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LIPSCHITZ AND QUASICONFORMAL APPROXIMATION
AND EXTENSION

P. TUKIA and J. VAISALA

1. Introduction

D. Sullivan has recently given an important variation of the theory of
R. D. Edwards and R. C. Kirby [EK] on the deformation of embeddings. The
essential difference between these theories is that Sullivan replaces the n-torus 7™
by a more complicated closed manifold Q" and the natural covering map e: R"—T"
by a covering map e’: B"—~Q" where B" is the open unit ball in R". Sullivan’s
theory is particularly useful in the categories of quasiconformal and lipschitz maps.
For example, he proved in both categories the annulus theorem in all dimensions.
Moreover, he established approximation theorems, which implied the existence of
a lipschitz structure on every topological n-manifold without boundary for ns4,
and also the hauptvermutung for these manifolds in both categories. For n=3
these results can also be obtained by PL methods, see [Tu,] and [Vi,].

In this paper, we first develop Sullivan’s theory for manifolds which may have
boundary. For example, we prove in both categories the hauptvermutung for
n-manifolds with boundary, n=4, 5. In the quasiconformal case our proof makes
use of the extension of a quasiconformal map from R" to R"*?, proved by the authors
in [TV,] with the aid of Sullivan’s theory.

Since the presentation of [Su] is very sketchy, a large part of this article (most
of Sections 2—4) is devoted to a fairly detailed exposition of Sullivan’s theory.
We take on faith the most difficult part, namely the existence of the Sullivan groups
(defined in 2.9), and we assume that the reader is familiar with the basic ideas of
[EK], but otherwise our presentation is reasonably self-contained.

We also keep track of the dilatations and the bilipschitz constants of the maps,
and obtain quantitative versions of Sullivan’s results. These are applied in Section 5
to give estimates for these constants in certain extension problems. For example,
we obtain a dilatation estimate in the quasiconformal Schoenflies theorem, pre-
viously known only in a very special case. In Section 7 we consider the approxima-
tion of quasiconformal and certain more general homeomorphisms by homeomor-
phisms which satisfy a bilipschitz condition, either locally in the euclidean metric
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or globally in the quasihyperbolic metric. This metric and the associated notion of
a solid homeomorphism are considered in detail in Section 6.

We thank Jouni Luukkainen for a careful reading of our manuscript and for
several useful comments and corrections.

2. Basic constructions

2.1. Notation and terminology. The one-point compactification of the euclidean
n-space R" is written as R"=R"ue. If m<n, we identify R™ with the subspace
R™X0 of R"=R™XR"-™ Let (X,d) be a metric space. If acX and r=0, we
let B,(a,r) or B(a,r) denote the open ball {x€X: d(x, a)<r}. More generally,
if 9=AcX, we write B(4, r)={x€X: d(x, A)<r} where d(x, A) is the distance
between x and A. If 4 and B are nonempty subsets of X, we let d(4, B) denote the
distance between A and B and d(A4) the diameter of 4. If X=R", we let d denote
the standard euclidean metric, and write

B'(x,r) = B(x,r), B"(r)=B(0,r), B"=B(O,1),
S"-1(x, ) = dB(x,r), S"1(r)=S""1(0,r), S"-t=S5""1(0,1).

The closed unit cube [—1, 1]* of R" is denoted by I”, and the open cube (—r, r)"
by I"(r). However, we set I=[0, 1], although I'=[-1,1]. The upper half space
of R"is R", ={x€R": x,=0}. If 4 is any subset of R", we set A, =ANR".

If f and g are maps into a metric space (Y, d), defined in a set 4, we write

d(f, g; A) = sup {d(f(x), g(x)): x€4}.

Let (X,d) and (Y,d’) be metric spaces. A map f: X—Y is L-lipschitz,
L=0, if
d'(f(x), f(»)) = Ld(x, y)

for all x, ycX. If L=1 and if, in addition,

a(f(x), () = d(x, y)/L,

fis L-bilipschitz. If each point x of X has a neighborhood U such that f|U is
lipschitz, L-lipschitz, bilipschitz or L-bilipschitz, f is said to be locally lipschitz,
locally L-lipschitz, locally bilipschitz or locally L-bilipschitz, respectively. We let
LIP denote the category of metric spaces and locally lipschitz (=LIP) maps. A locally
bilipschitz embedding or immersion is said to be a LIP embedding or a LIP immer-
sion, respectively.

