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ON MAXIMIZING A HOMOGENEOUS FUNCTIONAL
IN THE CLASS OF BOUNDED UNIVALENT FUNCTIONS

HENRYKA SIEJKA and OLLI TAMMI

1. Introduction

In [4] the functional Re §=Re (a;—a3) is estimated in a, and b in the class
S(b) of bounded univalent functions f:

f(2) = b(z+a,22+..), |z] <1,
/<1, 0<b=1.

The inequality obtained is sharp and holds for all values of b and a, (cf. (9)/V.1.2,
(25)/V.1.3 and (46)/V.1.4 of [4]).

By adding to both sides of the estimate a real functional of a,, we find new
combinations of a5 and a, for which the sharp inequality remains valid. Therefore,
when maximizing the upper bounds in a, we obtain the sharp upper bound for our
functionals in . The maximizing a, must lie in the sharpness region of the inequality
used. Because the original inequalities for Re d are connected with the totality
of boundary functions of the coefficient body (a,, a;), we are sure that also the
new functional formed reaches its maximum in the range of values of the upper
bound available.

In [1] and [4] the above method of direct estimation was applied to Re (az+ 1ay).
In the present paper we shall show that the upper bounds to be obtained for
Re (a;+2a3) lead to results which are not yet too complicated to handle by this
method.

The maxima found hold, of course, also for |a;+Aa%. The results agree with
those obtained by variational method by the first author [2]. In S the corresponding
results are derived by Szwankowski [3]. The analysis of the extremal functions in
[4] allows completing the sharp estimation for all values of A.
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2. The equality functions 2:2

Let us start from the condition (9)/V.1.2 of [4]:

(Re a,)?
—q? = — h2 ——
) Re(a;—ad) =1-b*+ Toab
For any p=up,+iu,€C, u,#0, a,=U+iV, we obtain

(Re ay)

aQy Re (a3+(u—1)a3)—(1—b*) = Re(uad) + log b

‘ 25
= —_—— 2|2 2 1 2],
=T [(#1 V+u,U) [#1+/1a+log b Y
This allows a sharp estimation in two cases. Assume first that

”1>09

2

2 2 :ul 1 ,J; 2 1
SRR RS <0‘:’["1+ STogh) T = Togh

Under the assumptions 1)
) Re(as+(p—1)a3) = 1-b2

Equality holds here only if U=V =0. The equality conditions of (1) are given by
(11)—(12)/V.1.2 of [4] which in the case U=0 imply that

cos3=0
and, because V=0,

1
f sin9du = 0.
b
In the disc

= 2y M1 }
b {MEC“#I +logb =0

the estimation (2) thus holds and the extremal domains are the same at every point
of D: two-radial-slit domains with slits symmetrically located along the imagi-
nary axis.
Assume next that
w0,
2) [
logb

pi+us+ =0« ucD.
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Under these assumptions the estimation (2) remains valid, and the extremal
functions consist of a one-parametric family for which

He H 2
3 y=_ty = -
( ) W 122 |10g bl ul
with U as a parameter.

Let us use the normalizations
4) =0, U=0.
From the Ldwner-expression
1
©) Re (ag+(u—1)ad) = g (U ~V) =2, UV =2 [ ucos 28 du
b

we then see that in the maximum case
6) V=0

and in the UV-plane we are in the second quadrant. The equality conditions of
(1), given in (11)—(12)/V.1.2 of [4], imply that in the case (4) and (6), a.€I (Figure 1).

2 |log b|

Figure 1.

At the two points A, B€AD there are connected the extremal domains whose
a,€ A’ and B’ of I (Figure 1). From Theorem 1/V.1.2 of [4] we see that for a,=U+

iVeA” we have
U =2clogh, o€[0,ay),

™ V= —2%—alogb = 2[V1—62—a§c§cos oc—Vb*—ol+0o acos%].
1

Here o, is the equality value of the above inequality. For a,=U+iV€B’ we have
correspondingly

8 U=2blogh, V=-t2U.

11

The types of the extremal domains are schematically presented in Figure 2.
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Figure 2.

3. The equality functions 1:2

Next, consider the condition (25)/V.1.3 of [4]:
Re(az—ad) =1-b2-2|U|c+2(c—b)?

