Annales Academiz Scientiarum Fennica
Series A. I. Mathematica
Volumen 6, 1981, 173—178

A NOTE ON MAXIMUM MODULUS ALGEBRAS

PENTTI JARVI

1. Let X be a locally compact Hausdorff space and let 4 be an algebra of com-
plex-valued continuous functions on X. Then 4 is called a (local) maximum modulus
algebra on X, provided that for each compact subset K of X with topological bound-
ary 0K, and for each fin 4, we have

(%) [f(po)l = max {|f(p)| p€OK} for pycK
(see [9], [11]). One of the main results of [9] reads as follows ([9, Theorem 2]).

Theorem A. If A is a maximum modulus algebra on a plane domain G, and if
A contains a function which is analytic and not constant in G, then every member of A
is analytic in G.

Recently, Bear and Hile ([2, Theorem 4]) gave the following extension of Theo-
rem A.

Theorem B. Let G be a plane domain and A a maximum modulus algebra
on G. If for each z€G there is an open neighborhood U, of z and a function f,€A
such that f, is an interior (i.e., light and open) mapping on U,, then there is a homeo-
morphism ¢ of G onto a plane domain G’ such that goe™' is analytic in G’ for
each gcA.

In this note we show that the requirement that f, be open is not needed to
establish the conclusion of Theorem B; in other words, openness turns out to be
a consequence of the remaining assumptions. Actually, our first theorem states
that members of any maximum modulus algebra are quasiopen mappings in the
sense of Whyburn ([12], [13]); moreover, it is a simple matter to verify that a quasi-
open and light mapping is open. Relying on Theorem 1, we will also revise some
results of Bear and Hile ([2, Theorem 3]), W. C. Fox ([3]) and Kra ([5, Theorem III]).
The note is concluded with some simple observations on algebras of quasiconformal
functions (cf. [1]).

2. Let X and Y be topological spaces. A continuous mapping f: X—Y is
said to be quasiopen, provided that for any y€f(X) and any open set U in X con-
taining a compact component of f~1(y), y is an interior point of f(U). The follow-
ing characterization is due to Whyburn [13, p. 112].
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Lemma. If X and Y are locally compact Hausdorff spaces, a mapping f: X—Y
is quasiopen if and only if for each relatively compact open set U in X of(U)Cf(QU).

In fact, Whyburn limited himself to locally compact separable metric spaces,
but the validity of the Lemma is readily seen even in the setting given above.

Theorem 1. Let X be alocally compact Hausdorff space and let A be a maximum
modulus algebra on X. Then every member of A is a quasiopen mapping X—C.

Proof. By [9, Lemma 1], we may assume that 4 contains the constants. Let
f€A and let U be a relatively compact open set in X. Suppose that Jf(U) ¢f(0U)
and take a point z,€9f(U) such that z,¢f(@U). Since f(0U) 1is compact
(note that QU is nonempty by (%)), we find a point z;€C\ f(U) such that
|zy—zo|<min {|z,—z||z€f(0U)}. Then pick out a point zEf(U) such that
|z, —2,| =min {|z, —z||z€f(0)}. Cleartly, z,¢f(0U).

Set z3=(z;+2z,)/2 and

d = min {% |z1— zal, %min {|z—zzlEzEf(8U)}}.

Further, let D(z,,d) stand for the set {z€C ]Iz—22l<d}. Now choose a point

€ U such that f(¢) =z, and denote by C the nonempty compact set (D (z,, d))nTU.

It is clear that CC U and z,§£(9C). Thus |z3—z,|<min {|z—z,||z€/(0C)}.
Denote by g the mapping p—(z3—/f(p))~%, p€C. By the previous inequality,

(¢ %) l2(q)| = max {|lg(p)| p€IC}.
Consider the identity

(o) = Gz 3 (22 (FR2) i,

=0\ Z3T 22 2
pEeC, neN. Clearly, the function
S P (zs—2z) 7 2 (ﬂL__%—)
i=0\ Z3—Zy
is a member of A4 for each n. On the other hand,

£(p)— 2, ] == ! - (%)

Z3— 2y

(s

in C for each n. It follows that f,—~g uniformly on C. But this implies that g also
attains its maximum modulus on dC, a contradiction to (s ).

