6,0<0<1.

5. H#°-spaces

Throughout this section, let X denote a Hilbert space, and suppose 0=0
and s=0.

5.1. For R=R,, we define the Hilbert space H (R; ¢; X) by
HS (R; ¢; X) = {uc2’(R; X)|suppu C R,, e-®uc H*(R; X)}

with the norm
||u|]H§ (R e; X) = ”e_gtu”Hs(R;X).

This space is not essentially new. In fact, we have
5.2. Lemma. The mapping
Iy:Hig) (R4 5 05 X) ~ HL(R; 0; X),
Iyu =u~ (u~ = extension of u by zero for t <0),
is an isomorphism with inverse
I.:H(R; ¢; X) ~ Hiy(R+ 5 05 X),
I,v=r,v (ry = restriction operator rg_).

Proof. We are going to show that [ is a continuous bijective linear mapping.
Then, since Hg(R,; ¢; X) and HJ(R; ¢; X) are complete spaces, the open
mapping theorem implies that 7; is an isomorphism.

5.2.1. From the definition of HQ (R,; ¢; X) it easily follows that 7, maps
Hg (R, 0; X) into HL(R; o5 X).
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5.2.2. Let us suppose that v€HS (R; ¢; X). Then V=e ®vcH'(R; X) sat-

isfies supp VCR,, and if we set u=I,v=r v, we have
U=e%u=r,VEHR,; X).
Now, it is not difficult to see that
UcH{(R,; X)
Therefore, at least,
I,v=ucH;R,;0; X).

In the case s=kq,+qo/2, k¢ N, we must continue. To do this, set V,=0¥V. Then

) V.€H®?R; X) and suppV,cR,.
Furthermore,
Wk:r+ VkEqu/z(R+; X), Wk:an‘

By (1), we first conclude (cf. [4], p. 52) that

oo

St [ W+ D)=Vl dr <.
0

Hence, in particular,

oo

[ 2de [IW@l5dt <.
0

0

From this it follows (cf. Hewitt—Stromberg [3], § 18) that

oo

[ 10kU gdr = [T W@ de <.
0 0

Thus we obtain U€ Hg (R, ; X), so that
I,v=u€H{)(R,; 0; X).

523. If ucHy(R,; ¢; X), we obviously have [I,Jju=r u~=u. Since
suppvC R, for veHS (R; ¢; X), we have also I/, v=(r,v)~=v. Accordingly,
I,=I;".

Finally, the definition of H@ (R, ; X) implies that , is continuous.

5.3. We now introduce the normed space #°(C,; X), where

C,={z€C|Re z > g},
as follows: We say that Ue#*(C,; X) if

(i) U: C,—~ X is holomorphic,

oo g+ico

.. |
(ii) sup f (o+it)*|U(o+it)||3 dr = sup — f (2)5|U(2)||5dz <o,
c=>9

=0 _ o G—joo

and equip #°(C,; X) with the norm whose square, for U€#*(C,; X), is given
by the expression of (ii).
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From Theorem 7.1 of Agranovié—Visik [1] (the proof of this result for X-
valued functions is essentially the same) it follows that the Laplace transforma-
tion %,

(Zu)(z2) = [ e~*u(t)dt,
0
is an isomorphism of H® (R; ¢; X) onto #°(C,; X). In view of Lemma 5.2
we thus have (an adapted Paley—Wiener theorem)

5.4. Proposition. The Laplace transformation ¥ (or Zol,) is an iso-
morphism of Hgy (R, ; ¢; X) onto H*(Cy; X) with inverse L.

5.5. Corollary. #°(C,; X) is complete.
5.6. Corollary. If Uc#*(C,; X), then
1T ey = [ e+ it |U(e+in) [} dr
with U(g+in)=%F (e" 4L~ U)~ (see Lemma 5.2).
Proof. First, take UcA#°(C,; X) and set u=%"1U. Then
U(o+it) = F,(e~u)~€L*(R,; X).

By the Parseval formula we now obtain
1U eoccpim = sup [ U@ +in|kdr=2n [ e~ |u|}ds
a=>0 0

= [1Ute+in)}dr.
Next, suppose U€#°(C,; X) with s=0. Then z%% Uc#°(C,; X), so that

1U esic,i 0 = 12990 Ullseoc,im = [ (e 4+10)* [U (e +i)| dr.

In the following statement we use the notation and concepts introduced in
3.1 and 4.8.

5.7. Proposition. Let Y be a Hilbert space such that X and Y form an
interpolation couple {X, Y}, and suppose s=0. Then for every r,0=r=s, the

mapping /
Uz U

Is a continuous operator
HO(Cy X)NH(Cps Y) > HO(Cyps [X, Y], )N H*~"(Cy; V).

Proof. The idea of the proof is as follows: Let A be a self-adjoint positive
operator in Y such that [X, Y], is the domain of A% 0=0=1. Making use
of the diagonalization of A by a unitary operator of Y onto a direct hilbertian
integral with respect to a positive Radon measure, we are then able to transform
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the assertion into a scalar inequality. Since the proof is not far from the one given
in [4], pp. 14—18, for intermediate derivatives of L?functions, we omit the details.

5.8. If k€N such that kg,=s, then it follows from 3.5, 4.8 and an analogue
of Proposition 4.9 that, for any u€Hg (R, ; o; X),

ofuc Hig* (R 5 05 X).
Thus we have, by Proposition 5.4,

L (OFu)e A 0 (C,; X).
Moreover,
ZL(0Fu) = *ZLu
(see Schwartz [7], p. 246).

6. #-spaces

Let us assume ¢=0.
6.1. For every s=0, we define (see 3.1)
H(C,, Q) = #°(C,; H(Q)nH#°(C,; H(Q)),
where Q stands for R”, or R"~'. Notice that Corollary 5.6 (see also 3.3) yields
U 5erc, 0 = [1U@+ Dz, . dr
As a consequence of Proposition 5.4 we obtain the following result.