©) aloga—a—l—b-{—ll;—l:O, o€[b, 1].
This gives
Re(az—ad) = 1—-b%+40(clogo—oc+b)+2(c—b)?
and
(10) Re(ag+(u—1)a3)—(1—b? = p,(U2—V2)—2u,UV+40(clogo—o+b)
+2(06—b)%
Keep the normalization (4), which implies (6) in the maximum case. Thus
11 : U=2(clogo—o+b).

This defines (Figure 3) a bijective connection
o€[b, 1] -~ [-2b |log b], —2(1 —b)]3U.
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By aid of (11) we may express the right side of (10) in ¢ and V:
(12) Re (az+(u—1)a3)—(1—b?) = 4y, (0 log o — o+ b)?
+4o(clogo—o+b)+2(c—b)*—u, V*—4u,(oc logo—ac+b)V.

If p,<0, the free extremal point defined by 9/0V =0 does not give the maximum.
Therefore, we have to restrict the use of (12) in the cases where

(13) > 0.
Write the part depending of ¥ in the form

2
— Uy [V+2%(a log a—a+b)] .
1
Thus, in the maximum case
(14) V=—2ﬁ(aloga—o'+b):-—_ﬂiU,
11 151

This implies
(15) Re (ag+ (1 —1)a3)—(1—b?) = 4y, (o log o —o+ b)*

+4a(aloga—a+b)+2(a—b)2+4 ui (alogo- o+ b)?

2
4I_Z—I_(Glog 6—0+b)*+4o?log o —202+2b?
1

and

7 =8 4y 1oee [ooeo (1) o +0]
% ——Ilogo |ologo+ T o+b].

Let us parametrize the points of the u-plane by requiring that

1
4h®

2
M 1 ]
(16) = h = constant < (,ul 5] THE= g
If

D, ={ueciup—£2 <o},
then (16) implies that ,uE&Dh.
Consider the equation
) [I=0clogo+(h—1)o+b=0.

The existence of a real root o=c(h)=e"

requires that (Figure 3)
b—e"=0<0<h=-—logh.

Because in this case 1/2A=—1/(2logb) we see that the arc 9D, lies in —D.
The limit case h=—logb gives the circle dD=0D_ ..
Further, the existence of o (/) requires that 2—1+b=0 imply

(18) 1-b=h=—logh.
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The order of the limits 1—&4 and —logb is valid for the whole interval b€(0, 1].
On the limits we have
og(l1-b)=1, o(—logh)=">.
At the point a(h)>e~" the derivative 9/do changes the sign from positive
to negative, i.e. the right side of (15) is maximized at ¢(h). Because o(h)=0 sat-
isfies the condition (17) the maximum assumes the form

4 ( ho)?+40(—(h—1)6 —b)—202+2b% = 2(c —b?).

This implies that
Re(az+(u—1)a)—(1—b?) = 2(c—b)%;
oclogo+(h—1)o+b=0,

(19) go+(h—1)
h= I |2E[l— —log b].

In the extremal case we have
U=2(logo—o+b) =—2ho,
so that

M Ha He
20 U=—-2ho=—-2-—o0, V——————U 22 he =2—~
(20) I P s T

On the arc (9D,), lying in the upper p-half-plane %, and thus o (%), is a constant
which implies that U in (20) is a constant. V increases with the ratio p,/u;. The
extremal point (U, V) must lie in the sharpness region II (Figure 1) of the inequality
(9) defined by (28)/V.1.3 of [4]. The upper boundary arc of II is thus

{U =2(cloge—a+b) (=-—2ho),

V= 2([/1—0'2——0‘;1—1?(_3005 o).

For the points u€(dD,). we thus have the limitation

@n

V= Z%ha =2(Y1=6¢®—0carccos o)
1
and hence
Us Y1—o2—c arccos o

(22) m = o = m.

This means that the end point p of the are (9D,), in the upper half-plane satisfies

u
Mo = mpy, = =0,

and so

(23) =

I __m
A+rmon '~ Trmoyn
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Observe that if #—~1—b then o—~1, m—0 and
= i) = (259)
U= Uy Ho) —~ -5 ")

This means that the sharpness region of (19) lying in the ring
D 1-b -D —logh

becomes narrower with increasing 4 and touches 0D, _, at the point on the p, -axis.
The sharpness conditions of (9) are given by (27)/V.1.2 of [4]. For U<0 the
extremizing 9 satisfies the conditions

This determines U of (11). Thus, the sharpness conditions of (9) are in agreement
with the extremal conditions (19)—(20) and the estimation (19) is sharp in the region
of pu defined by (22)—(23).