Let ACR" be a set such that Acclint A. If n=2, an embedding f: 4-~R"
is said to be K-quasiconformal or K-QC if its restriction to each component of
int 4 is K-QC in the sense of [V4,]. If n=1, fis said to be K-quasiconformal if
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its restriction to each component of int 4 is K-quasisymmetric [LeV,, IL.7.1]. We
allow the possibility that f is sense-reversing. The concept “locally quasiconformal”
(LQQ) is defined in the obvious way.

We can define LQC manifolds and LIP manifolds in the well-known manner
using atlases (see also [LuV, § 3] and [LT, 4.6]). Observe that every LIP manifold
is an LQC manifold.

If AcB, we let id denote the inclusion map 4-B.

If X and Y are metric spaces, we shall consider the space C(X, Y) of all con-
tinuous maps f: X—~Y endowed with the compact-open topology. We let H(X )
C(X, X) denote the group of all homeomorphisms f: X—X.

If A is a subset of a topological space X, we let “near 4” mean “in a neigh-
borhood of 4”.

If ACR", if f: A—RP is a map and if xo€A4 is an accumulation point of 4,
we set

‘ /) —f(xo)l
L(xy,f) = lllzl_’s)};p e
If « is a rectifiable path in R", /(«) will denote its euclidean length.

The 1-dimensional case needs often a special treatment, since the properties of
1-dimensional quasisymmetric maps are different from the properties of higher-
dimensional quasiconformal maps. On the other hand, it is usually easy to give
a direct proof for the 1-dimensional case. To avoid technicalities, we make the
following convention: The symbol 7 is always an integer at least two, unless other-
wise stated. :

The following elementary lemma is well-known (see, for example, [Fe, p. 64]):

2.2. Lemma. Suppose that A is a convex set in R? and that f: A—~R™ is a map
such that L(x,f)=L, for every x€A. Then fis Ly-lipschitz. O

2.3. Mdbius transformations. We let GM (m) denote the group of all Mobius
transformations of R™. Thus GM (m) is generated by similarity maps and inversions
in spheres (in fact, by inversions alone). The image of a p-sphere under a M&bius
transformation is always a p-sphere, if we regard a p-plane as a p-sphere through .

We let Mob,, denote the subgroup of GM (m) consisting of maps g such that
gB"=B". Then Mob,, is generated by inversions in all orthogonal spheres of
S™=1, The group of all sense-preserving maps in Mob,, is written as Mob,;. There
is a natural topology in GM (m), which can be defined in several ways. It is the
topology of pointwise convergence and also the compact-open topology. More-
over, the induced topology of M&b,, can be defined by the metric d(f, g; B™).

2.4. Hyperbolic metric. Let 0=p=m—1, and let TCR™ be a p-plane (affine
subspace). The hyperbolic metric g, of R™\T is defined by the element of length
do,=|dx|/d(x, T). This means that if a, 56 R"™\T, o(a, b) is the infimum of the
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line integrals
|dx]

(2.5) . i T)

taken over all rectifiable paths « joining @ and 5 in R™ 7. If H is a half space
whose boundary contains 7, and if a, b€H, it is sufficient to consider paths «
in H. If p=m—1, 61(a, b) is defined only if ¢ and b belong to the same component
of R™\T. The metric o is invariant under the Mo6bius transformations g which
respect 7, thatis, g7=T. Indeed, this is easy to verify if g is a similarity or if g(x)=
x/|x]%, and the general case follows from these.

Let SCR™ be a p-sphere of radius r. The hyperbolic metric o5 in R™\ S
is defined as follows: Choose h€GM (m) such that A4S is a p-plane T. Then

os(a, b) = or(h(a), h(b)).

If p=m—1, og4(a, b) is again defined only if @ and b belong to the same component
of R™\S. The metric o is independent of the choice of %, and it is invariant under
the M&bius transformations which respect S. It can also be defined explicitly by
the element of length

(2.6) dog(x) =

where

2r |dx|
d(x, $)D(x, S)’

D(x,S) = max {{x—y|: y¢S}.
In particular, if S=S™"", the hyperbolic metric of B™ is defined by

2 |dx|

dO'S(X) = 1_—lez

The formula (2.6) follows by direct computation. However, we shall only need
the fact that dog(x)d(x, S)/|dx| is bounded away from 0 and < near S. We shall
often omit the subscript S from oy if there is no danger of misunderstanding.

If p=m—1, a hyperbolic ball B_(x,r) is always a euclidean ball or a half
space or the exterior of a euclidean ball.