6.2. Proposition. For any s=0, the Laplace transformation ¥ is an iso-
morphism of HE)(R,XQ; @) onto #(C,, Q), where Q is R’ or R

Also the next four lemmas will be needed in the sequel; the proofs are
given in 6.7.

6.3. Lemma. Let A(d,, D) be a differential operator of order 7., and suppose
s=). Then A(z, D) is a continuous operator of #(C,, R") into #“~?(C,, R",).

6.4. Lemma. Let A(d,, D) and s be as in Lemma 6.3, and suppose further-
more s=A if A=qy/2modq,. Then

LAWQ,,D)u = A(z,D) Lu
for all u€ HE)(Q; o).

6.5. Lemma. If s=>gq,/2, the trace operator 7y, is defined and continuous
on H(C,, R") with values in #~/3(C,, R").

6.6. Lemma. If s>gq,/2, then

Ly u =9y, Lu
for all uc HS(Q; o).
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6.7. The proofs of Lemmas 6.3 to 6.6.
6.7.1. Proof of Lemma 6.3. Rewrite A(z, D) in the form
Az D)= 3 ADD)Z,

kqy=4

where A®(D) is a differential operator of order =A—kq,. By Proposition 5.7
we see that U—zFU is a continuous operator

H(C,, RY) ~ HC—+0(C,, RY).
Since A®(D) is obviously a continuous operator
HO(Cy HIH0(RY)) ~ #°(Cps H(RY)),
we obtain the assertion by 6.1 and by Lemma 2.2 of [6].
6.7.2. Proof of Lemma 6.4. First, we have
~6.7.3. Lemma. For any s=0, the set
C0(0) = {ue C(Q)|suppu < R, XR%}

is dense in HS)(Q) and in H)(Q; o).

s

To see this, it suffices to use basic properties of H((O)) and intermediate spaces.
Next, by 4.8, 4.9, and Lemma 6.7.3 we have

6.7.4. Lemma. If the hypotheses of Lemma 6.4 are satisfied, then
A0, DYEL(H{H(Q); H ()
A9, D)EL(H{(Q5 0); HETM(Q; 0)-
Now we see, by Lemma 6.7.4 and Proposition 6.2, that £A4(d,, D) is a con-
tinuous operator of H@)(Q;0) into #¢"?(C,,R}), and so is 4(d,, D)%,

by virtue of Proposition 6.2 and Lemma 6.3. Since these two operators coincide
on the dense set C7,(0), they do so on HS)(Q; 0)

6.7.5. Proof of Lemma 6.5. For any Ue#(C,, R",), we have
U(z)eH*(RY), z€C,,

and

so that
1aU(DEH* =W/ (R"™Y)
and
”yn U(Z)”Hs—qnﬂ(Rn-l) =C ” U(Z)|!HS(R'_;)

by the trace theorem (see Slobodeckii [8] and Troisi [9], for example). It therefore
follows that y,U is holomorphic in C, with

d du
g‘Z"(VnU) = YnTZ—'
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In view of Lemma 1.9 of [6], we then conclude that

VaUEA C=9/D(C,, R*=7)
and that
172Ul ps=anic, mr—1y = CllUporc,, )

6.7.6. Proof of Lemma 6.6. Using Proposition 4.9 and an analogue of Theo-
rem 4.2 of [4], p. 24, one can prove

6.77. Lemma. If s=>q,/2, then v, is a continuous operator

H((os)) (Q: 0~ H((os)_q"/z) 20
(see Proposition 4.3).

Now we see that £y, is a continuous operator of H{)(Q;¢) into
HCE~ID(C,, R"™Y), by Proposition 6.2 and Lemma 6.7.7, and that so is y,.%,
by Proposition 6.2 and Lemma 6.5. Since £y, and y, % coincide on ijO(Q),
the result follows.

6.8. Suppose that we are given the operators B;(d,, D) of order py;,
j=1, ..., %, as in 2.2. Let s€R be such that

s=>=ui+q,/2, j=1,.., %
Let us now introduce the space
HE) 5(0; 0) = {ueHE(Q; 0|7, B;(0, D)u =0, j =1, ..., )},
a closed subspace of H(E,S))(Q; 0) (see Lemmas 6.7.4 and 6.7.7), and the space
KN (Cy RY) = {UEHO(Cy, RL)|1,B,(z, D)U =0, j = 1, ..., %),
a closed subspace of #® (C,, R") (see Lemmas 6.3 and 6.5). Then we have
6.9. Proposition. L(H) 4Q;0)=#Y(C,, R",).
Proof. For any u€ H$) 4(Q; @), we have, by Proposition 6.2,
LueH(C,,RY),
and furthermore, by Lemmas 6.4, 6.5, and 6.6,
yaBj(z, D)L u = £ (y,B;(d,, D)u) = 0,
so that _
Luc A5 (C,, RY).

On the other hand, if Uc#$(C,, R".), then a similar reasoning shows that

LUCHE) 5(Q; 0).
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INITIAL AND BOUNDARY VALUES
7. Initial values
7.1. Let A, (9, D) be the differential operator given in 2.2, and write

A, D) = kng(")(D)Bi‘

with
A®(D) = > auD’ k=0,..,m.