Figure 4 illustrates the regions I and II in the case 5=0.5 . The upper
boundary arc 01 is obtained from the equality case of (7) and that of dII from (21).

In Table 1 some points p=(u,, i) corresponding to OII are determined in
the case b5=0.5. This is done by solving o=a(h)€[e™”, 1] from (19) for
h€[l —b, —logh). The number m obtained from (22) determines then (uy, fs)
according to (23). The corresponding graphs are in the lower part of Figure 4.

Table 1.
h o n Ua

0.5 1 2. 0.

0.52 0.959 977 1.922°635 0.029°133
0.54 0.919°805 1.848:389 0.080°003
0.56 0.879290 1.774°133 0.143°341
0.58 0.838'163 1.696°637 0.216'067
0.6 0.796°033 1.612°228 0.296°255
0.62 0.752°281 1.516°276 0.382°771
0.64 0.705°818 1.402°150 0.474°167
0.65 0.680°945 1.335°043 0.521°126
0.66 0.654°338 1.258:307 0.568'497
0.67 0.625°011 1.167°798 0.615°817
0.68 0.590°675 1.054°458 0.662414
0.69 0.541°860 0.882°540 0.707°225
0.693 0.508'677 0.761°716 0.720°379
0.693°147 0.5 0.730°031 0.721°295
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From (5) we see by conjugation that the triple (3, U, V) changes to
(=9, U, —V), where

1 1
U—_-—zfcossdu, V:—ZfsinSdu.
b b

With the normalization u,<0, the maximum belongs to the case U<O0, V<0,
i.e. we are led to the third quadrant in the UV -plane and in the lower u-half-plane.
The rotation 3=3+n changes the signs of U and V. Thus the first and fourth
quadrants of the UV -plane give the previous maxima for Re (a4 (u—1)a3).

In Figure 5 the sharpness regions of the u-plane are numbered according to
the corresponding numbers in the UV -half-plane with U=0.

Figure 5.

4. The special case u€R
We consider separately the case u,=0. Then (5) yields
1
(24) Re (as+(u—1)ad) = i (U*—¥?)—2 [ ucos29 du.
1° ;=0 ’
In this case

1
(25) Re(a3+(u1—l)a§)§ﬂlU2—2fucos29du
b

with the equality for ¥'=0. This upper bound is the value of our functional in the
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subclass Si(b)c S(b) in which all coefficients are real, because in Sg(b)
1
as+(u—ak= p, U>—2 f u cos29 du,
b

1
(26) a2=—2f0059du,
b

1
a; = a§—2fu00528du.
b

The estimation (9) leads in the present case to the upper bound
(27) Re(ag+(uy—1)a3)—(1—b? = 4y, (0 log o —o+ b)?+462 log 6 — 202+ 2b2,

For the derivative of the right side we have

J 1
(28) 5;:8,ulloga[aloga+(h—l)a+b]; h:;:.
If py=(1—-5b)"% ie. h—14+5=0, then 9/dc=0 (Figure 3). This implies that the
maximum of the right side of (27) is reached for o=1. The extremal function f
is the right radial-slit-mapping having cos $=1. The equality conditions of (9)
and the conditions (20) under which the right side of (10) or (27) is maximized
thus agree in the present case also. Hence the following estimation, obtainable from
(27), is sharp:
(29) Re (az+(u;—1)ad) = b>—1+4u, (1 - b)2
Using the notation
b
A= Hy —-1= —]j N
we may rewrite (29) in form where the coefficients a; and a, of the radial-slit-mapping

reappear:
Re (a3+2a?) = 3—8b+5b*+A(2(1—b))?, AER.
If
(30) o
logh =~ 1=p’
we can check from (27) that the estimation (19) and the type 1:2 of extremal domains
hold on the interval (30).
In the remaining case
1
0 =W = —lo—gl;

we write the initial condition (1) in the form

Re(a;+(uw—1ag)—(1-b%) = U~ V2 +
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From this we read out immediately that the estimation (2) together with the extremal
domain 2:2, having two symmetric radial slits, are extended to the diameter of
the disc D.

