
Annales Academire Scientiarum Fennicre

Series A. I. Mathematica
Volumen 6,1981 , 779-187

REFLECTION PRII{CIPLE FOR SOLUTIONS
OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIOI{S

AND QUASIREGULAR MAPPINGS

O. MARTIO

L. Introduction

Let G be a domain in the upper half plane H+ and Cc\H+ an open set in åG.

If f:sair G*C is analytic and lim,-ru(x):g for all y€C, it is well known
that f has an analytic extension to Gu CvPG where P is the reflection in åä+.
A similar principle holds for harmonic functions in R", n>-2, and for n:2 these

two principles are intimately connected. In this paper these principles are extended

to general nonJinear elliptic partial differential equations in divergence form

(1.1) Y.A(x,Yu)-0

and to quasiregular mappings, generalizations of plane analytic functions to higher

dimensional euclidean spaces. The mean value property is used to prove the reflec-

tion principle in the classical harmonic case. No such method is available in the

general case and hence different tools are employed. One of the problems is the

reflection of the equation (1.1), since if a is a solution of (l.l), then the reflected

function should be a solution of the reflected equation Y'A*(x,Yu):9. This

leaves little choice for A*, and it turns out that A and A* are quite similar.
For linear and analytic partial differential equations the reflection principle

has been extensively studied, see e.g. [J]. For quasiregular mappings it has been

earlier treated in [MR] in a special case.

The paper is organized as follows. After preliminaries and a lemma on local

integrability of solutions up to the boundary the reflection principle for (1.1) is
considered in Chapter 3, Chapter 4 is devoted to the corresponding result for quasi-

regular mappings.
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2. Preliminary lemma

2.1. Soboleu space Wf,. The open ball centered at x(R" with radius r>0
is denoted by B'(x,r) and its boundary by ^S'-l(x, r). We use the abbreviations
B"(r):3'19, r), B":B'(1), S"-1(r):,Sn-1(0, r), and 5n-r:5tr-r(1).

Given an open set GcRn, Wl(G), l<p-.*, denotes the Sobolev space of
all functions u(Lp(G) with distributional first derivatives in Lo(G), see [GT].
The space Wi,o(A is the closure in Wl@) of Cfl(G)-functions. A function ar

belongs to loc WIG) if for all domains DccG, ulD(Wi(D). It is well known
that a continuous function u on G belongs to loc W)(G) if and only if u is ACLa

in G. In our terminology, ACL' means the set of all continuous (real valued) func-
tions on G which are absolutely continuous on almost every line in G with partial

derivatives locally Zp-summable, see e.g. [GT, p. 163]. The Zp-norm on G is written
as ll llp,6 or simply ll llr.

We shall frequently use the following lemma which is difficult to locate in the

literature.

2.2. Lemma. Let G be a bounded open set in R". If u(C(G)aWl(Q and

u:0 in 0G, then u(W;,o(G).

Proof. Consider the measures

p(A)

deflned on measurable subsets of ,4. Using the ACle-property it is easy to see

that o is absolutely continuous with respect to ,a. For e>0 consider the function
ue:rrtzx(u, e)-e. Then u"€ Wi@1aCr(G). Choose a convolution approximation

E<Ctr(G) for a, such that
ll E - u"lle + llVE -Y u"ll o -= e.

If u+:max(r;,0), then

llu* -Ello+ llYu+ -YEllo = llt,* -D,llo+ llYu+ - Yrullr+e

The last integral can be made small by the absolute continuity of o since

p({xec: 0 = u(x) = t}) = e' m(A.

A similar estimate holds for u-:min (r2,0). This completes the proof.

2.3. Elliptic equations. Let G be an open set in Än. We consider an elliptic
partial equation in divergence form

: 
{lulo 

dm, o(A) - [ tv"l, dm

= Etn(G1trr *1 I lVrr | 
, tt,rr)'to + r.

\O=a(r)=e )

(2.4) Y.A(x,Yu)-0



where l: GXRorÄ' is a Borel function such that for a.e. x€G and fot all h€R"

(2.s) lA(x,h)l = ?lhlo'',
(2.6) A(x,h).h>alhl?.

