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EXTENSION OF QUASISYMMETRIC
AND LIPSCHITZ EMBEDDINGS OF THE REAL LINE

II\TO THE PLANE

PEKKA TUKIA

L For the definitions of the terms Lipschitz embedding, Lipschitz homeomorph-

ism and L-embedding, we refer to [7, Section 1].

If f: X-RZ,X:RZ, is an embedding, we say that f is a quasisymmetric

embedding if there is H>l such that

lf(b) -f(x)l = H 
I f(a) -f(x)l

provided a,b,x(X and lb-xl=-la- xl; cf. [8], where / was said to be weakly
quasisymmetric if this is true. We say also that f is H-quasisymmetric if we wish
to emphasize H. lf y:p:f (X), this definition coincides with the usual deflni-
tion of a quasisymmetric (and ä-quasisymmetric) mapping except that f may be

also decreasing. Note that an Z-embedding is always l2-quasisymmetric.

2. We prove in this paper the following theorem whose quasiconformal parl
is more or less known [4, 6], although we have not found it in an exactly equivalent
form.

Theorem. Let f: Ä*R2 be an H-quasisymmetric embedding. Then there

is an extension F of f to a K-quasiconformal homeomorphism of Rz which is

continuously dffirentiable outside R qnd where K depends only on H. If f is

an L-embedding, then F is an L'-homeomorphism where L' depends only on L.

We proved a variant of the Lipschitz part of the theorem in [7], where the proof
was an explicit geometric construction, based on a certain compactness property
of Lipschitz embeddings. The proof we offer here is analytic in character, the main
tools being Riemann's mapping theorem and the Beurling-Ahlfors extension of
a quasisymmetric mapping. This proof is also much shorter than the proof of [7].
However, it is questionable whether it is fundamentally simpler, so powerful are

the theorems on which it is based.

We remark that the construction of [7] would, with minor modifications and

with some results of [8], have given also the quasiconformal part of the theorem.

Then an easy argument (lo of Section 12 of l7l) gives also the Lipschitz part. How-

koskenoj
Typewritten text
doi:10.5186/aasfm.1981.0624



90 Ps«a Turra

ever, we were not aware of this possibility when writing [7]. If this had been done,

we would have had as a corollary a new, geometric proof of the following theorem,
proved by Ahlfors [1] using analytic methods. (For the definition of the term
"bounded turning", see Section 4.)

Let ScRz and assume that Sv {-} zs a topological circle. Then S is the

image g(R) of the real line under a quasiconformal map g of R2 if and only if S
is of bounded turning.

This would follow since by [8, 4.9], combined with a normal family argument

using [8, Section 3], there is a quasisymmetric embedding f: R-Rz such that

"/(n):S.
We now proceed to the proof. For further discussion, see Section 7.

3. The Beurling-Ahlfors extension. Let g: Ä*A be an increasing homeo-

morphism and let Cr:{z(C: imz>01. One can extend g to a homeomorphism
Bn of clU by setting Bn:g in -R and for (x,y)€U

(1)

where

(2) :i:!
Bn(*, y) : I r"+ p) ++ @- p) i,

Bso(p : Bnoe, and BEos : q cBs,

u(x, Y) su * ty) dt, § (x, y) e@ - ty) dt.

This is the Beurling-Ahlfors extension [2, Section 6] of g. It is always a homeo-

morphism of cl U and it is continuously differentiable in t/. In addition, if g

is ä-quasisymmetric, B, is 8ä-quasiconformal (Reed [3]). We need the following
result. Let E:Å2*Ä2 beaffine, E@):az+\ where a,b€.R,a>O. Then g(R):Ä
and we have

(3)

where we have denoted ElÅ also by E. Equations (3) are an immediate con-

sequence of (1) and (2).

lf A: R2-R2 is a linear mapping, we denote

lAl : mar lA(x)1lxl:t

t(A) - lA(x)1.

co. (f a map g is undef,ned at -,
h is Dh. Now we can state

min
lxl:r

A mapping is normalized if it f,xes 0, L and

we set S(-) -...) The derivative of a map

Lemma l. Let g: R*Å be H-quasisymmetric. Then

(a) there is Lr:7r191>1 such that B)U is an Lr-homeomorphism of U
in the hyperbolic metric of U, and
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(b) there is Lr:7r19)=l such that, if g is in addition normalized,

tlL2 = t(DBs(t|z, rl2)) = lDBs(t12,tlz)l = L,.