2.77. Mdobius coordinates. Let m and k be positive integers, and set n=m-+k.
For every z€ R"™\.S™ ! we define the Mdobius coordinates ¢€B™ and #ER* as
follows: There is a unique orthogonal k-sphere S* of S"~! through z which inter-
sects B™ orthogonally. (Again, k-planes are considered as k-spheres through .)
Then ¢ is the unique point of S¥~B™. Furthermore, there is a unique m-sphere
S5 through S™~* and z. Let C be the z-component of SI\S™~ Then (0, ) is
the unique point of C~(0X R¥). Each point z is uniquely determined by its Mobius
coordinates, and we write z=[¢, 5]. All this is easy to see if m=k=1, and the
general case follows by considering two-dimensional sections through 0, z, and
the orthogonal projection of z in R™. If z€ S™~Y, we set {=z, but # is not defined.
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2.8. Lemma. Let g€M®&b,,. Then the map g* defined by g*[¢ nl=[g(&), nl
is in Méb,.

Proof. If g is a reflection in an orthogonal (m—1)-sphere of S™~%, then g* is
the reflection in the (n—1)-sphere with the same center and the same radius. Hence
g*€Mob,. The general case follows from this. O

2.9. Sullivan groups. Let G be a subgroup of Mdbt. We consider G as a trans-
formation group of B™. Assume that G has the following properties:

(1) G is discrete.

(2) G acts freely on B™. This means that g(x)x whenever x€B", gc€G
and gxid.

Each orbit Gx, x€B™, is discrete and closed in B™. Let Q be the orbit space
B™|G with the quotient topology. The natural map n,: B™—~Q is a covering map,
and Q is an m-manifold without boundary. Moreover, 7, defines a DIFF (and
hence LIP and LQC) structure on Q. The hyperbolic metric o, of Q is defined
as follows: If p, g€Q, o,(p, q) is the hyperbolic distance of m,*(p) and 75 (q)
as subsets of B™. Then =m,: B"—~Q is locally a hyperbolic isometry. Indeed, set
r(x)=o(x, (Gx\x))/4. Then r, embeds B,(x, 7(x)) isometrically onto

B, (mo(x), r(x)).

The LIP structure of Q is also defined by the metric 6,. Each pair p, g¢Q can be
joined by a hyperbolic geodesic.

We say that G is a Sullivan group if, in addition, it has the following two prop-
erties:

(3) B"/G=Q is compact.

(4) If geQ, there is a LIP immersion «: O\g—R".

The orbit space Q will be called a Sullivan manifold. By a deep result of
Sullivan [Su], a Sullivan group exists for every m. We fix for each positive integer
m a Sullivan group G™ and the corresponding Sullivan manifold Q™=B"/G™. The
point 7, (0)€ Q™ will be denoted by ¢,.

For every m we fix r,€(0, 1/2) such that =,: B"—>Q™ is a hyperbolic isometry
in a neighborhood of each closed hyperbolic ball of radius r,,. This is possible by
the compactness of Q™. Then, if 0<r=r, and g€Q™ the pre-image of Boq(q, r)
is a disjoint union of hyperbolic balls in B™, and 7, maps each of these isometrically
onto B(,Q(q, r). We let D™ denote the hyperbolic ball B,(0,r,)cB™ and s,=
tanh (r,/2) the euclidean radius of D™.

2.10. Some comstructions. Let m and k be positive integers. Set n=m+k and
A'=B"™S"~'. Then each z€A} has Md&bius coordinates (€B™ and n€B*; see
2.7. We thus obtain a natural homeomorphism u: A}—~B™X B* defined by u[¢, n]=
(&, 1). Setting n=my,Xid: B"XB*~Q,, XB* and e=nu we obtain the commuta-
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tive diagram
A2~ B™xB*

1 A

Qm XBk

Here © and e are covering maps. Observe that e(0)=(g,, 0). The map e plays an
important role in the straightening of k-handles on an n-manifold. It corresponds
to the natural covering map R"XI*—~T™"XI* of the Edwards—Kirby theory.
For 0-handles we define 4j=B" and e=mn,: B"~Q". For n-handles we set A"=B"
and e=id: B"-B".

In A} we have the euclidean metric d of R" and the hyperbolic metric ¢ of
R™\S™"%. In B"XB" we use the metric ¢ defined by

Q(xa x,) = max (0'(x1, xi)’ ng—x;').