We conclude that df(U)cCf(QU) for each relatively compact open set U in X.
The assertion now follows from the preceding Lemma. O

Corollary. Let X be a locally compact Hausdorff space and let A be a maxi-
mum modulus algebra on X. Then f€ A is an open mapping X—~C whenever f is light.
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Remark. It is clear that for an individual function, in general, validity of
the maximum principle does not imply quasiopenness (see also [3]).

3. Our first application provides the generalization of Theorem B mentioned
before. Although it is an immediate consequence of Theorem B, in view of Corol-
lary to Theorem 1, we prefer to base the proof on Theorem A and hence reproduce
some arguments from [2].

Theorem 2. Let G be a domain in é, the extended plane, and let A be a maxi-
mum modulus algebra on G. If for each z€G there is an open neighborhood U, of
z and a function f,€A such that f, is light on U,, then there is a homeomorphism
@ of G onto a plane domain G’ such that go®~' is analytic in G’ for each g€A.
Accordingly, the conclusion holds whenever A contains a mapping light on G.

Proof. Let z€G, and choose an open neighborhood U,cG of z and f,€4
such that f;|U, is light. By Corollary to Theorem I, f,|U, is interior. By Stoilow’s
theorem ([10, p. 121]), there is a homeomorphism ¢, on U, such that f,op ' is
analytic on ¢_(U,). Let A, stand for {gop ! g€A}. Then 4, is a maximum mod-
ulus algebra on ¢_(U,) which contains the nonconstant analytic function f.op[ .
By Theorem A, gog; ' is analytic on ¢.(U,) for each g€A.

It is now readily verified that G together with the local parameters (U, ¢,),
z€G, constitutes a Riemann surface G; moreover, the members of 4 are analytic
on G. Since G is planar, there is a conformal mapping @ of G onto a plane domain
G’. Clearly, go®~' is analytic in G’ for each g€A4. [

Example. Define ¢: C—R, ¢(z)=Rez and denote by C(R) the algebra
of all continuous complex-valued functions on R. Then {go¢|gc C(R)} is a maxi-
mum modulus algebra on C. This simple example shows that lightness, or some-
thing like that, is really needed to guarantee some sort of analyticity:.

Next consider the situation of [2, Theorem 3]. In other words, let G C be
a domain and 4 a uniform algebra on G such that the maximal ideal space of 4
is G and the Shilov boundary I is a proper subset of G (for the terminology, we
refer to [4]).

Let z€G\J" and let U,cG\I be a connected open neighborhood of z.
Suppose that there is a function f€A4 such that f|U. is light. Since 4., the restric-
tion of 4 to U_, is a maximum modulus algebra on U, by Rossi’s theorem [4, p. 92],
there is, by Theorem 2, a homeomorphism ¢ on U, such that gogp; ' is analytic
on ¢,(U,) for each gcA.

As before, the local parameters (U, ¢,) are compatible in an obvious way.
Consequently, for each component D of G\[I' there is a homeomorphism & of D
onto a plane domain such that go®~1 is analytic for each g€ 4. Thus the property
of being countable-to-one in the version of Bear and Hile is replaced by lightness in
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Theorem 3. Let GCC be a domain and A a function algebra on G. Assume
that the maximal ideal space of A is G and the Shilov boundary I is a proper subset
of G. If for each z€ G\UI" there is a neighborhood U, of z and a function f,€A such
that f,|U, is light, then there is on each component of G\I' a homeomorphism @
onto a plane domain such that go®~' is analytic for each g€ A.

Remarks. (1) The assumptions of [2, Theorem 1] admit a similar relaxation.
This follows immediately from Corollary to Theorem 1, in view of Rossi’s theorem.

(2) Apparently, a result analogous to Theorem 3 can be obtained whenever G
is a relatively compact domain in any Riemann surface. Similarly, in Theorem 2
G could be taken as an arbitrary Riemann surface.

In a similar fashion, we can establish the following extension of a result of
W. C. Fox (see [3]).

Theorem 4. Let X be a topological manifold of dimension two, and let f and
g be functions, not both constants, sending X into C. There exists a conformal structure
Jor X relative to which both f and g are analytic if and only if the algebra generated
by f and g is a maximum modulus algebra on X and at least one member in this algebra
is also light.