{a, q>§/4_kqo

Assuming now that Q0= 1, we have
my—1
) o= A0, D)— > AD(D)J;.
k=0
Note that the preceding hypothesis is essentially satisfied if, for example, A(z, D)
is parametrically quasi-elliptic, i.e., satisfies condition 1.3 ).
Given u€ H®(Q; 0) with s=p, ¢=0, we set

f=A4(,,D)yuc H®="(Q; 0)
and
@, = y,0ku€ H = -92(RY)  for  kqy < s—qo/2;
moreover, let
@, =P, when 0=k=m,—1L
By (1), we see that now

my—1
(pmo+r =M a;f_ kz(') A(k)(D) ¢r+k

for every ré N with rgo<s—u—go/2.
Let us next introduce the operators

S_.=0, r=1,2, ..,
So=—1Id (Id = identity),

my—1

0
S,- = Z A(k)(D)Sr—mo'l'k’ r= l’ 2’ Tt
k=0

and
T_.=0, r=1,2,...,

-r

T, =,
my—1

Tr=v,8¥—k§0 AODYT,_pers T=1,2, ...

Then for any s=0, S, is a continuous operator of H*(R") into H*™(R")
when rg,=s, and 7, is a continuous operator

r

H*(Q; ¢) — H*~r~4/2(R%) when rqy<s—qo/2.
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With our previous notation, we now have the following result about initial
values.

7.2. Theorem. Suppose that the coefficient of O in the operator A(9,, D)
is equal to one, and that s=p, 0=0. Then, given any uc H9(Q; o), the relation

my—1 my—1—vy
¢mo+r = Trf+ ;; Sr-—v kgov A(k)(D)¢v+k
holds whenever 0=rqy<s—p—q,/2.

Proof. The assertion can be proved by induction on r; however, we omit
the details.

8. Initial and boundary values. The spaces G*(¢), F*(¢), and E*(o)
We assume throughout this section that the operators B;(0,, D), j=1, ..., x,
are given as in 2.2, and write
B;(0,, D)= > B (D)o,

kgy=u i
where

B (D) = 2 bp.D% 0=kgy=yp;.
(e, q)=u;—ka,
Suppose also that ¢=0, and that
s=>u;+q,/2 for every j=1,..,x
8.1. Let us now introduce the Hilbert space

G*(0) = G*(o, B) = [[ H*~*o=®R(Ry) X [T HC=#:=9%/D(Z; )
K i

where k€N with kqgy<s—qo/2 and j=1,...,%. Then the mapping
Y= ((‘ytaf)k’ (‘ynBj(at’D))j)

(with k and j as above) is a continuous operator of H®(Q;0) into G*(p).
Thus we have, for any u€ H9(Q; o),

Yu = ((‘pk)ks (gj)j)E G*(0)
if we use the notation
@, = y,0¢u, kgqo < s—qo/2,

g =B;(0,Du, j=1,..x
Let us also set

1
0= 7(q0+qn)-
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The initial and boundary values now satisfy the following local compatibility
relations (cf. Grisvard [2]):

8.2. Theorem. Suppose p;+vqy<s—03, vEN. Then
7078 = 2> B (D)P,sy

kqoéuj
for every uc H9(Q; o), Yu=((Py), (gj)j)'

Proof. Employing Propositions 4.2, 4.3, and 4.4 (in addition to the usual
trace theorems), we see that the mappings

u—>,0/g;

and
u’_’yn 2 B§k)(D)(Dv+k

kqo=u;
are both continuous operators of H®(Q; ) into H* #~"%~%(R*"1). Since they
coincide on the dense subset C(Q), the statement follows.

The preceding result is completed by the following global compatibility rela-

tion (cf. Grisvard [2]):

8.3. Theorem. Suppose s—p;=06mod q,, say, s—pu;—0=vq, with vEN.
Then

oo

[ 1 3 (BPD),.,) (', 0%%) —exp (—00°5) (37 g,) (6%, x')

2 gy 90
0 kgo=u; g

= Cllulfxg; o
Sor all uEH(‘)(Q; ), spu—_‘(((bk)k, (gj)j)'

Proof. For the proof we need the next lemma which can be proved as a result
of P. Grisvard (see Théoréme 5.1 in [2] or Theorem 2.2 in Lions—Magenes [5], p. 13).

8.3.1. Lemma. Let X be a Hilbert space. Suppose R, XR, CR.XR,,
and define (cf. 4.1)

HO(R,XR,; 0; X)=HR,; ¢; H'(R,; X))nH°(R, ; o; H°(R,; X)).
Given any uc¢ H?(R, XR.; ¢; X), set
f= ytuqu”/z(Rxn, +5 X)a

g =y, u€H®?R, ,; 0; X).
Then

Py do 2
f || £ (c%/9) —exp (— QUa/q")g(ffa/q")ngT = Clullgow, xR, ;0:%)
0

for all ucHO(R,.XR,; ¢; X).

8.3.2. We shall prove a formally more general result.
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Let A=A(9,, D,) be a differential operator of order A=s—pu;—0, and

write
A= 3 AMP with AM =AM(D,),
vgy=4

and similarly, for brevity,
B; = B;(9,,D), B{® = B (D).

Let now u€ H®(Q; ¢). Then, by Proposition 4.2,
ABjue H®(Q; o) « HO(R, XR.; ¢; H'R"),

where the inclusion is both algebraic and topological. Thus it follows from Lemma
8.3.1 that
J [ IAB)©, ', 6%) —exp (—0"4) (4B, u) (0%, x', 0 d 22
0
= CllulFro; 0
where
(AB;u)(0, x) =y, (AB;u)(t, x) = 3 3 (AVBP D, ) (x)

Vgo=4 kq0<,uj
and

(AB;u)(t, X', 0) = y,(ABu)(t, x) = (Ag))(t, x')
(cf. the reasoning in the proof of Theorem 8.2). Thus we finally obtain, by substitut-
ing ¢ for ¢°,

f JI 3 3 (AOBP @, ), 05 —exp(~ 007 (Ag) (o7, ) 2dx’

vgy=2 kqosﬂ
2
= Clulao: o

which at once implies the desired inequality; notice that the implication holds
also vice versa.