Proof. For (a) see Ahlfors fl, p, 293)- Let (x, y)€U and let (x', y'): Bn(x, y).

Then (a) implies

(4) rlLr= yl(»Bu(x,y))ly'= ylDBo(x,y)lly'= Lr.

Now, if g is I/-quasisymmetric and normalized, Bn is 8f/-quasiconformal and

normalized. Then the compactness properties of quasiconformal mappings imply

that there is M:M(H)>-| such that imBn(ll2,U2)(lUM,Ml whenever g is

Il-quasisymmetric and normalized. It follows by (4) that (b) is true with Lr:2147,r.

4. Let c=1. We say that an (open or closed) arcJcRz is of c-bounded

turning if, whenever a, bCJ,
diam("I') = cla-bl,

where J'cJ is the subarc with endpoints a and å. we let 9" be the family of
normalized embeddings g: cl(I*Rz such that gltl is conformal and g(R) is

of c-bounded turning. There is K:K(c) such that evety g(F" can be extended

to a K-quasiconformal homeomorphism of ,R'z (cf. [1])' It follows that fr" is

compact: if gr,gr,...(9", there is a subsequenc€ gr(1), 842)t... such that there

is Lim g4q(9".

Lemma 2. Let XcU be conlpact andlet c>1. Thenthere is Ls:Lz(X,c)=l
that the deriuatiue g'(z) satisfies

llLs= lg'(z)l = L,

euery g(F" qnd z€X.

Proof. We choose a closed path 7: [0, 11*y such that 7([0, 1])nX:0
that for every zQX the index of z with respect to 7 is 1. Then

I r e()d(
s \z): 2"t ! G:g

for every zQx and g€9". Now (6) and the compactness of F" imply immediately

that there is Z, for which the right inequality of (5) is valid. If there is no such

Z3 for which the left inequality is also valid, we can find functions 8,8r,82, ...(fi"
and points 22 21, 22,...€X such that lim gr:g,lim zi:Z &nd lim gi(zr):O. How-

ever, g'(z)*0. This and (6) now imply a contradiction.

5. Let g: ,R*Å2 be a normalized embedding such that if we set 8(-):-,
g is continuous at -. Let C1 and C, be the components of R'\S(R). We

choose the notation in such a way that there is an orientation preserving homeo-

morphism G: cl (J*cl C1 extending g. Now we construct a canonical extension

such

(5)

for

and

(6)



(7)

(8)
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Fn of g to a homeomorphism of R2. We give the definition of d only in the
upper half-plane U; lhe case of the lower half-plane is analogous.

There is a well-defined homeomorphism An: cl U*cl C, which is normalized
and conformalin U. Consider the rnap E:An'og which is an increasing homeo-
morphism of Ä; thus the Beurling-Ahlfors extension Bu is a homeomorphism
of cl U extending 8. We set now

FnlclU-AnoBu,

Fn being defined similarly in R'\t/. We have FulR:Ano§:AnoA;tog:g;
thus d is indeed an extension of g.

Let then E: R*R be an increasing affine map and {: RztRz be a conformal
affine map, and assume lhat rltgE is normalized. We show

F,bn*-{/oFnoE

(where on the right side rp is extended to the unique conformal affine map extend-
ing q). 'I'his is the fundamental property of Fn which makes the proof of our
theorem lrossible. We obsene first that, if h:rlgE,

(9) An:toAno@

whcre E-A;rorl-roAn is a conformal affine map of cl t/. Let h:A;roh.
Thcn

h: E-'oA;torlt-ror! ogaE - O-toA;togoE: E-roEoE.

Consequently, by (3), Bu:@-roBuoqlclU. Thus, by (9),

Folcl U : AnoBn - t "AnaE cE-L oBuoElcl U : {/ o FnoqlclU.

In the same manner one sees that (8) is valid also in Är\U.
If now g is a quasisymmetric embedding of R into Rr, necessarily

lim,,;*_lg(r)l:- ([8, 2.1 and 2.16]) and thus the above discussion is valid for
all normalized quasisymmetric maps. Note that, if g is ä-quasisymmetric, then
g(R) is of 2H-bounded turning.

Lemma 3. Let H>1. There is anumber LE:Lq(H)=l such that if f: R*Rz
is a normalized H-quasisymmetric embedding, then the extension F, is continuously
differentiable,r?,R'z\R and satisfies

lfk + y) -f(x - y)l lf@+"v) -"f(x - v)l L
l2yLol

.fo, (x, y)€R2\4.