The next theorem generalizes a striking result of Kra ([5], [7]).

Theorem 5. Let X be a connected, locally compact, Hausdorff space, and let
A be a maximum modulus algebra on X which separates points and contains the con-
stants. Suppose that, for every pEX, the ideal M(p)={fcA|f(p)=0} is principal.
Then X can be given a unique conformal structure which respects the topology such
that every fe A becomes an analytic function on X. In particular, X is an open Riemann
surface.

Remark. In Kra’s version, the nonconstant functions in 4 were assumed
to be open mappings. Cf. also Remarks (2) and (3) in [5, p. 239].

Proof (as in [7]). Let peX andlet t€A be a function which generates M (p).
Since A4 separates points, #(g)#0 for each ¢=p in X. Let V be an open neigh-
borhood of p with compact closure V, and denote §=min {lt(q)quGBV} (again,
V=0 by (#)).

Given any f€ M(p), |f| and |fJt| attain their maxima for ¥ at points on 9V.
Hence

172l = (/3 - 1Lf 1, fe M (p),

where || || refers to the sup norm on V.

Thus the assumptions of the lemma of Porcelli and Connell (see [7, pp. 318—319])
are satisfied. Consequently, on the open set U={g€ V|]t(q)|<5/2}, every function
f€A is equal to a convergent power series in 7; i.e., f|U=go(¢|U), where g is
analytic on {zECl|zl<5/2}. Since A separates points, ¢ must be injective on U.
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It follows from Corollary to Theorem 1 that ¢ is also open on U. Accordingly, #|U
is a homeomorphism of U onto t(U)={z€C||z|<5/2}.

Now, clearly, the pairs (U, ¢t|U) constitute a unique conformal structure on X
in such a way that each member of A becomes an analytic function on X. [

4. For the sake of illustration, we will add some observations on QC(G),
the class of quasiconformal functions on a plane domain G. Recall that a quasi-
conformal function on G can be defined as a function f which admits a representa-
tion f=go@, where ¢ is a quasiconformal homeomorphism G—>¢(G) and g is
an analytic function on ¢(G); thus we include the constants but exclude functions
with “poles” (cf. [6, p. 250]).

Assume that 4cQC(G) is a nontrivial algebra with the usual operations.
By Theorem B, we find a homeomorphism ¢: G—¢(G) and an algebra, say B,
of analytic functions on ¢(G) such that A=Bop={gcp|gcB}. Plainly, ¢ is
quasiconformal on G. Thus Ac QC(G) constitutes an algebra if and only if there
is a quasiconformal homeomorphism ¢ on G and an algebra B of analytic functions
on ¢(G) such that A=Bog. In particular, the complex dilatations (see [6, pp.191—
192]) of any two nonconstant members of an algebra coincide (as elements of L= (G),
of course).

Assume ncw that 4cQC(G) is a maximal algebra, i.e., 4=A" whenever
A’ is an algebra such that 4c 4A’c QC(G). Then clearly A=H(G)op, where
H(G’) stands for the algebra of all analytic functions on G’=¢(G). Obviously,
there is a one-to-one correspondence between the class of maximal algebras in
QC(G) and the set {,uEL“’(G)lH,uH<1} (see [6, p. 204)).

Assume then that 4;,CQC(G) is a maximal algebra and ¢; a corresponding
quasiconformal homeomorphism, i=1, 2. Suppose that T: 4;—~A, is an algebraic
homomorphism. Let ¢ denote the homomorphism g—gog,, H (go,.(G))—»A,.,
i=1,2. Then T'=¢} 'oTop} is an algebraic homomorphism H(p:(G))—~
H(¢,(G)). By [8, Theorem 1], there is a unique analytic mapping ¥ of ¢,(G) into
¢,(G) such that T"g=goy for each gcH(¢,(G)). Consequently, there is a one-
to-one correspondence between the class of homomorphisms 7T: A;—~A4, and the
class of analytic mappings ¥: ¢,(G)~¢.(G). In particular, 4, and A4, are alge-
braically isomorphic if and only if ¢,(G) and ¢,(G) are conformally equivalent.
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