8.4. Let F°(¢) denote the space of such ((&), (g;);)€G*(o) that the con-
ditions (LCR) and (GCR) are satisfied:
(LCR) If p;4vqy<s—9 with vEN, then
YI(():ng =" 2 Bﬁk)(-D) ¢v+k'
kqoéﬂj

(GCR) If u;+vgy=s5—0 with véN, then

[ [1 3 (BP (D)D) (¥ ) —exp (— 00 ) (0g,) (07,
0 do=U;

If we now set, for every ((®y), (g)),)€ F*(0),
H(_((pk)k’ (gj)j)_ %‘(g) = H((dsk)k’ (gj)j) &

G*(e)

- PRCACIINCRED

Hij+vae=s—35 g

d
—exp (— 00"/ (1g,) (o x <2
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then F*(g) is a Hilbert space with the norm so defined. One can show this by
using the completeness of G*(¢) and the fact that

HOP(RY) € LA(R.; HOR™Y),
H®*(Z; 0) € L¥(R,; ¢; HOR™Y);
we omit the (somewhat tedious) details.

8.5. To conclude this section, define

E*(0) = Y(H®(Q; 0).

The space E*(¢) will be regarded not only as a vector subspace of G°(¢) but also
as a normed subspace of F®(g), which is possible because of Theorems 8.2 and
8.3. Consequently, the operator

¥Y: H®(Q; 0) ~ E*(0)

is surjective and, by Theorem 8.3, continuous. Furthermore, if the kernel of ¥
is denoted (for informative and uniform notation) by H{'(Q;¢), and its ortho-
gonal complement by H{(Q; 0)*, we see that ¥ induces in a natural way a con-
tinuous bijective operator

Vo: H$P(Q; 0+ ~ E*(0).

Note that H{) ;(Q;0)C H(Q; 0); in particular, if s#¢e/2mod g,, then
HE 5(Q; 0)=HP(Q; 0).

QUASI-PARABOLIC PROBLEMS

We return now to the quasi-parabolic problem (QP) of Section 2.

In the following sections we shall study the existence, uniqueness, and a priori
estimates of solutions to Problem (QP).

Let us therefore assume that the operators A(9,, D) and B;(d;, D),
j=1, ..., %, are given as in 2.2, and that the operator system

(A (at bl D)a (’yta;‘)k’ (ynBj(ata D))j)

is quasi-parabolic in the sense of 2.3. We assume also that the leading coefficient
Ao OF A(9,, D) is equal to one (see 7.1).
For brevity, we shall use the notation

R = R(u, 1) = {s€R|s = pu, s > max {i;}+q,/2},

R,, = {sS€R|s # qo/2 mod Go}-
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9. A priori estimates in #'(C,, R",) and H{) (Q; 0)

In this section we derive some basic inequalities from the results of [6].
9.1. Theorem. If s€R, then for ¢=0 large enough the estimate
1U e, my = CUIA(z, D)Vl o=, gny+ 2 192 Bi (2, D)Ull pts-1,-auinc,, r-1)
J

holds for all Uc#® (C,, R"); in particular,
” U””(S)(CQ’ RY) = C”A (Z, D) U”x;(s—u)(ce,Rr;)
Sor all Ue#Y(C,, R").

Proof. We first observe that everything in the statement is well-defined by
virtue of Lemmas 6.3 and 6.5. By Theorem 4.3 of [6] we can now find ¢=0 such
that, for any U€#“(C,,R") and for all z€C,,

U@ zs @y = CU14(2 DYU @l rs-nrny+ 3 190 B; (2 DYU (Dl ys—rs=aul2 gn-sy)-
J
But by 6.1, this yields at once what we wanted.

9.2. Theorem. Suppose scR, and let 9=0 be as in Theorem 9.1. Then
lull gy ;00 = C (1140, D)U”H<S—M(Q;g)+2 74 B; (0, D)””H((S)_”J'_qn/z)(z';a))
J

& &
for all u€ H$)(Q: o).
Proof. For u¢H{)(Q;0) we have, by Proposition 6.2,
U= Zuc#(C,, R),
and furthermore, by Lemmas 6.4 and 6.6,
A(z,D)U = Z(A(9,, D)u),
y.B;(z,D) U = £(y,B;(0,, D)u).

Applying now Theorem 9.1 and again Proposition 6.2, we obtain the asserted
inequality.

In the same manner one verifies the following theorem, using, in addition,
Proposition 6.9.

9.3. Theorem. Suppose sc€R, and let 9=0 be as in Theorem 9.1. Then
||u”H(<g;(Q; o=Cl4 (9, D) u“H((,f)'“)(Q; B)
for all u€HE) (Q; o).

9.4. Note that the converses of the estimates in Theorems 9.1 to 9.3 hold
for any ¢=0.
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10. Existence and uniqueness of solutions for homogeneous initial and
boundary values

10.1. Theorem. Let s€R be given. If 0=0 is sufficiently large, then for
every FEAS™M(C,, R") the problem

A(z,D)U =F
has a unique solution U #$(C,, R").

Proof. First of all, we choose ¢=0 such that we are free to apply Theorems
4.3 and 4.4 of [6].

10.1.1. Suppose Fe#“~#(C,,R"). Then F(z)¢ H*"#(R") for every z€C,.
Thus it follows from Theorem 4.4 of [6] that the problem

6] A(z, D)u = F(2),
2) 1.Bj(z,D)u=0, j=1,..,%
has a unique solution u=U(z)€ H*(R").
We are now going to show that the mapping z—U(z) is holomorphic.