Replacing o by o, we obtain a metric on Q"X B*, also denoted by ¢. Then 7 is
an isometry in each set of the form B,(x, r,)X B*.

2.11. Lemma. The homeomorphism u: (A}, o) —~(B™X B, o) is bilipschitz.

Proof. Set F=B"(1/2) and E=u"'[FXB". Since u is a diffeomorphism,
ulE is L-bilipschitz for some L. Define the action of Mob,, on B™X B* by g(x;, x,)=
(gx,y X;). Then every g: B"XB*—~B™XB* is a g-isometry. Since gu=ug for
all geMob,,, ulgE is L-bilipschitz for every g€Mob,,. Since the sets gF cover
Ay, it easily follows that u is L-lipschitz and that »~ is 2L-lipschitz. O

2.12. Lemma. Suppose that 0=k=n—1 and that f: Aj—A} is a homeomor-
phism such that f is locally L-bilipschitz in the hyperbolic metric ¢ of R™S"™™! and
such that o(f,id)=M<eo. Then f is L,-bilipschitz in the euclidean metric of R"
with L,=2Le™.

Proof. Tt suffices to show that f is L,-lipschitz. Setting &(x)=d(x, S %) we
obtain by (2.6)
L(x, ) = 2L5(f(x))/5(x)

for all x€A4. By Lemma 2.2, it suffices to show that §( f(x))/S(x)=e™. Let xcA}
and let o be a rectifiable path joining x and f(x) in A;. Since §: Aj—R! is 1-lip-
schitz, [V4,, 5.3] implies

ddyl _ flar _ o 8(f(x)
J30) =a/ 7=l

oa

Hence
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2.13. Lifting of maps. Since B™XB* is simply connected and n: B™XB*-
O™x B* is a covering map, every (continuous) map f: Q"X B*~Q™XB* can be
lifted to a map f: B"XB*~>B"XB* such that nf=fr. The lifting f is unique
as soon as we know f(0), which can be chosen arbitrarily in 7~f(g,, 0).

The set

Py = {fCH(Q"XB"): o(f,id) < r,/2}

is a neighborhood of id in H(Q™X B*). In what follows, we shall only consider
liftings of maps f€#,. We let f denote the unique lifting of f¢Z, satisfying
f0)e B, (0, r,,/2)X B*. The map fis a self-homeomorphism of B™xB*. Indeed, if
feP,, then also f~1€#,, and (f)" =(f)"L The lifting £ can also be directly
defined as follows: For x=(x,, X,)€ B" X B* let

Tyt Ba(xl’ rm)ka g Bao(no(x1)> rm)XEk

be the isometry defined by n. Then f(m(x))€imm,, and we can define fx0)=
n;1frn(x). From this description it is easy to see that ¢( fi.f)=0(fi,f») for all
fir [2€ Py In particular, o(f,id)<r,/2 for every f€#,. Furthermore, if the action
of Méb,, on B™XB* is defined by g(x;, X,)=(gx;, X,), then gf=fg for every
fEP, and geG™.

We define the action of Mob,, on 4} by g[¢&, n]=[g(&), n]. By Lemma 2.8
this action is conformal. For fE#, we set f*=u"'fu: A"~A". Then f* is an
e-lifting of f, that is, ef*=fe. From the above considerations and from Lemma 2.11
we easily obtain the following properties of f*:

2.14. Lemma. The correspondence f—f* is a continuous map Py—~H(A}). If
f€P, and geG™, gf*=f*g. There is a constant M, depending only on n such that
o(f* id)=M, for all f€P,. Every f* can be extended by id|S™™' to a homeo-
morphism f: B'~B". O

2.15. Local and global bilipschitz constants. It is usually much easier to show
that a given embedding is locally L-bilipschitz than L-bilipschitz. For example,
let G be open in R", and let f: G—R" be an embedding. Suppose that G can be
expressed as a locally finite union of sets 4; such that f]4; is L-bilipschitz for
every j. Then f|4;nG is also L-bilipschitz, and the local convexity of R" implies
that fis locally L-bilipschitz. However, f need not be bilipschitz even if G=G,U G,
with f|G; bilipschitz. However, we show that if we restrict the embeddings to a
compact subset of G, the difference between L-bilipschitz and locally L-bilipschitz
maps becomes fairly small. For this, we need the following result of F. John [Jo,
Theorems IT and III]:

2.16. Lemma. Suppose that f: B"—>R" is a locally L-bilipschitz immersion with
f(0)=0. Then

(1) B*(1/L)cfB"cB"(L),

2) fI1B"(1/L? is L-bilipschitz. [
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2.17. Lemma. Let G be open in R", and let A be compact in G. Let f: G—~R"
be a locally L-bilipschitz embedding. Then (f|A)™* is L,-lipschitz with L, depending
only on G, A and L. If G is connected, f|A is L,-bilipschitz.