2° py =—|m| <0

From (24) we obtain now

1
(31) Re (a5 (il +1)ad) = || V2 =2 [ ucos 29 du,
b

with the equality for U=0. The right side is maximized for
sin3=1 and sind=-—1,

which define the radial-slit-mappings having the slit along the positive and nega-
tive real axis, respectively. These are obtained from the right radial-slit-mapping

f(z) = b(z+ayz®+...); as=—2(1—b), a;=3—-8b+5b%
by applying the notation
17 H(tz) = b(z+rtay, 22 +12a32%+...)
with t=i and t=i". The inequality (31) yields the estimate
(32) Re (az— (| +1)aj) = 1 —b*+4||(1—b)>
The choice t=i gives the coefficients
a, =—2(1=>b)i, a;=-—3—-8b+5b?

for which the sharpness of (32) can be checked.
Observe that for pu;<O0 the functional is not maximized in the class Sk(b).
From (26) we see that in Sk (b),

1
(33) as— (| +D a2 =—|ulaz—2 f ucos29du
b

1
=1—b2— || ai—4 j ucos® 9 du=1-b
b

Equality here requires that
cos 9 =0.

Because we are in the class Si(b) the extremal domain is a two-radial-slit mapping
with symmetric slits along the positive and negative imaginary axis.
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5. The equality functions 1:1

The regions I and II of Figure 1 are completely covered by the points a, defined
by the sharpness conditions (3) and (20). Thus, only the region III connected with
the boundary functions 1:1 remains. As in [4] (V.3.4) we may check, by using
variation of 9, that the only maximizing radial-slit-mappings are those where cos =1
and cos 9=0, i.e. they are connected with the corners of III lying on the U- and
V-axis correspondingly.

Let us now apply the variation mentioned in the expression (5). The result
follows by aid of formal differentiation (1/4)(9/03) which yields

34) (W U—po V) sin 94+ (uy V4, U) cos 3 = —u sin 29.

The solution of this condition is a boundary function of the type 1:1. For these
Theorem 5/V.1.4 of [4] is available. This implies that for the generating function 9
of the boundary function

(3% C;sin 34+ Cy cos § = usin 29

(cf. (39)/V.1.4 of [4]). We may now proceed as in V.3 of [4], when maximizing
Re (a;+Aa,). Comparison of (34) and (35) yields the connection between the extremal
points (U, V) and (u, ps):

wmU—pV==0C, pU+upV=-0C;
on
mCit+psCy U Co—ps €y
36 U=—"——*"", V=-"" #= 0).
@6) |ul? lul® (k=0)
Theorem 5/V.1.4 of [4] defines the bijective connection (y,, us)=(a, w), where o
and @ are the parameters used for the boundary functions 1:1:

cos a
C, log +C, (cotcx——cota)—l—cc—co)~}-E—l-(-:—l_}-u—zc2 =0,
37) cos @ |ul?
C, (tana—tan o —a+ )+ C, log S}na +M& =0;
sin @ |ul?
sin o — b sin @
C,=2———COSaCOs w,
sin (¢ —w)
(38)
cosa—bcosw . .
Cy=2————sinasinw.
sin (o — w)

The corresponding bijective connection, i.e. the uniqueness of the solution (a, w),
was considered in detail by the first author in [2].
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The sharp upper bound of the functional is written by aid of Theorem 8/V.1.4
of [4] in the form

1 1

, C
(39)  Re(azg+(u—1)a3) = 1 —b*+C,C, (tan a—tan w)———{m—;n—zc—u—).

6. Some extremal domains in the class S(1/2)

In [4] the boundary functions of (a,, @;) are determined by integration of the
corresponding Lowner’s differential equation. In the cases 2:2 and 1:2 the result
can be expressed in terms of U and V, whereas in the case 1:1 the parameters «
and o determine the solution. Thus, in the present case we will pick up some extremal
points (U, V), (uy, 4s) for determining the corresponding extremal domains. Let
us fix b=1/2.

We start from a defined boundary point 4€a (Figure 1):

— _ [ S .
(40) i=05, = | -k = 0.686'548.