Here l<p<.* and O<oc, I<-. An AClp-functiot u: G*Å is a solution of
Q.4) if for all E(C; (G)

(2.7) I o@,Yu).Yq d.m : o.
G
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It is well known that the continuity is superfluous in the deflnition of a solution,

since every function ueloc lI/l(A satisfying Q..7) can be made continuous aftet a
change on a set of measure zero, see e.g. [GT].

The next lemma gives a local integrability result up to the boundary. Let
G and 11 be open sets in Rn. Suppose that E:HI\G*0 and write G':HaG.

2.8. Lemma . Suppose that h(C(G') 
^W;(G'). 

Let u be a solution of the equa-

tion Q.4) in G. If lim,-, u(x):71r1 for all y(E, then each y€E has a neigh-

borhood (J such that u belongs to Wl(G aU).

Proof. Fix y(E. Wemayassumethat y:Q. Choose g>0 so that B'(q)cH.
Set B:B'(q)nG. Let r:Ql2 and e=0. Now a-e is a solution of (2.4) in G.

Let E?CS(B'(A)) be such that o=E=l and AlB"(r):1. Consider the function
p:qe(u-e-å) in the open set D":{x(B: u(x)>e+h(x)}. Now D"ccG and

by Lemma 2.2, o(\ry;,,(D"). From Q.7) it follows that

I o@,Yu).Yudm:0.
De

Since Vu :p Ep - rY <p Qr - e - h) t Ep Y (u - e - h), Schwarz's inequality yields

I v' A (x,Y t) . Y u dm = p I *' -' lA (x,Y u)llY Ellu - e - hl dm
D6 DE

+ I,p'lA(x,Yu)llvhldm
De

=_ MpT I ,r-, lyulr-'lyEl dm * T
D,

(2.e)

= 
C' llElY ulll 

X.-"1" 
( ll vE ll, + ll qlY hlll ).

Here Hölder's inequality has been used in the last step, M:sup'lu-e-hl, and C'
does not depend on t<1. Since by (2.6)

{ ,n' A(x,Yt).YL,t dm > q,

De

(2.9) yields

{ E'lYt4'-' lvhl dm
De

I E'lYul'dm,
De

the inequality

{
Bn(r)fi

{ v'lYul' d*
D"D,

lYulo dm = = lC'a-L(llVEll, + llvhllr)1, : C"
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where C"=- does not depend on e. Letting e*0 gives

I lYule dm ='*'
Bn(r) O Do

A similar estimate holds in the set B'(r)n{x(G: u(x)-h(x)}. Since

I lYulp dm: t lYhle dm,
r(x):å(r) a(x):r(x)

we have proved

I lYulP dm '<*'
Bn(r)ltG

By continuity ueLe(8"(r)nG), thus a€W)(a"g1nG), and the lemma follows.

3. Reflection principle for solutions of elliptic equations

Consider the equation (2.4) where ,4 satisfies (2.5) and (2.6) in an open set

Gc.H+:{x€R': x,=0}. Moreover, we assume that for a.e. x(G

(3.1) A(x, -h) : -A(x, h)

forall h(R". Let P: R'*R" bethereflectionin0H+,i.e.P(x):(xr,...,xn-r, -xr).
Suppose that there is a non-empty set Cc\H+ open in åG. Set G*:Gw Cv PG.
Then G* is an open set in Å'.

Next we reflect the equation (2.4). Define A*: G*XR'*R' as follows

[,.t1x, h1, x(G
A*(x,h): lO, x(C

lr,t(r1x1, rn1, x(PG,

whenever h€R". The reflection P is treated as a linear map of -R'. Observe

that P is self-adjoint and PP:id.
Note the following simple but important fact. Since for x(PG,

lA*(x,h)l: l,l(r7fl, Ph)l= rlPhlo-' : ylhlt-r
and

A*(x, h). h : A(P(x), Ph). Ph = alPhlp : qlhlp,

the function,4* satisfies the same assumptions (2.5), (2.6), and (3.1) in G* as,4
satisfi.es in G.

3.2. Remark. If ,F': GXÄ'*rR is the variational kernel F(x,h):lhlp, p=-1,
then the Euler equation corresponding to the variational integral

I r@,Yu)ctm
G



takes the form 
v'.,Valr-zy u) : o

and hence A(x,h):lh1n-27r. Thus ,4 satisfies (2.5), (2.6), and (3.1). Moreover,

A*(x,h):tr(x,h). The case p-2 is the classical harmonic case. Note that if
A(x,h):f(lhl)h andf is real valued, lhen A*(x,h):A(x,h).