Proof. We may assume that G=R". Set r=d(4,0G), and let x;, x,€4. If
[x;—Xs|=r/L?, Lemma 2.16 implies |f(x;))—f(xy)|=|x;—x,|/L. Suppose that
|x;—x,|=r/L? Then the balls B"(x;,r/2L?) are disjoint. By Lemma 2.16,
B(f(x;), r[2L*)CfB"(x;, r/2L?), which implies

| f(x) = ()l = 7/L? = rlxy —X,| [L2d (A4).

Hence (f|A)~! is L,-lipschitz with L;=max (L, L3d(A)/r).

Next assume that G is connected. For a, b€G let di(a, b) be the infimum
of the lengths of all rectifiable paths o joining @ and b in G. Then d, is a metric of
G defining its usual topology. Since 4 is compact, d,(A4)<-<e. Suppose that x, yc 4.
If |x—y|<r, the segment xy lies in G, which implies | f(x)—f(»)|=L|x—y|. Assume
that |x—y|=r. Choose a path o joining x and y in G such that /(o)<1+d;(4).
Since f is locally L-bilipschitz, I( fo)=LI()=L(1+d,(4)). Hence

/() =f(0)] = L(1 +d:(A) = L(1+dy () Ix—yl/r.
Consequently, f is L, -lipschitz with Ly=max (L, L(1+d,(A)/r). O

3. Deformation of embeddings near the identity

3.1. In this section we present Sullivan’s version of the Edwards—Kirby theory.
Let M be a manifold, possibly with boundary. If XM, an embedding f: XM
is said to be clean if f~10M =X oM. The family of all clean embeddings f: X—~M
is denoted by E(X; M). If ACX, we set

E(X, A; M) = {fCE(X; M): f]4 = id}.

We first give a quantitative canonical Schoenflies theorem for embeddings
near id.

3.2, Lemma. Let A=B"™\B"(1/2), and let
P = {feE(4; R"): d(f,id) = 1/30}.

Then there exist a continuous map ¢: #—~E(B"; R"), a universal constant ay, and a
constant b, depending only on n such that:

(D) @ (NIS"I=fIS""" for all fe2.

(2) p(id)=id.

3) If fis K-QC, o(f) is ,K3-QC.

@) If fis locally L-bilipschitz, o (f) is locally ayL3-bilipschitz.

(5) If fis L-bilipschitz, o (f) is a,L3-bilipschitz.
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Proof. The map ¢(f) is constructed by the furling idea of M. Brown. We can
follow the proof of [GVm,, Lemma 9, p. 241]. However, since we do not assume
that S""lcime, we choose ¢=0.9, and define the radial map 4 by 1[0, b]=]0, 4],
Alb, q1=la, q, Alq, <]=I[gq, ==]. Moreover, we must have 2c=b/a in order that
the construction be valid in the LIP category. If we choose «¢=0.6, »=0.8, ¢=2/3
and d=0.65, the construction is possible for all e€2. Then ¢@=(e—¢é) satisfies
(D, (3), @) and (5). Replacing ¢(e) by @(e)e(id)™, we find ¢ satisfying all con-
ditions of the lemma. O

3.3. Lemma. (Straightening of handles near id.) Let m=0 and k=0 be
integers such that m+k=n=2. Then there exist a neighborhood ? of id in
E(I", I™X0I*; R™XI*) and a continuous map '

W PXI — E(I", I™X9I*; R™XI¥)

with the following properties:

(1) ¥(@d, t)=id for all t€l.

(2) Y (h,0)=h for all heP.

(3) Y (h, t)|I"=h|0I" for all heP and tecl.

@ Y, D|ImXHU(I™(1/2)x I¥)=id for all he 2.

(5) If he? is K-QC, then Y (h, t) is K; -QC with K, depending only on K and n.

(6) If heP is locally L-bilipschitz, then (h,t) is locally L,-bilipschitz with
L, depending only on L and n.

(D If he? is L-bilipschitz, then (h,t) is L,-bilipschitz with L, depending
only on L and n.