Keep the ratio
r=L2 = 1.373:005
M
fixed and choose some points (U, V) lying on the line segment 4’ (Figure 1). The
extremal domains all belong to the same point (40). The number o, determining
the limit point (7) on the upper boundary of 91 is the root of

V1 —62—carccoso— Vb2—02+aa_rc;cos—(;—+talogb =0,

which in the present case is
g, = 0.419°790.

Thus we end up to the points

al, ..., a4
of Table 2 and Figure 4. From a4 we proceed first in the direction of the pu, -axis
and then in the direction of the p,-axis through the points

as, ...,alo0
of Table 2 and Figure 4.

Next, start from the point

b8: u, = 1.258°307, u, = 0.568:497
lying on the boundary of II” (Table 1). This defines the ratio
1=+ = 0451795

H



HeNRYKA S1EJKA and OLLI TAMMI

286

000.0s€°1 0 1'C 0 1= €19
6SL.V8ET €0 |4 S9TYIT0 095.166°0— C1q
6971 11 L6¥.895°0 |4 $8T.£0CT°0 126.5L6'0— 114
pee61Il’l L6V.895°0 L'l SL9.ELTO €€T.6V6'0— 014
9T1.€T8°0 L6¥.895°0 €1 CIT.6LE°0 C0€.8L8°0— 64
1¥9.L6L°0 S6L.ISY0 L6V.895°0 LOE.8ST'T 87T.06£°0 LTL.€98°0— 89
969.18L°0 1 S6L.1SV°0 97T.095°0 YTl YCL.BLEO $97.8¢8°0— L4
6EV.S9L°0 S6L.1S7°0 061.155°0 wl 165.19¢°0 7€.008°0— 99
8Y1.ISL0 L6L.ISY'0 yST.TyS°0 0TI §69.LTE°0 0TT.STL'0— sq
SLO S6L.1SY°0 TIE.1¥S°0 €€1.861'1 I91.€1€°0 LY1.€69°0— ¥a
SLO Tz S6L.1S¥°0 TTE.1¥S°0 €€1.861'1 LLO.TLTO 90— €q
SLO S6L.1SV'0 TIE.I¥S°0 €ET.861'T 8IL.08T°0 y0— 9
SLO S6L.1¥S°0 TIE. 19570 €€1.861°1 65€.060°0 To— 19
000.06T°1 0 00— 1 0 ore
€CrySIl o 7'0—| 866.866°0 90C.¥¥0°0— 6e
L3L.BIT'L 17 d ¥0 $0—| €12.586°0 00%.691°0— 8e
8LI.THE'T 8%5.989°0 P0—| S6T.T96°0 192.69C°0— Le
0¥0.€20°I 8¥5.989°0 0 TEE.LT6'0 0€£5.89€°0— 9®
¥80.98L°0 8%6.989°0 0 119.L€8°0 9IL.TES'0— se
SLO $60.€LE'T 8%5.989°0 S0 SLO.66L°0 7S6.185°0— ve
SL0 e $60.€LE°T 8+5.989°0 S0 875.989°0 §0— €e
SLO $60.€LET 8%5.989°0 S0 8£T.6¥5°0 y0— e
SLO $60.€LE'T 8%6.989°0 S0 619.¥LT0 co— e
Gr(1—n) +*v) oy .\.WIHM&H o i A n
4 kd

‘¢ IqeL




On maximizing a homogeneous functional in the class of bounded univalent functions 287

+

+

+

+

e



288 HeNRYKA SIEJXKA and OLLI TAMMI

determining a line segment through the origin of the p-plane. This meets the bound-
ary 0D of II’ at the second point

I

M= T ) logh
t

=T ) logb

= 1.198'133,
b4
=(0.541-311.

Between b4 and b8 we pick up the points (Table 2)
bs, ..., bT7.

The corresponding points (U, ¥) are determined by (20), and they lie on the line
segment (Figure 4)
V=-tU,

on which we further choose the points (Table 2)
bl, b2, b3.

Finally, we proceed in the p-plane along two line segments, through the points

(Table 2 and Figure 4):
b9, ..., b13.

The extremal domains corresponding to the points al, ..., al0 and b1, ..., 513
are computer-drawn in Figure 6.
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