Suppose now that GcH+ and C are as above' Let u be a solution of
Y,A(x,Vrz):g in G where ,4 satisfies Q.5), (2.6), and (3.1) and

(3.3) f11a(x):0

for all /€C. Deflne u*: G*-R bY

[, (*), x€.G,

a*(x) : '10, x(C,
[-r(r1xy;, x(PG.

3.4. Theorem. The function u* is a solution of the equation Y'A*(x,Yu):Q
in G*.
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Proof. By (3.3) the function a* is continuous in G*. By Lemma 2.8 each point

y€C has a neighborhood U such that z belongs to W!(UaH+) and U:PU.
Hence u* also belongs to W|(UaH-), H-:Ä'\E+, and the continuity of u*

implies that u* is ACLr in t/. Thus u* is ACLp in G and it remains to show that u*

satisfles

(3.5) V . A*(x, Vu) - 0

inG*. Sincethisproblemislocalitsufficestoshowthat(i) u*isa solutionof (3.5)

in PG and that (ii) each point y€ C has a neighborhood U such that u* is a solution

of (3.5) in t/.
We flrst prove (i). Let E€Cf (PG). Now Yu*(x):-PVu(P(x)) for a'e'

xQPG, and since the Jacobian determinant of P satisfies lJ(x, P)l:1, the integral

transformation formula yields

f a*(r, vrr*) -Y«p (lt'tt - { ,o(.p(r), -Yu(r(x))).YE(x) dnt
PG PG

: - I n(r(x), vu(p(x)). rv(E(PP(x)))l"r(x, P)l dnt
PG

: - [ t(x,vu (x)) . PV(E (P(x))) dm : - I o @, Y u)' Y{t dm : o,
GG

where ry':EoP€Ci"(G) and the assumption (3.1) has also been used. Thus a*

is a solution of (3.5) in PG.
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To prove (ii) requires more computation. Fix a neighborhood U of y(C
such that U:PU and UcG*. For l>0 let K,:{r€lR,: lx,l=t) and choose
hr€C-(R") such that (a) 0=h,=1, (b) h)Ktp:1, (c) å,1Å'Vf,:0, (d) lYh,l=clt
where c is a constant, and (e) h(x):h(P(x)).

Let E€C?(U) be arbitrary. Then

I n*@,Yu*).Yqdm

(3.6) u

: f A* 1x, vil*) . v((l - h) E) dm + | ,,1* 1x,yu*) .y (h,E) dm.

Now (1-hr)q€Cf(GvPG) and since a* is a solution in GvPG, the firstintegral
on the riglrt hand side of (3.6) is :0. We shall show that the second integral tends
to 0 as r-.0. This will prove (ii). First observe that

{ a*(r, Yu*).y (h,d dm

Since a*e W;(U), Hölder's inequality, (2.5) for A*, and m((tn(,)*0 as t*0
yield 11-Ir*Q as l*0.

To estimate Ir- In we perform a change of variable in In. Since å, is symmetric
and hence Yhr:PY1t,1r), we have

: { t,,11*,yu).yE dm- [ n,,1,(r1x1,vu(p)). pyq dm
UAG ANPG

+ [ <tA(x,Yu).Yh,dm- [ <tA(P(x),vu(\).pyh,dm
ANG ANPG

: Ir- Izl Iz- IE.

We estimate the differences 1r-1, and Ir-Io separately.
Wite A,:UnKraä+. For Ir-1, we have the estimate

I L - rÅ = lrl + lr2l = | l't {*, v u)l lv ql dm + | lA* (x,y u*)l ly ql dm.
at PA,

Ia: 
,l"v(rr(r)) 

A(p(x), yu(p(r))) .pvht(pp(r)) lJ(x,p)l dm

- 
",{"E(P(r)) 

A(*,Vu(x)). pvh,(r(rl) ctm

- { E(P(r)) A(*,Yu(x)).yh,(x) dm.
UNG



Reflection principle for elliptic partial differential equations and quasiregular mappings 185

Thus by (d) and (2.5)

lru- rnl-- sup lE(x)-.p(.p(*)l I l,t{*,Yu)llYh,ldm
Kr Å,

= c'tct-ry { lvrlo-'a* = c'cyllYull§e,a\Pm(A)'/',
At

since for the Lipschitz-function rp, sup",lE(x)-cl(P(x))1=c'1. Thus m(A,)-g
yields 1r-.In*0 as r*0. This proves (ii) and Theorem3.4 follows.