Proof. Recall the notation D"=B_(0, r,)=B"(s,) from 2.9. With the aid
of an auxiliary bilipschitz homeomorphism of R", we may replace the cubes I™
and I* by closed unit balls B" and B*, and the cubes I™(1/2) of (4) by the ball
B,(0, r,/2). Performing a preliminary deformation given by [EK, Proposition 3.2],
it suffices to consider embeddings h€E(B™X B¥, B"XdB*; R"XB*) such that
h=id in C=B™(9/10)X(B*\B*(1/2)). This deformation multiplies the dilatation
and the bilipschitz constant of 4 at most by a factor depending only onn. Let u: 4;—
B™x B* be the homeomorphism defined in 2.10. We first show that for every
he (B"X B¥, B"xdB* U C; R™X B*) which is sufficiently close to the identity, there
is a homeomorphism g: R"—R", continuously dependent on A, such that (i) g=id
if h=id, (ii) g=u"thu in u~[D™XB", (iii) g=id in R™\B", and (iv) g respects
the QC and bilipschitz properties of 7.

If m=0, h: B"~B" is a homeomorphism with #|S""'=id. Hence we can
choose g=hu(id|R™\B". Suppose that m=1. Let us first recall the Sullivan
covering map m,: B"—~Q™ from 2.9. It is injective in a neighborhood of the ball
D™ Choose a point p€Q™\m, D™ and a LIP immersion o,: O™\ p-~B"(9/10).
By the LIP Schoenflies theorem [LuV, 7.7], we may assume that oym,=id in a neigh-
borhood of D™ Set a=u,Xid: (Q™\ p)X B*~B"xB*. Then we=u in a neigh-
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borhood of u~1[D™X B¥]. Choose t=0 such that 4f<min (r,,, oo(p, 7, D™)), and
set Dj=BdQ(p, jt) for j=4. We can now construct the following variation of the
main diagram of Edwards—Kirby.

R 9 _, R
) U
Ay —— A
|
Je P
Q"X Bt —— "2, Qmx B
Y . I
Q"'XBk\D3><Bk(3/4) —2 meBk
. ) I
Q" X B\Dy X B¥(5/8) —*~ Q"X B
v )
(@Q™\D)XB* L (Q™\Dy)X B*
al al
Bm XEk _h_’ R™ X'B'k

We start from the bottom with % in a neighborhood £ of id. On each step,
we may replace 2 by a smaller neighborhood. We first find /; as in [EK, p. 68].
The embedding A, is the extension of #; via the identity, and the homeomorphism
hy is found by the canonical Schoenflies theorem 3.2. The homeomorphism 7, is
the lifting /45 given by 2.13, and g is the extension of /1, via the identity. If 2 is a
sufficiently small neighborhood of id, the properties (i), (i) and (iii) are easily verified.

If K=1 or L=1, welet K, K,, ... or Ly, L,, ... denote constants depending
only on K and n or L and n, respectively. Suppose that /is K-QC. We divide Q™X B
into the following three sets:

Flz(Qm\B‘S)XEk: FQZESXBI\(3/4)> F3:D-‘S><(B,‘\Bk(3/4))'

Set E;=e™'F;, j=1,2,3. Since Q™ is compact, we can choose a set U, open in A,
such that U is compact in 4" and such that eU=Q™Xx B*. Then oe|U\e~*[D,XB"]
is locally L, -bilipschitz in the euclidean metric. Since oeh,=hoe in E;, h|E,nU
is K;-QC with K,=KL%"~* Since h, is compatible with G” by 2.14 and since G"
acts conformally on 4}, h,|E; is K;-QC.

The set E, has a countable number of components E,;, j€N, and e maps
each E,; homeomorphically onto F,. In each E,;, h, is constructed by Lemma 3.2
using an auxiliary bilipschitz embedding which is defined in a neightorhood of Ej;
and which maps E,; onto B". Hence the dilatation of /4|E,; depends only on K,
n and j. However, if i=j, there is g€G™ such that 7,|Ey,=gh,g "|E;;. Hence
h|E, is K,-QC.
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Finally, /,|E,=id, which implies that 7, is K;3-QC with Ky=max (K;, K),
of. [V4,, 35.1]. Hence g is K;3-QC.

Suppose that 7 is locally L-bilipschitz. Arguing as in the QC case we con-
clude that %, is locally L, -bilipschitz in the hyperbolic metric of R™S""1. On
the other hand, ¢(f,,id)=M, by 2.14. It follows from 2.12 that /, is (globally)
L, -bilipschitz in the euclidean metric. Hence g is L, -bilipschitz.

