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REFLECTION PRINCIPLE FOR SOLUTIONS
OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
AND QUASIREGULAR MAPPINGS

O. MARTIO

1. Introduction

Let G be a domain in the upper half plane H+ and CCdH* an open set in 0G.
If f=u+iv: G—C is analytic and lim,.,v(x)=0 for all ycC, it is well known
that f has an analytic extension to Gu CuU PG where P is the reflection in 0H *.
A similar principle holds for harmonic functions in R", n=2, and for n=2 these
two principles are intimately connected. In this paper these principles are extended
to general non-linear elliptic partial differential equations in divergence form

(1.1) V.A(x,Vu) =0

and to quasiregular mappings, generalizations of plane analytic functions to higher
dimensional euclidean spaces. The mean value property is used to prove the reflec-
tion principle in the classical harmonic case. No such method is available in the
general case and hence different tools are employed. One of the problems is the
reflection of the equation (1.1), since if # is a solution of (1.1), then the reflected
function should be a solution of the reflected equation V-A*(x, Vu)=0. This
leaves little choice for A*, and it turns out that 4 and A4* are quite similar.

For linear and analytic partial differential equations the reflection principle
has been extensively studied, see e.g. [J]. For quasiregular mappings it has been
earlier treated in [MR] in a special case.

The paper is organized as follows. After preliminaries and a lemma on local
integrability of solutions up to the boundary the reflection principle for (1.1) is
considered in Chapter 3. Chapter 4 is devoted to the corresponding result for quasi-
regular mappings.
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2. Preliminary lemma

2.1. Sobolev space W;. The open ball centered at x€R" with radius =0
is denoted by B"(x, r) and its boundary by S"7(x,r). We use the abbreviations
B"(r)=B"(0,r), B"=B"(1), $""Y(r)=8""40,r), and S""1=8""1(1).

Given an open set GCR", W(G), l<p<-<e, denotes the Sobolev space of
all functions wu€LP(G) with distributional first derivatives in L?(G), see [GT].
The space W,},o(G) is the closure in WII,(G) of Cy(G)-functions. A function u
belongs to loc W(G) if for all domains D CG, u|DEW,(D). It is well known
that a continuous function  on G belongs to loc W(G) if and only if u is ACL?
in G. In our terminology, ACL? means the set of all continuous (real valued) func-
tions on G which are absolutely continuous on almost every line in G with partial
derivatives locally L?-summable, see e.g. [GT, p. 163]. The LP-norm on G is written
as | [, or simply | |-

We shall frequently use the following lemma which is difficult to locate in the
literature.

22. Lemma. Let G be a bounded open set in R". If ucC(G)nWyG) and
u=0 in 4G, then uc W} ,(G).
Proof. Consider the measures

p(A) = [lulrdm, o(4)= [|Vul?dm
A A

defined on measurable subsets of A. Using the ACLP-property it is easy to see
that ¢ is absolutely continuous with respect to p. For ¢>0 consider the function
v,=max (u, &)—e. Then v,€ W,(G) Cy(G). Choose a convolution approximation
@€Cy(G) for v, such that

lo—vll,+IIVe =V, <e.
If u*=max (u,0), then

lu*—oll,+IIVu™=Vol, < [u* —vl ,+[Vu™ = Vo, +e

= 8m(G)1/”+( f |Vu|”dm)”"+s.

0=u(x)=e

The last integral can be made small by the absolute continuity of ¢ since
p({x€G: 0 = u(x) = &}) = P m(G).
A similar estimate holds for u#~=min (u, 0). This completes the proof.

2.3. Elliptic equations. Let G be an open set in R". We consider an elliptic
partial equation in divergence form

(2.4) VeA(x,Vu) =0
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where A: GXR"—R" is a Borel function such that for a.e. x¢G and for all A€ R"
(2.5) |4 (x, b)| = ylh|P—1,
(2.6) A(x, h)-h = a|h?.

Here l<p<e and O<a, y<oo. An ACLP-function u: G—~R is a solution of
(2.4) if for all @€eCZ(G)
(2.7) [ A(x, Vu)-Vodm = 0.