10.1.2. The mapping

z+>A(z, D):C — L(H*(R"%); H*~*(R"))
is holomorphic, and

iA(z, D)=A(z D)= 3 kz¥=1 4% (D);
dz 0<kgo=p

likewise, for each j=1, ..., x,
iBA(z, D) =Bj(z,D) = > kz*=1 B%) (D)
dz "’ o=k, J

(of course, B;=0 if B;=B{).
Thus we have, for every z€C,,

A'(z,D) U(2) €H*~*(RY),

7aB}(2, D) U(z) € H*=s=l*(R"=);
moreover,

P =L e @)

Applying Theorem 4.4 of [6], we may therefore conclude that the problem
A3 A(z,D)v = F’(z2)—A’(z, D) U(2),

4 VuBj(z, D)0 = —y,Bi(z,D)U(2), j=1,..,x,

has a unique solution v="V(z)€ H*(R").
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10.1.3. Let now z€C, be fixed, and suppose Az€C, 4z=0, such that
z+4z¢C,. Let us write

AF(z) = F(z+4z)— F(2),
AU(2) = U(z+4z2)— U(z),
AA(z,D) = A(z+4z,D)— A(z, D),

4B;(z,D) = B;(z+4z,D)—B;(z, D).
If we then set

Wiz a2 = 29 e,
we have, by (1) and (3),
A(z, D)W (z, Az) = (—Agg—z)——F’(z))
- [#ZZ’D)—A'(Z, D)) U(z+A4z)— A’ (z, D) AU (2),
and similarly, by (2) and (4),
VuB;(z, D)W (z, 42) = —y, [A—sz‘(—jﬂ—B}(z, D)] U(z—i—Az)—y,,B}(z, D) AU (z).

By virtue of Theorem 4.3 of [6] we thus obtain

AF(z)
Az

—F'(2)

) IW(z 4D gsqany = € (H

HS~#(R")

+ H[A—{I—EIZZ—’Q—A’(Z, D)) U(z+4z)

He#(R")

+[4'(z, D) AU (2)| gs-r gy

(ABj(z, D)
Vn Az

—Bj(z, D)) U(z+4z)

+2

4 313012 D) AU N o ns)-
J

HS—H;= /2 (Rn-1)

To handle the right side of (5), we now observe, by (1), (2), and Theorem 4.3
of [6], that there exist M =0 and 5=0 such that

1U(z+A42)| gsgny =M if |4z =+#.
Since (1) and (2) yield

A(z,D)AU(z) = AF(z)—A4A(z, D) U(z+4z),
1.B;(2,D) AU (2) = —y,4B;(z, D) U(z+4z), j=1,..,%,
we also obtain, again by using Theorem 4.3 of [6],

14U )| gs gy >0 as Az 0.
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But then it follows from (5) that

AU (2)
l Az V@)

HS(R%)
Thus we have proved that the mapping

z—U(2): C, ~ H*(RY%)
is holomorphic.

10.1.4. It is now obvious (see 6.1) that Ue#“(C,, R".) since
1U @ as @y = CIF @O mz-r ey
by virtue of Theorem 4.3 of [6]. Hence we have, by (2),
Ue #5(Cy, RY).

Therefore, by (1), this U is a solution. Since the uniqueness follows at once from
Theorem 9.1, the proof is complete.

10.2. Theorem. Suppose S€R, and let ¢=>0 be as in Theorem 10.1. Then
for every fEHG™(Q; ) the problem

A, Dyu =f
has a unique solution u€¢ H) 3(Q; 0)-
Proof. Suppose feH{ ™ (Q; ), and take
F= 2f c#-D(C,, R")

by means of Proposition 6.2. By virtue of Theorem 10.1 we then know that the
equation
) A(z,D)U=F

has a solution U€#§'(C,, R",). If we now apply Propositions 6.2 and 6.9, we see
that
u=LTUCHE),(Q;0)

Thus it follows from (1), by Proposition 6.2 and Lemma 6.4, that
A(at’D)u =f

Since the uniqueness is implied by Theorem 9.3, the assertion is proved.
As a consequence of Theorem 9.3, 9.4, and Theorem 10.2 we immediately
have

10.3. Corollary. Let s and ¢ be as in Theorem 10.2. Then A@,, D) is
an isomorphism of H@) (Q; @) onto H{79(Q; 0), whose inverse will be denoted
by A0, D)L
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11. Existence and uniqueness theorem in the general case

11.1. Let s€R, and let ¢=0 be as in Theorem 10.2 (or 10.1).
This section deals with the existence and uniqueness of solutions in H®(Q; o)
to Problem (QP) in the general case, that is, for the data

S fEHE-M(Q; ),
2 QR EH* M0~ %X(R),  k=0,..., my—1,
Q) gEHE1=4D(Z; 9), j=1, ..,

Let us first define
@ € H=*0=%/2(R"), 0=kq,~< s—4qo/2,

by setting
“) D, =¢, for k=0,..,m—1,
and (see 7.1)
my—1 my—1—vy
(5) @mo_” = Trf+ % Sr—v kgf') A(k)(D) ¢v+k

when O0=rq,<s—pu—q,/2.
Assume now that Problem (QP) has a solution in H®(Q; g). Then Theorem
7.2 implies that necessarily

(((pk)k, (gj)j)EEs(Q)'
For the converse we have the following result:

11.2. Theorem. Suppose that SER,, and that 9=0 is given as in Theorem
10.2. Then Problem (QP) with the data 11.1(1)—11.1(3) has a solution in H®(Q;0)
if (and only if)

6] (P> (29),)€E5(),

where the @, are given by 11.1(4) and 11.1(5)
Moreover, there is at most one solution.

Proof. The sufficiency of condition (1).