Define the Alexander isotopy g;: R*—R" by g(x)=tg(x/t) for 0<t=l,
g,=id. Choose a bilipschitz embedding b: B"—~>B"(3/4)XB* such that v=u in
u~1[B"(1/2)x BY. Let f: R"—R" be the isotopy defined by f,=vg/ =1 in vB"
and by f,=id outside vB". The desired deformation ¥ is obtained by setting

W (h, t) = fh: B"XB* -~ R"XB".
If 4 is in a sufficiently small neighborhood £ of id, ¥ (h, t) is in
E(B"x B, B"XdB*; R"xB"),

and the properties (1)—(7) of Lemma 3.3 are easily checked (remember that D"C
B"(1/2)). O

3.4. Theorem. Let G be open in R", and let A, A’, B, B’, C, C’ be subsets of G
satisfying the following conditions: A and C are closed in G, B is compact, and
Acint A, Bcint B, Ccint C’. Then there exist a neighborhood 2 of id in
E(G, C’; R"), an open neighborhood A" A" of Ain G and a continuous map Y: P X
I~E(G, C; R") such that the following conditions are satisfied for all €I and heZ:

1) ¥ad, 1)=id.

2) ¥ (h, 0)=h.

3) Y(h,t)=h in G\B'.

@ y(h, D|BUC=id.

(5) Ifhis LQC in int A', (h, 1) is LQCin A”. If hlint 4" is K-QC, y(h, 1)|4”
is K,-QC with K, depending only on K and n.

(6) If GCR" and if hlA" is a LIP embedding, then Y (h, t)|4” is a LIP
embedding. If h|A’ is locally L-bilipschitz, Y (h, t)|4” is locally Ly -bilipschitz with
L, depending only on L and n.

(7) If GSR" and if h|A" is L-bilipschitz, Y (h, )|A” is Ly-bilipschitz with L,
depending only on L and n.

Proof. We may assume that ¢ B. Choose a compact PL manifold Pcint B’
such that Bcint P and a fine handle decomposition of P. As in [EK, pp. 71—73],
we can find a neighborhood 2 and a map ¥ satisfying (1)—(4) by successive applica-
tions of Lemma 3.3, starting with zero handles. In order that (5)—(7) also be true,
we must choose P and the handle decomposition in a regular manner. For example,
we can start with the cell decomposition T, of R" consisting of all cubes with
vertices in 2¢Z" and with side length 2%, where k is a small negative integer.
We let P be the underlying polyhedron of a finite subcomplex Ty of T,
such that Bcint P and such that OB’ whenever Q€T, and Q meets P. Then
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Pcint B”. Choose a simplicial subdivision 7}, of T; without new vertices [RS, 2.9].
Then the second barycentric subdivision 7, defines a handle decomposition # of
P as in [RS, p. 82]. Let i(H) be the index of a handle Hec#. Define H=H' if
HnH'#0 and i(H)=i(H’). Then H=H' =H” implies H=H". Let #, be
the set of the handles H€# such that thereis H'€# with H=H’ and H’ ~ C#9.
We may assume that Py=ux#CC’. Let Hy, ..., H, be the handles of #\ ¥,
arranged in order of increasing index. For each; we choose a PL embedding u i R~
B"\C such that im y; is a small neighborhood of H; and such that for i(H,)=k,
m=n—k and Hj=u;I" we have:

i) wlI"(1)xI=H,.

() w[R" XTI (Pyw H L ... UH;_}) = u;[R"XAI".

(iif) There are similarity maps o;: R"—~R" such that the embeddings « il
belong to a finite set depending only on #.

The desired isotopy Y (%, t) is a composition ¢ ... %@, where

(pj(h9 t) = :ujlpk(:uj_lhﬂjlln9 t)/“tj_l iIl H,;'k9
¢;(h,t) =h outside H},

and ¥, is given by Lemma 3.3 with k=i(H)).

The conditions (5)—(7) follow from the corresponding conditions of Lemma 3.3.
In (5) we also need the fact that a set of finite (r— 1)-dimensional measure is remov-
able for K-QC homeomorphisms [V4,, 35.1]. In (7) we use the following elementary
lemma: Let GCR" be open, let ACG be compact, and let f: G—~R* be an
embedding such that f|4 and f|G\ A are L-bilipschitz. Then fis L-bilipschitz. [J

3.5. Theorem. In Theorem 3.4, the conditions (2), (3), (4) can be replaced by the
Sfollowing ones:

2) Y(h,0)=id.