4. Reflection principle for quasiregular mappings

A vector valued ACL'-mapp ing f : G * R', where G c. R' is a domain, is called

quasiregular if for some K= I

(4.1) lf'@)l = KJ(x,f)

for a.e. x€ G. Here I f'@)l means the sup-norm of the linear mapping f'(x): Rn * R".

The smallest K for which (4.1) holds is denoted by KoU). If / is quasi-

regular, then

(4.2) J(x,f) = K,(f)t(f'(*))"

a.e. in G and Kt(f)=Ko(.f)"-'. Here l(f'(x)):inf {f'(x)hl: lhl:l}. The maxi-

mal dilatation K(f) of / is the number max(X,(f1,Koj)).For the theory of
quasiregular mappings we refer to [MRV].

Let G be a domain in the upper half space ä+ and suppose that there is a
non-empty set Cc\H+a\G open in åG. Then G*:GvCvPG is a domain
in ,R'. Suppose that f:(fr, ...,f,): G-R" is a quasiregular mapping. Define a

mapping f*: GvPG*R, by
{ f/x]', x€G

f'(x) : i rtff"C-»1, x(pG.

The extension of the reflection principle of plane analytic functions to quasiregular

mappings takes the following form.

4.3. Theorem. Let
(4.4) fi11l,(x) 

: o

for all y(C. Thenf* defines a quasiregular mapping G**R'.

4.5. Remark. If f * is quasiregular, it is clear that

KoU\: KoU) and K,(f*): Kr(.f)'
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To prove Theorem 4.3 we need a counterpart of a well known property of
analytic functions. If f:saiu is analytic in D and lVul is Le-integrable in D,
then by the Cauchy-Riemann equations 17'1:lYul and hence llf'lln:llYullo.

4.6. Lemma. Let f:(fi, ...,f,) be a quasiregular mapping of a domain D
into Rn and p>Q. Thenfor l=i=n

Proof. For a.e. xQG and all i, 1=i5tl,

I f ' @)l = K,(fYt" 1(x, f )'t" = (xo(71 x,(f))'t' l(f ' (x))

= x(f)'t*lvf,(x)l

and the result follows by integration.

Proof for Theorem 4.3. The coordinate functions of f, and hence fn, are solu-
tions of a differential equation Y.A(x,Yu):g where l: GXR'*R'satisfies (2.5),
(2.6) and (3.1) for p-n, cf . [R2]. Let !€C. By (4.4) and Lemma 2.8 there is r >0
such that f"(W:(H* aB"(y,r)). By Lemma4.6

I lf'(x)l'dm =*'
H+ nB"O,r)

This means that the coordinate functionsf of f have derivatives in L'(H + n B'(y, r)).
Using the ACl'-property and Fubini's theorem it is easy to see that;f has a finite,
limit along the line segment L-: {z { te,,: 1>0} for almost every zC\H + a Bn (y, r).
Clearly

l-f*' (x)1" dn1 < o.,

and f* has the same limit from the opposite direction along PL,. Thus

f*eW)(a"g,r)) and lf*'(x)l=Ko(flJ(x,f*) for a.e. x(8"(y,r). By a theo-
rem of Re§etnjak [Rl, Theorem 1] there is a continuous mapping g such that g:f*
a.e. This completes the proof.

4.7. Remark. It is clear that using preliminary Möbius transformations we
can formulate the reflection principle as well in a domain GcB" with a set CcåGn
S'*1 open in 0G. The condition (4.4) takes the form lim*-rlf@)l:1 for all
y(C and instead of P the reflection in ^S'-r is used. There is a way to prove this
reflection principle which does not make explicit use of Lemma 4.6. The proof is
based on the study of the function z(x):lsglf@)l which also satisfles an equation
of the form V.l(x,Vu):Q. Note that lYu(x)l=-lf'@)l(Xulll*lt)-1 a.e. and
the estimate of Lemma 4.6 can be obtained from the l;'-integrability of Yu.

(! tf'@)l'd*)ttP = K(f)'t" (! lYf,to*)''

t
H-)8,,(y,r)
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