Annales Academia Scientiarum Fennica
Series A. I. Mathematica
Volumen 6, 1981, 89—94

EXTENSION OF QUASISYMMETRIC
AND LIPSCHITZ EMBEDDINGS OF THE REAL LINE
INTO THE PLANE

PEKKA TUKIA

1. For the definitions of the terms Lipschitz embedding, Lipschitz homeomorph-
ism and L-embedding, we refer to [7, Section 1].

If /+ X—>R% XCR? is an embedding, we say that f is a quasisymmetric
embedding if there is H=1 such that

LA(b)—f(¥)] = H|f(a) =f(x)]

provided a, b, x€X and |b—x|=|a—x]|; cf. [8], where f was said to be weakly
quasisymmetric if this is true. We say also that f is H-quasisymmetric if we wish
to emphasize H. If X=R=f(X), this definition coincides with the usual defini-
tion of a quasisymmetric (and H-quasisymmetric) mapping except that f may be
also decreasing. Note that an L-embedding is always L2-quasisymmetric.

2. We prove in this paper the following theorem whose quasiconformal part
is more or less known [4, 6], although we have not found it in an exactly equivalent
form.

Theorem. Let f: R—R® be an H-quasisymmetric embedding. Then there
is an extension F of f to a K-quasiconformal homeomorphism of R® which is
continuously differentiable outside R and where K depends only on H. If f is
an L-embedding, then F is an L’-homeomorphism where L' depends only on L.

We proved a variant of the Lipschitz part of the theorem in [7], where the proof
was an explicit geometric construction, based on a certain compactness property
of Lipschitz embeddings. The proof we offer here is analytic in character, the main
tools being Riemann’s mapping theorem and the Beurling—Ahlfors extension of
a quasisymmetric mapping. This proof is also much shorter than the proof of [7].
However, it is questionable whether it is fundamentally simpler, so powerful are
the theorems on which it is based.

We remark that the construction of [7] would, with minor modifications and
with some results of [8], have given also the quasiconformal part of the theorem.
Then an easy argument (1° of Section 12 of [7]) gives also the Lipschitz part. How-
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ever, we were not aware of this possibility when writing [7]. If this had been done,
we would have had as a corollary a new, geometric proof of the following theorem,
proved by Ahlfors [1] using analytic methods. (For the definition of the term
“bounded turning”, see Section 4.)

Let SCR? and assume that S {=} is a topological circle. Then S is the
image g(R) of the real line under a quasiconformal map g of R® if and only if S
is of bounded turning.

This would follow since by [8, 4.9], combined with a normal family argument
using [8, Section 3], there is a quasisymmetric embedding f: R—~R? such that
f(R)=S.

We now proceed to the proof. For further discussion, see Section 7.

3. The Beurling—Ahlfors extension. Let g: R—~R be an increasing homeo-
morphism and let U={z€C: im z=>0}. One can extend g to a homeomorphism
B, of clU by setting B,=g in R and for (x,y)cU

(1) By(x, ) = 5 @+ H 45 =B,

where

®) alx, )= [ gx+ty)dt, Bx,y)= [ glx—ty)dt.
0 0

This is the Beurling—Ahlfors extension [2, Section 6] of g. It is always a homeo-
morphism of ¢l U and it is continuously differentiable in U. In addition, if g
is H-quasisymmetric, B, is 8H-quasiconformal (Reed [3]). We need the following
result. Let ¢: R®—R? be affine, ¢(z)=az+b, where a, bcR, a=0. Then ¢(R)=R
and we have

(3) B,.,=B,09, and B,,, = @oB,,
where we have denoted ¢|R also by ¢. Equations (3) are an immediate con-

sequence of (1) and (2).
If A4: R*>R? is a linear mapping, we denote

4] = max |4(x)|

x|

[(4) = min |4(x)].

A mapping is normalized if it fixes 0, 1 and <. (If a map g is undefined at o,
we set g(ec)=cc.) The derivative of a map 4 is Dh. Now we can state

Lemma 1. Let g: R~R be H-quasisymmetric. Then
(@) there is Ly=L,(H)=1 such that B,|U is an L,-homeomorphism of U
in the hyperbolic metric of U, and
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(b) there is Ly=Ly,(H)=1 such that, if g is in addition normalized,
1/L, = I(DB,(1/2, 1/2)) = [DB,(1/2,1/2)| = L.