11.2.1. Assume that condition (1) holds. Then there exists v€ H®(Q; o) such
that

Yo = (P> (27)))-

Jo =40, D)v €H "1(Q; 0)

Now, setting

we have
my—1 my—1—vy
yt3:n0+rv = Trf;)+ 2 Sr—v 2 A(k)(D) (pv+k’
y=0 k=0
so that, by 11.1(5),
Trf:Tr.f;)’ rq0<s—,u—qo/2.
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Thus (see 7.1)

my—1 my—1

2S5 AOD) T i f =00 fym 3 AODIT,pyen i
and hence
20 (f=f) =0, rqy<s—p—qy/2.
J=FEHGTM(Q; 0).
11.2.2. We are now in a position to apply Theorem 10.2 and see that there
is weHE) 5(0; @) such that

This in turn implies

A0, D)yw = f—1,.
Consequently, the function u=v+wcH®(Q; ) is a solution of Problem (QP).
It remains to prove the uniqueness of the solution.

11.2.3. Let us suppose that Problem (QP) has two solutions # and v in
H®(Q;0). Then
w=u—vEHS(Q; o)
satisfies the conditions
Sfo =A@, D)w =0,

Y =7.0fw=0, k=0, cesmg—1.

But by virtue of Theorem 7.2, we now have also

my—1 my—1—vy
WP w =T fut 3 S, S AYDN =0
k=0 k=0
if rgo<s—u—qy/2. Since furthermore

uB; (0, D)w =0, j=1,.., %,
we conclude that
WEH((S)),B(Q; 0)-

Thus Theorem 10.2 (or Theorem 9.3) implies w=0 and hence u=v.

12. A priori estimates in H*(Q; o)

12.1. Let s€R and ¢=0 be given. From 8.4 and 8.5 it immediately follows,
by Theorem 8.3, that

)] ”f”H(s‘")(Q;Q)-'_H(((pk)lu (gj)j) [E5(0) = C”””H(S)(Q;g)
for all u¢ H®(Q; @), where

f =A@, D)u,

P, = y,0¢u, 0=kqy < s—qo/2,

g =Bij(0,,D)u, j=1,..,x
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Setting
o =9, for k=0,..,m—1,

we have, by Theorem 7.2,
my—1

my—1—v
¢mo+r = Trf+ ._Z(; Sr—v k;(') A(k)(D)(vac

for 0=rq,<s—p—gq,/2. This means that the left side of the estimate (1) actually

depends only on f, (@), and (gj);.
Next we shall study the validity of the reversed estimate of (1).

We begin by stating and proving the basic result of this section.

12.2. Theorem. Suppose s€R_,, and let ¢=0 be as in Theorem 10.2. Then

the a priori estimate
(A) ”u“H(‘)(Q;q) = C(”f||H("“)(Q;e)+ (D (gj)j)“E‘(g))
with the notation

f =A@, D)u,

Dy = @, = 1,0¢u, k=0,..,my—1,

4y’

my—1 moy—1—v
@mo+r = Trf+ 2:) Sl‘—v 2 A(k)(D)(pv+k’ 0= rqop < 5_/1_‘10/2’
v=

gj:ynBj(anD)us .=1,...,}{,

holds for all uc H®(Q; o) if and only if the condition (RI) is satisfied:
(RY) The mapping
¥: H®(Q; 0) ~ E*(0)

has a continuous linear right inverse ¥Yx*,
YYRW =V, VEE*(o).
Proof. The sufficiency of condition (RI).

12.2.1. Let uc H®(Q; 0), and set
V= (((pk)ka (gj)j)-

Then VEE®(e¢), and we have, by assumption,

v=Yr'VeH(Q;0)
and
€Y [0l ag;0) = ClIV [l g -
If we now put

w=u—veH(Q; o),

then
7.0fw =0 for kg, <s—qy/2
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and
1B (0, D)w =0 for j=1,..x%
so that
wEH(,5(0; 0).
By virtue of Theorem 9.3 we thus obtain, using (1),
lull g 00y = CllAW] gs-wg;0) F 1Vl H 0500

=C (“f”H(S'“)(Q;g)+“V”Es(g))a
that is, the estimate (A).

The necessity of condition (RI).
12.2.2. Let us suppose that

V = (P> (g));)€ E*(0)-

v= Yyt VEHP (Q; 0)*.

Then we have (see 8.5)

If we set
fo=A@0,,D)ve H¢="(Q; 0)

and ¢,=®, for k=0, ..., my—1, then

my—1

my—1l—vy
(2) ¢mo+r: Trfv+ ZO Sr—v kg(; A(k)(D)(pv+k

when 0=rgy<s—u—qo/2.
By Proposition 4.4, we now have

9,0 fL€ HS=F="%=9%2(RY), 1qy< s—[t—qo/2.

Thus Proposition 4.7 implies that

3 f=GRY T HALEHEP(Q; 0)
satisfies
(4) HfliH(s—y)(Q;Q) =C 2 ”’yta:f;,”Hs-u—rqo—qom(RrD .

It follows from (3) that f—f,€ H3 #(Q; ). Therefore we have, by applying
Corollary 10.3 to f—f,,

w =A@, D) (f—1,) €H{ 1(Q; 0

12.2.3. Let us now set
u=v+wcH(Q; o).
Then
A0, Dyu =1

and

®)] Yu=V= ((qjk)ka (gj)j)-
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By (4), the estimate (A) therefore yields

” u”H(s) (Q;0) = C( 2 12 ]Iyta:f;,l’Hs—,u—rqo—qo/Z(Rr_:_) + ” V“E-‘(g))'

rq0<s—y—q0

In view of 7.1 we have here

r
“'y13:-f;;”HS—ﬂ—rl]0"‘10/2(Ryl) = C v_gm ” va;)”Hs—ﬂ—vqo—qo/z(Ry;) .
= 0
But by (2),

”Tyf;,”HS—ﬂ—VQQ“qo/z(R:_) = “ ¢m0+v”Hs‘l‘_"‘10_‘lo/2(R1)

my—1 my—1—2

+120 k;:) “SV"}'A(k)(D)(pl+k”HS—ﬂ—WIo—40/2(R1).

where (see 7.1)
”Sv_;' A(k‘ (D) (0;_+k||Hs—/t—vqo—qo/2(R1) = C ” (pi+k“HS—(A‘FI‘)(IQ_QQ/Z(R':_) 2
Thus we obtain

(6) lul 1050 = C IV p5(ey -

Finally, combining (5) and (6), we see that the mapping
Visu=v4+w
gives the desired inverse Yg', that is,
Pl = Wit +A@,, D) (MR A, D)~ 4@, D)) Vit
This completes the proof.