G

Tt is well known that the continuity is superfluous in the definition of a solution,
since every function u€loc Wh(G) satisfying (2.7) can be made continuous after a
change on a set of measure zero, see e.g. [GT].

The next lemma gives a local integrability result up to the boundary. Let
G and H be open sets in R". Suppose that E=Hn 0G0 and write G'=HnG.

2.8. Lemma. Suppose that h€ C(G")nW (G"). Let u be a solution of the equa-
tion 2.4) in G. If lim ., u(x)=h(y) for all y€E, then each ycE has a neigh-
borhood U such that u belongs to W, (G U).

Proof. Fix y€E. We may assume that y=0. Choose ¢=0 so that B"(¢)C H.
Set B=B"(9)nG. Let r=9/2 and £>0. Now u—¢ is a solution of (2.4) in G.
Let ¢€Cg(B"()) be such that 0=¢=1 and ¢|B"(r)=1. Consider the function
v=@P(u—e—h) in the open set D,={x€B: u(x)=¢+h(x)}. Now D,c G and
by Lemma 2.2, v€W, ((D,). From (2.7) it follows that

[ AGx, Vu)-Vodm = 0.
D&

Since Vo=p@? Ve (u—e—h)+@?V(u—e—h), Schwarz’s inequality yields
fgo”A(x, Vu)-Vudm = p f(p""llA(x, Vu)||Vo||lu—e—h|dm
D, D,

+ [ @"14(x, Vu)| [Vh| dm
2.9) P
=Mpy [P~ |VulP=*[Voldm+y [ F|VulP=*|Vh|dm
DS D&
=C|loVul|2 5 (IVol,+1oIVA,).

Here Hoélder’s inequality has been used in the last step, M =supp |u—e—#|, and C’
does not depend on e<1. Since by (2.6)

f(p"A(x, Vu)-Vudm = « f(p"qul”dm,
D, D,

the inequality (2.9) yields

Vulrdm = [ @?|VulPdm = [C" a7 (|Vol, +Vh] )P = C”
BYrND, D,
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where C”<< does not depend on ¢. Letting ¢—~0 gives

[VulPdm < oo.
B (1N D,

A similar estimate holds in the set B"(r)n{x€G: u(x)<h(x)}. Since

Vulrdm = [ |Vh|"dm,
u(x)=h(x) u(x)=h(x)
we have proved
[VulPdm < eo.
B (NG

By continuity u€L?(B"(r)nG), thus u€ Wy(B"(r)nG), and the lemma follows.

3. Reflection principle for solutions of elliptic equations

Consider the equation (2.4) where A satisfies (2.5) and (2.6) in an open set
Gc H*={x€R": x,>0}. Moreover, we assume that for a.e. x€G

(3.1 A(x, —h) =—A(x, h)

forall A€ R". Let P: R"—~R" bethereflectionindH *,i.e. P(x)=(x1, ..., Xp_1, —X,)-
Suppose that there is a non-empty set CC@dH* open in 9G. Set G*=Gu Cu PG.
Then G* is an open set in R".

Next we reflect the equation (2.4). Define 4*: G*X R"—>R" as follows

A(x, h), x€G
A*(x, h) = 10, xeC
PA(P(x), Ph), x€PG,

whenever h€R". The reflection P is treated as a linear map of R". Observe
that P is self-adjoint and PP=id.
Note the following simple but important fact. Since for x€PG,

|4* (x, h)| = |4(P(x), Ph)| = y[Ph[?~* = y|h|P~}
and
A*(x, h)-h = A(P(x), Ph)+ Ph = a|Ph|P = a|h|?,

the function 4™ satisfies the same assumptions (2.5), (2.6), and (3.1) in G* as 4
satisfies in G.

3.2. Remark. If F: GXR"—R is the variational kernel F(x, h)=|h|?, p=>1,
then the Euler equation corresponding to the variational integral

/F(x, Vu)dm
G
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takes the form
V-([VulP~2Vu) =0

and hence A(x, h)=|h|""2h. Thus A satisfies (2.5), (2.6), and (3.1). Moreover,
A*(x, h)y=A(x, k). The case p=2 is the classical harmonic case. Note that if
A(x, hy=f(|h))h and f is real valued, then A*(x, h)=A(x, h).