Proof. For (a) see Ahlfors [1, p. 293]. Let (x, )€U and let (x', y")=B,(x, »).
Then (a) implies

4 /Ly = yl(DB,(x, )y = y[DB,(x, )I/y" = L.

Now, if g is H-quasisymmetric and normalized, B, is 8H-quasiconformal and
normalized. Then the compactness properties of quasiconformal mappings imply
that there is M=M(H)=1 such that im B,(1/2, 1/2)€[1/M, M] whenever g is
H-quasisymmetric and normalized. It follows by (4) that (b) is true with L,=2ML,.

4. Let c¢=1. We say that an (open or closed) arc JCR* is of c-bounded

turning if, whenever a, b€J,
diam (J') = cla—b|,

where J’cCJ is the subarc with endpoints a and b. We let &, be the family of
normalized embeddings g: cl U~R? such that g|U is conformal and g(R) is
of c-bounded turning. There is K=K(c) such that every g€, can be extended
to a K-quasiconformal homeomorphism of R?® (cf. [1]). It follows that Z, is
compact: if g, gs, ...€F,, there is a subsequence g,u), guzy> --- such that there
is lim g,;€Z..

Lemma 2. Let XC U be compact and let c¢=1. Then there is Ly=Ls(X, c)=1
such that the derivative g’(z) satisfies

®) /Ly = 1g'(2)| = Ly
for every g€F, and z€X.

Proof. We choose a closed path y: [0, 1]>U such that y([0, 1)nX=0
and that for every z€X the index of z with respect to y is 1. Then

© =5 [ 25

for every z€X and g€%,. Now (6) and the compactness of &, imply immediately
that there is L, for which the right inequality of (5) is valid. If there is no such
L, for which the left inequality is also valid, we can find functions g, g1, g2, ...€ %,
and points z, z;, Z,, ...€X such that lim g;=g, lim z,=z and lim g;(z)=0. How-
ever, g (z)#0. This and (6) now imply a contradiction.

5. Let g: R—~R? be a normalized embedding such that if we set g(eo)=-co,
g is continuous at . Let C; and C, be the components of R*\ g(R). We
choose the notation in such a way that there is an orientation preserving homeo-
morphism G: cl U—cl C; extending g. Now we construct a canonical extension
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F, of g to a homeomorphism of R® We give the definition of F, only in the
upper half-plane U; the case of the lower half-plane is analogous.

There is a well-defined homeomorphism A4,: ¢l U~cl C; which is normalized
and conformal in U. Consider the map §=Ag_log which is an increasing homeo-
morphism of R; thus the Beurling—Ahlfors extension B, is a homeomorphism
of cl U extending g. We set now

7 F)lcl U= A,0B,,
F, being defined similarly in R*™\U. We have F,|R=A08=4,04 log=g;
thus F, is indeed an extension of g.

Let then ¢@: R—R be an increasing affine map and y: R2—~ R? be a conformal
affine map, and assume that Yg¢ is normalized. We show

(® Fd/w:wOFgoq’

(where on the right side ¢ is extended to the unique conformal affine map extend-
ing ¢). This is the fundamental property of F, which makes the proof of our
theorem possible. We observe first that, if A=igep,

(9) Ah:lﬁoAgOQB
where @=A 1oy oA, is a conformal affine map of cl U. Let h=A; oh.

Then
h=@"1od; o toyogop =F oA logop =g logog.

Consequently, by (3), By,=¢ toBoplcl U. Thus, by (9),
FylclU = A4,0B; =Yy od;0poc@ toBsoglclU = yoF,oplclU.

In the same manner one sees that (8) is valid also in R\ U.

If now g is a quasisymmetric embedding of R into R2, necessarily
limJ,|wo|g(t)[=oo (I8, 2.1 and 2.16]) and thus the above discussion is valid for
all normalized quasisymmetric maps. Note that, if g is H-quasisymmetric, then
g(R) is of 2H-bounded turning.

Lemma 3. Let H=1. There is a number L,=L,(H)=1 such that if f: R—~ R?
is a normalized H-quasisymmetric embedding, then the extension F ' Is continuously
differentiable in R*\ R and satisfies

fx+»)—fx=y)| _ _ _ e+ —fx—y)
L = [(DF;(x, y)) = |IDF,(x, y)| = ] L,
for (x, )€ R\ R.