12.3. Corollary. Under the same hypotheses and with the same notation as
in Theorem 12.2, condition (RI) is satisfied if and only if the estimate

my—1

2 2 4 2 < 2
(B) “ u”H(S)(Q; 0) =C [”f“H(S—H)(Q; 2) + kg(; ” (pk“Hs—kqo"qO/Q(R'l) + j;; H ngH(S_Ilj—qn/2)(z; 2)

. | d
+ 3 [ [ 3 (BPD),.) (', 0%%) —exp (— 00°) (9} g,) (050, x7) 2 dx’ —"]
uj+vgog=s—35 ¢ kqy=u; ! a

holds for all u¢ H®(Q; o).

Proof. By virtue of Theorem 12.2, it is enough to show that the estimate (A)
implies (B) because (B) immediately implies (A). This, however, follows from the
inequality (see 7.1)

my—1
(1) ” (pmo+r”HS—ﬂ"“Io_‘lo/2(R’;_) =C (”f”H(s—u)(Q;g) + k=20v ”quHHS—kqo*%/Z(R';)] .

It is worthwhile to note the following special case:
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12.4. Corollary. Suppose that the hypotheses of Theorem 12.2 are satisfied,
and that s—p;#0modq, for j=1,...,%. Then
]l p0; ) = C (114 (9r, D) till gris-10g; g
+ kZ ”'ytafu”Hs—kqo—qom(er) + Z ”y,,Bj(at s D) u|lH(S"ﬂj‘qn/2)(}:;Q))
<mg J

Sfor all uc H®(Q; o).

Proof. By Corollary 12.3, it suffices to prove that condition (RI) holds.
To do this, let
V= ((qjk)k’ (gj)j)EES(Q)-
Then (see 8.5)
v= Y5 VEHP (05 0)*,
and further
f=A4@,,D)v e HC=1(Q; o).

By Propositions 4.4 and 4.7 we see that

Jo =@ MRYITEEHC-M(Q; 0),
and that

(1) “f;)”H(s"“)(Q; ) = C ; ”yta;f”HS—ﬂ—rqo—qoﬂ (R'_".) .

Now it follows from 7.1, Theorem 7.2, and Theorem 11.2 that the problem
A@0,, Dyu = fy,
. 0fu=¢, =&, k=0,..m—1,
1uB; (0, Du=¢g;, j=1,..,2%,
has a unique solution u€ H®(Q; ¢) which satisfies also
Yu=".
Next, again by Propositions 4.4 and 4.7, we know that

vy = MR (PKEHD(Q; 0)
with

(2) “ UOHH(S)(Q; 0) =C %’ II¢k||Hs"k‘10“q0/2(R1) .

If we now set w=u—uv,, then

weHS(Q; o),
and Theorem 9.2 gives

”W”H(S)(Q;e) = C(“A(at, D)W”H(s—y)(Q; ) + 2 ”ynBj(ata D)WﬂH(s—ﬂj-—qnlz)(x;e))~
J
Therefore

(3) ” u”H“’(Q; 0) = C(”U()"H(s)(Q; ) + “'f;)”H(s‘”)(Q; 2) + Z “ gj”H(S—ﬂj—q,,/Z) ; Q))'
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Hence it follows from (1) and (2) that
”u”H(s)(Q; ) = C(%’ ”¢k”Hs_qu_‘10/2(R'j_)+ ; ” gj”H(s—/tj—q”IZ)(E; )

+2 “yta;f”Hs—u—rqo—qo/2(va)),
where, by 7.1,

1A

17,07 | gs—n=ray=aof2rny = C % (LA E———

Thus we have
lullagiey = ClV [ E2(0)»
and a reasoning quite analogous to the one used in 12.2.3 completes the proof.
Remark. One can also prove the assertion, more directly and a little more

briefly, by applying Theorem 9.2 to w=u—v, (u is arbitrary and v, as above)
to obtain (3), and by making then use of (2) and the inequality 12.3(1).

13. The case of normal boundary operator system {B;(D)}

This section is devoted to an important special case in order to illustrate the
substance of the results of the preceding sections (see Conclusion 13.6).
The boundary operators B;, j=1, ..., %, with which we shall deal here are

of the form
B;=B;(D)= > b;D"

(a,q)=u;

We notice that ¢, |u; (i.e., p; is a multiple of g,) if and only if B;(D) is formally
normal (to R"™") of order u;:

B;(D) = f; D;i+ By (D),
where v;=1;/q,, B;=bj,,v,, and the order of BY(D) with respect to D, is
less than u;.

The system {B;(D)} of the operators B;(D), ..., B,(D) is called normal
(to R"Y) if

() gylu; and B; 0 for j=1,..,x;
(i) p; # py (or v; = v) for j = k.

In what follows we assume (explicitly but superfluously, in fact) that the
system {B,;(D), ..., B,(D)} is normal, and that s=max {u;}+¢,/2, ¢=0.