Suppose now that GCH+* and C are as above. Let u be a solution of
V- A(x, Vu)=0 in G where 4 satisfies (2.5), (2.6), and (3.1) and

(3.3) limu(x)=0
x—y
for all y€C. Define u*: G*~R by

u(x): x€ G,
u*(x) =10, xeC,
—u(P(x)), x€PG.

3.4. Theorem. The function u* is a solution of the equation V-A*(x, Vv)=0
in G*.

Proof. By (3.3) the function «* is continuous in G*. By Lemma 2.8 each point
y€C has a neighborhood U such that u belongs to W;(UmH““) and U=PU.
Hence u* also belongs to WiUNH™), H-=R"H*, and the continuity of u*
implies that u* is ACL? in U. Thus «* is ACL” in G and it remains to show that «*
satisfies

(3.5) V.A*(x,Vv) =0

in G*. Since this problem is local it suffices to show that (i) «* is a solution of (3.5)
in PG and that (ii) each point y€C has a neighborhood U such that «* is a solution
of (3.5)in U.

We first prove (i). Let @€C(PG). Now Vu*(x)=—PVu(P(x)) for a..
x€ PG, and since the Jacobian determinant of P satisfies |J(x, P)|=1, the integral
transformation formula yields

fA*(x, Vu*)-Vodm = fPA (P(x), =Vu(P(x))) - Vo (x)dm
PG PG

=~ [A(PX), Vu(P(x)))- PV (9 (PP(x))IJ (x, P)| dm
PG

=— fA(x, Vu(x)) - PV(p(P(x)))dm = — fA(x, Vu)-Vipdm = 0,
e G

where Y =¢oPcC;(G) and the assumption (3.1) has also been used. Thus u*
is a solution of (3.5) in PG.
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To prove (ii) requires more computation. Fix a neighborhood U of ycC
such that U=PU and UcG*. For =0 let K,={xcR": |x,/=t} and choose
heC™(R") such that (a) O=h=1, (b) /K, =1, (c) h|R™\K,=0, (d) |Vh|=c/t
where c is a constant, and (e) A (x)=h(P(x)).

Let @€Cy(U) be arbitrary. Then

/A*(x, Vu®)-Vodm

U

(3.6)
= [A4*Ce, Vu*) V(1 =h) @) dm+ [ A*(x,Vu™) -V (h, @) dim.
U U

Now (1—h)@€Cy(Gu PG) and since u* is a solution in Gu PG, the first integral
on the right hand side of (3.6) is =0. We shall show that the second integral tends
to 0 as 7-~0. This will prove (ii). First observe that

[ A% (x, Vu*) -V (h @) dm
U

= fhtA(x,Vu)-V(pdm— f h,A(P(x), Vu(P))- PVpdm
vhe uripG

+ [ @A, Vu)-Vhdm— [ @A(P(x), Vu(P))- PVh,dm
UNG UNPG

=L—L+I,—1I,.

We estimate the differences ;—1, and I,—I, separately.
Write 4,=UnK,nH*. For I,—1, we have the estimate

IL=Ll = LI+1E = [ 14Ck, Vi)l Vol dm+ [[14*(x, Vu*)| V| dm.
A, PA,

Since u*¢ W;(U), Holder’s inequality, (2.5) for 4%, and m(UnK,)—~0 as -0
yield I —I, -0 as t—0.

To estimate I;—1, we perform a change of variable in I,. Since 4, is symmetric
and hence Vh,=PVh,(P), we have

L, = f @(PP(x))A(P(x), Vu(P(x)))- PVh,(PP(x))|J(x, P)| dm

UNPG

[ o(P()) 4(x, Vu(x) - PVh,(P(x)) dm

unG

[ o(P(9)) A(x, Vu(x) - Vi, (x) dm.,

UunG

I

Il
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Thus by (d) and (2.5)

|ls= L = sup [p () =@ (P() [ 14(x, Vu)| [Vh,| dm
t A,

=ctet™Yy [[VulP=tdm = ¢ ¢y |Vul 5 R4 m(4),
At

since for the Lipschitz-function ¢, supg lo(x)—@(P(x))|=c’t. Thus m(4,)~0
yields I,—1,~0 as ¢t—0. This proves (ii) and Theorem 3.4 follows.