Proof. Choose (x, y)€ rR2\4.
increasing affine map of R such

by q also the extension of E to

,-
l2yl 'J4

We can assurne that y =0. Let E be the
that E(0)-x-y and q(l):x*y; we denote
a conformal affine map of R2. Let ,1, be the
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conformal afine map of Ä2 such that rlt(f (x-y)):O and rlt(f (x+y)):l. Then

S:*fq is normalized and by (8)

DFr(x, Y) : D{-' oDFn(ll2,l12) oDq-t'

Now DE and Dl/ (which are constants) are similarities, and Dq multiplies
distances by the factor 2y and Dl/ multiplies them by the factor
tll.f (x+y)-f (x-y)| Thus the lemma is true if we can show that there is h:Lq(H)
su'-;h that

(10) llLu =
Observe that g is

fact, there is Lq: Ln(H)
symmetric g. By (7),

DFno12, r12) - DAn(Buo12, rl2)) oDBao12, rl2).

Liere g:1-1og isnormalized. Itisalso älquasisymmetricfor some H' :H' (H).
To see this, observe first lhat An(92, since g(R) is of 2H-bounded turning.
Thus As, and hence also A;', can be extended to a K(ä)-quasiconformal
homeomorphism of Ä2. But a K(H)-quasiconformal homeomorphism of R2 is

Il'-quasisymmetric for some Hr:Hr(K(H)):Hr(H). This follows by a normal
family argument or by [9, 2.4). But then A;Log ir -g'-quasisymmetric for some

H':H'(Hr, H):H'(H) by [8, 2.16 and 2.2].

Let X:{Bh!lz,ll2): h: Ä*,R is normalized and H'-quasisymmetric}. Then

a normal family argument shows that X:X(H)c U is compact (observe that
,B, depends continuously on g). Now (ll) and Lemmas I and2 imply that there

are Lz:Lz(H'):Lr(H) and Lr:Lr(X,2H):Ls(ä) such that (11) is true with
Ln: LrLr:1n7171.

6. The proof of the main theorem is now easy. We can assume that f is normal-
ized, possibly by increasing I' for non-normalized /. Obviously, Ft is contin-
uously differentiable outside ,R. Thus FyliR'z\Ä is Z!-quasiconformal, which
implies that also F, is Lf,-quasiconformal since R is a removable singularity
for quasiconformal maps of R2. Assume then that / is an Z-embedding. We

observe that f is .L2-quasisymmetric and thus we can apply Lemma 3, which im-
plies that llLL4=l(DFr@,y))=lDFr(x,y)l=LL, if (x,7)€Ä'z\R. It follows
that F, is an Z'-embedding where L':LLa:L'(L).

7. Actually, Theorem A of [7] and the present theorem consider a slightly
different situation since in [7] we considered a Lipschitz embedding f: S:012*R2.
However, these two cases can be fairly easily reduced to each other by means of
the following observation, due to J. Väisälä. For euery L>l there is K:K(L)--L
such that if f: R-Rz or f: R2-R2 is an L-embedding in the euclidean metric with

/(0):0, then f is a K-embedding in the spherical metric, and uice uersq. This

93

t(orno12, rl2)) = lDFs(r12, tl2)l 5 Lu.

normalized and H-quasisymmetric. We show that, in
such that (10) is true for all normalized and ä-quasi-

(l 1)
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follows easily by the expression ldzllQf [zl'z) for the spherical metric. This ob-

servation would have simplified the discussion in Section 12 of l7l, where we ex-

tended /: S*Å2 outside .9. We refer to this discussion for the details of how to
reduce the theorems to each other (apart from the requirement that the extensions

are PL or continuously differentiable outside § or R).
Presumably one would get by this method also the extension for Lipschitz or

quasisymmetric embeddings of arcs into R2 (cf. Theorem B of [7]) since quasicon-

formal arcs can be characterized in a manner similar to quasiconformal circles

(Rickman [5]).
Finally, I am indebted to J. Luukkainen and J. Väisälä for reading the manu-

script and for valuable remarks.

Added in proof. After this paper was completed, I received the paper "Hardy
spaces, A-, and singular integrals on chord-arc domains" by D.S,Jerison and

C,E.Kenig whose Proposition 1.13. is equivalent to the Lipschitz part of the

theorem of this paper.
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