Proof. Choose (x, )¢ R®\R. We can assume that y=0. Let ¢ be the
increasing affine map of R such that @(0)=x—y and ¢(l)=x-+y; we denote
by ¢ also the extension of ¢ to a conformal affine map of R2. Let ¥ be the
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conformal affine map of R? such that Y (f(x—y))=0 and ¥(f(x+y))=1. Then
g=VYfo is normalized and by (8)

DF,(x,y) = Dy~ oDF,(1/2,1/2) o Dp~.

Now D¢ and Dy (which are constants) are similarities, and D¢ multiplies
distances by the factor 2y and Dy multiplies them by the factor
1/| f (x+y)—f (x—y)|. Thus the lemma is true if we can show that there is L,=1L,(H)
such that

(10) 1/L, = (DF,(1/2,1/2)) = |DF,(1/2,1/2)| = L,.

Observe that g is normalized and H-quasisymmetric. We show that, in
fact, there is L,=L,(H) such that (10) is true for all normalized and H-quasi-
symmetric g. By (7),

(1) DF,(1/2,1/2) = DA,(B,(1/2, 1/2)) 0 DB,(1/2, 1/2).

Here ngg‘log is normalized. It is also H’-quasisymmetric for some H' =H’'(H).
To sce this, observe first that A,€%,, since g(R) is of 2H-bounded turning.
Thus A4,, and hence also Ag‘l, can be extended to a K(H)-quasiconformal
homeomorphism of R2 But a K(H)-quasiconformal homeomorphism of R? is
H,-quasisymmetric for some H,=H,(K(H))=H,(H). This follows by a normal
family argument or by [9, 2.4]. But then Ag_log is H’-quasisymmetric for some
H' =H'(H,, Hy=H’(H) by [8, 2.16 and 2.2].

Let X={B,(1/2,1/2): h: R—~R is normalized and H’-quasisymmetric}. Then
a normal family argument shows that X=X(H)c U is compact (observe that
B, depends continuously on g). Now (11) and Lemmas 1 and 2 imply that there
are Ly,=L,(H')=L,(H) and Ls;=Ly4(X,2H)=Ly(H) such that (11) is true with
Ly=L,L;=L,(H).

6. The proof of the main theorem is now easy. We can assume that f is normal-
ized, possibly by increasing L’ for non-normalized f. Obviously, &, is contin-
uously differentiable outside R. Thus F;|R™R is L}-quasiconformal, which
implies that also F, is L3-quasiconformal since R is a removable singularity
for quasiconformal maps of R2% Assume then that f is an L-embedding. We
observe that f is L2-quasisymmetric and thus we can apply Lemma 3, which im-
plies that 1/LL,=1(DF(x,))=[DF(x, »)|=LL, if (x,y)€R*R. It follows
that F; is an L’-embedding where L'=LL,=L'(L).

7. Actually, Theorem A of [7] and the present theorem consider a slightly
different situation since in [7] we considered a Lipschitz embedding f: S=07/>— R
However, these two cases can be fairly easily reduced to each other by means of
the following observation, due to J. Viisdlad. For every L=1 thereis K=K(L)=1
such that if f: R—~R? or f: R*—~R? is an L-embedding in the euclidean metric with
f(0)=0, then f is a K-embedding in the spherical metric, and vice versa. This
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follows easily by the expression |dz|/(1+]z|?) for the spherical metric. This ob-
servation would have simplified the discussion in Section 12 of [7], where we ex-
tended f: S—R? outside S. We refer to this discussion for the details of how to
reduce the theorems to each other (apart from the requirement that the extensions
are PL or continuously differentiable outside S or R).

Presumably one would get by this method also the extension for Lipschitz or
quasisymmetric embeddings of arcs into R? (cf. Theorem B of [7]) since quasicon-
formal arcs can be characterized in a manner similar to quasiconformal circles
(Rickman [5]).

Finally, T am indebted to J. Luukkainen and J. Viisil for reading the manu-
script and for valuable remarks.

Added in proof. After this paper was completed, I received the paper “Hardy
spaces, A, and singular integrals on chord-arc domains” by D.S,Jerison and
C,E.Kenig whose Proposition 1.13. is equivalent to the Lipschitz part of the
theorem of this paper.
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