4. Reflection principle for quasiregular mappings

A vector valued ACL"-mapping f: G—R", where GCR" is a domain, is called
quasiregular if for some K=1

(4.1) |/ (0)I" = KJ(x, 1)

fora.e. x€G. Here | f’(x)| means the sup-norm of the linear mapping f’(x): R"~R".
The smallest K for which (4.1) holds is denoted by Ko(f). If f is quasi-
regular, then

(4.2) J(x, ) = K(NHI(f )

ae. in G and K;(f)=K,(f)"~%. Here I(f’(x))=inf {| f(x)h|: |h|=1}. The maxi-
mal dilatation K(f) of f is the number max (K;(f), Ko(f)). For the theory of
quasiregular mappings we refer to [MRV].

Let G be a domain in the upper half space H* and suppose that there is a
non-empty set CCOH*+NIG open in dG. Then G*=GUCUPG is a domain
in R". Suppose that f=(f;,....f,): G—~R" is a quasiregular mapping. Define a
mapping f*: GUPG—R" by

X), x€G
6= {J;’((}(P(x))) <G

The extension of the reflection principle of plane analytic functions to quasiregular
mappings takes the following form.

4.3. Theorem. Let
4.4 lim f,(x) =0
Xy

for all y€C. Then f* defines a quasiregular mapping G*—~R".

4.5. Remark. If f* is quasiregular, it is clear that

Ko(f*) = Ko(f) and K;(f*) = K (/).
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To prove Theorem 4.3 we need a counterpart of a well known property of
analytic functions. If f=uw+iv is analytic in D and |Vv| is LP-integrable in D,
then by the Cauchy—Riemann equations |f’|=|Vo| and hence | f|l,=[Vv],.

4.6. Lemma. Let f=(fi,....f,) be a quasiregular mapping of a domain D
into R" and p=0. Then for 1=i=n

( f If’(x)l"dm]l“’ = K(f) " ( Df Vi dm]”".

Proof. For a.e. x€G and all i, 1=i=n,

Lf7 (I = K,(N)VT (e, )" = (Ko (N K () I(f7 (%))
= K(f)*"IVfi(x)]
and the result follows by integration.

Proof for Theorem 4.3. The coordinate functions of f, and hence f,, are solu-
tions of a differential equation V-A(x, Vu)=0 where 4: G X R"- R" satisfies (2.5),
(2.6) and (3.1) for p=n, cf. [R2]. Let y€C. By (4.4) and Lemma 2.8 there is »=0
such that f,e W, (H*nB"(y,r)). By Lemma 4.6

LfGol" dm <.

H+NB"y,r)

This means that the coordinate functions f; of f have derivativesin L"(H*n B"(y, r)).
Using the ACL"-property and Fubini’s theorem it is easy to see that f has a finite,
limit along the line segment L.={z+re,: r=0} for almost every z€QH + B"(y, r).
Clearly

ST dm = e

H-NB"(y,r)

and f* has the same limit from the opposite direction along PL.. Thus
freW (B (y,r)) and |f¥(x)|"=Ko(f)J(x,f*) for ae. x€B"(y,r). By a theo-
rem of ReSetnjak [R1, Theorem 1] there is a continuous mapping g such that g=f*
a.e. This completes the proof.

4.7. Remark. It is clear that using preliminary Mobius transformations we
can formulate the reflection principle as well in a domain Gc B* with a set CcdGn
§"~1 open in dG. The condition (4.4) takes the form lim,,,|f(x)|=1 for all
y€C and instead of P the reflection in S"~' is used. There is a way to prove this
reflection principle which does not make explicit use of Lemma 4.6. The proof is
based on the study of the function u(x)=log | f(x)| which also satisfies an equation
of the form V-A(x, Vv)=0. Note that |Vu(x)|=|f"(x)|(K(/)]f(x)))~* ae. and
the estimate of Lemma 4.6 can be obtained from the L"-integrability of Vu.
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