13.1. Lemma. The mapping
(y,B;(D));: HOXQ; ) — [T HE=#i=9%/2(2; 0)
J

is a continuous surjective operator which has a continuous linear right inverse Bg'.
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Proof. Assume first that F,(D), 0=kg,<s—gq,/2, are operators of orders
kq,, respectively. By Proposition 4.6 one can then show that the operator
(1 Fe(D))ig <s-auz s HOQ3 @) ~ [T HOT =0 (23 0)

has a continuous linear right inverse Fgz'.
Let us now choose

F,(D)=ByD) if k=v;= .uj/qn,
F.(D) = Dt otherwise.

Then we can define Bi! as the restriction of Fg' to J[ HS #~%/3(X; o).
j

13.2. From Theorems 8.2 and 8.3 we see that every element of E®(g) satisfies
the compatibility relations (LCR) and (GCR) of 8.4. These conditions now charac-
terize the space E°(g) completely. Indeed, we have

13.3. Theorem. E*(9)=F"*(o).

Proof. In view of the definition of E°(¢) we have to show that F*(o)C E*(g)
(see 8.4 and 8.5).

13.3.1. Assume that

(((pk)ka (gj)j)E FS(Q)~
Using Lemma 13.1 we set

(1) v = Br(g); €H®(Q; o).

Define furthermore
Vi, 1o €H* "~ %2(R%), 0= kqgo<s—qo/2,
by
Yy = 7,050, e = Pr—Yy.

13.3.2. Let Hj(R") denote the closed subspace of H*(R’) which is given by
H3(RY) = (1€ H* (R 7, B;(D)x =0, j =1, ..., x}.
Then by (an analogue of) a result of P. Grisvard (see [2], Théoréme 8.1) we have:

13.3.3. Proposition. For any 0,0<6<l1,[Hz(R"), H*(R")], is a vector
subspace of H*~9(R") consisting of functions y such that

(i) y,B;(D)x=0 if uj=<s(1—0)—q,/2;
() x;7V*B;(D)x €L*(R") if pj=s(1—0)—q,/2.

The square of the norm of y€[HZ(R",), H*(R")], can be defined by

oo

; . . , .., ,do
lila-n@n+ 2 [ [1BD)r( o) dx' .

u;=s(1—0)—q,/2 ¢
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13.3.4. We now have
((Wk)k ,(g j) j)E E? (Q),

(0> (0),)€ F*(0)-

YaB;i(D)y =0 if uj+kgy <s—5

so that
Hence (see 8.4)

and

do

[ [1B,D)u(x', o)pdx’ — <o if p;+kgy=s—0.
0

Thus Proposition 13.3.3 implies that
wEH(RY), H(RY))p, with 0, = (kqy+q/2)/s.

13.3.5. Let {X, Y} be an interpolation couple of Hilbert spaces X and Y.
One can then show, for example by using methods similar to those in [4], Chap.
I, §§ 3, 4, that the trace mapping

(ytaf)kqo<s~qo/2 tH*(Ry; 0 Y)NH(R,; 05 X) ~ {] [X, Y](kqo+qo/2)/s

is a continuous surjective operator which has a continuous linear right inverse.
Take now

X = Hy(RY), Y=H'RY),
denote the above-mentioned inverse by I, and define

w = Tp (k-

Then we H®(Q; 0) and
Yw = ((Xk)k, (O)j)-

u=v+weHO(Q; o).

13.3.6. Let us now set

Then it is evident that
Yu = ((¢k)ka (gj)j)'

((¢k)k » (gj)j)E E*(0),

Consequently,

and the proof is complete.

13.4. Keeping Theorem 12.2 in mind, we are next going to show that con-
dition (RI) is satisfied in the case considered.

13.5. Theorem. The operator
¥: HOQ; 0) ~ E°(0)

has a continuous linear right inverse ¥g'.
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Proof. By making use of Lemma 13.1, the proof of Theorem 13.3, and its
notation, we set, for every V=((®), (g),)€E*(0),

PRV = IR(¢k_VzafBEI(gj)j)k‘i‘BEl(gj)j
= I (e +Br* (g));-

We claim that this definition yields what we want.
First of all, ¥z' is a linear mapping of E*(¢) into H®(Q; o) satisfying

PYRW =V, VEE(g).
To prove the continuity of ¥g', let us consider the inequality
PRV a0 = I TR Gl 59 0; 0 F 1 Br 1 (€)1 5501 09 -
From 13.3.5 and Proposition 13.3.3 it follows that

kGl o0 = € z[nxku,,s o=z f [1B;(D) 1 (', o) dx’ ]

j=5— kqo

Here we have, by 13.3.1 and Theorem 13.1,

A ol (LA RN 1 T AN
and by Theorem 8.3, 13.3.1, and Lemma 13.1,

f J1B,(D) (' o) 92

<c(f

2dx’ﬂ

* ? 18 ez, )
Therefore
[ Tr il a ;00 = C “((¢k)k9 @)@ -

Thus we see, in view of Lemma 13.1, that

”TEIV”H(S)(Q;Q) = C|Vgs)-

Remark. The existence of a continuous linear right inverse of ¥ follows
also from the fact that, by virtue of 8.4, 8.5, and Theorem 13.3, ¥ is now a con-
tinuous surjective operator of H®(Q; ¢) onto the Hilbert space E*(g)=F°(g).

13.6. Conclusion.

13.6.1. Combining Theorems 11.2 and 13.3 we see that, under the hypotheses
of Theorem 11.2, Problem (QP) has a (unique) solution in H®(Q; ¢) if and
only if conditions (LCR) and (GCR) of 8.4 are satisfied.

13.6.2. Combining Theorem 13.5 with Theorem 12.2 and Corollary 12.3,
we reach the conclusion that, under the hypotheses of Theorem 12.2, the estimates
12.2(A) and 12.3(B), respectively, are always valid.
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