() Y(h, 1)|G\B =id.

@) ¥y, H)=h in BuC.

Proof. We may assume that B’ is compact. Choose a closed neighborhood
A; of 4 in int A and a compact neighborhood B, of B in int B”. Apply 3.4 with
A and B replaced by 4; and B;. We obtain a map ¥,: XI-E(G, C; R") and
an open neighborhood AjcA’ of A. Choose an open neighborhood A” of 4
with cl; 4”cA7. Replacing 2 by a smaller neighborhood we may assume that
hBC B, and that h[A”nB’]Cy,(h, 1) Ay for all h€? and tcl. Then the map
W (h, )=y, (h, t)"1h has the required properties. []

3.6. Theorem. Let GCR" be open, let BCG be compact, let B'CG be a
neighborhood of B, and let e=0. Then there is 6=0 such that for every LIP embed-
ding h: G—R" with d(h, id)=6 there is a LIP homeomorphism I’: R"—~R" such that

(1) d,id) =e,

(2) K|B=h|B,

(3) KW|R™\B’ =id.



Lipschitz and quasiconformal approximation and extension 315

Furthermore, if h is K-QC, ' is Ky-QC with K, depending only on K and n. If his
locally L-bilipschitz, i’ is L, -bilipschitz with Ly depending only on L and n.

Proof. We may assume that B is compact. We apply Theorem 3.5 with A=
A’=G and C=C’=0 and obtain a map y: ZXI—~E(G; R"). Since Y (id, t)=id
for every t€I, we may assume, replacing 2 by a smaller neighborhood, that
W (h, 1)(x)—x|<e for all A€, tcI and x€G. There is 6=0 such that he?
whenever h€E(G; R") and d(h,id)=6. We can then define 7" by h'|G=y (h, 1)
and by A|RN\G=id. O

3.7. Remark. The qualitative part of Theorem 3.6 is the same as [TV,, 2.19].
This is all that was needed from Sullivan’s theory in the proof of the QC extension
theorem from dimension # to n+1. However, it is possible to simplify this proof
by making also use of the quantitative part of Theorem 3.6; see 7.1. We shall use
this simplification in the proof of Theorem 7.4, which can be considered as a gen-
eralization of the result in [TV,]. For this purpose, we give a quantitative version
of [TV,, 2.20]. For this and for later purposes, it is convenient to introduce the fol-
Jowing notion:

3.8. Solid families. Let X and Y be metric spaces. A family # of embeddings
f: X~Y is said to be solid if cl # is a compact family of embeddings. If Y=R"
and if XCR" is either open or compact, & is solid if and only if it is pointwise
bounded, equicontinuous and inversely equicontinuous. More precisely:

(1) For every xo€X, the set {f(x,): f€#} is bounded.

(2) For every x,€X and &>0, there is a neighborhood U of x, such that
| f(x)—f(xo)|<e¢ whenever x€U and fcZ.

(3) For every x,£X and for every neighborhood U of x,, there is &¢’>0 such
that |f(x)—f(xe)|=¢" whenever x€X\U and feZ.

Indeed, by Ascoli’s theorem, (1) and (2) are true if and only if cl # is com-
pact in C(X, R"), and (3) means that the members of cl # are emteddings.

The corresponding statement is true if we replace R” by R" and the euclidean
metric by the spherical metric. However, in this case the condition (1) is super-
fluous.

Let UCR" be open and let E;;p(U; R") be the family of all LIP embeddings
f: U—~R". By a result of Sullivan [Su], Ey;p(U; R") is densein E(U; R") if n#4.
We shall prove this in Section 4 (Corollary 4.5). We say that an embedding f: U~R"
is LIP approximable if fecl Ey;,(U; R"), which is always true if n=4.

We next give a quantitative version of [TV,, 2.20]. This will be needed in Sec-
tion 7.

3.9. Lemma. Let U, U’, V, W be open sets in R" such that

wWcvcu UcU WnUcCV,
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and U’ is compact. Let F be a solid family of embeddings g: U—~R". For n=4
we also assume that the members of F are LIP approximable. Let £¢=0, K=1,
L=1. Then there are 6=0, K'=1, L'=1 with the followin properties:

Let h: V—~R" be a LIP embedding, and let g€ F be such that d(g, h; V)=6.
Then there is a LIP embedding h': U—~R" such that

(1) di, g; U)=e,

Q) W=h in WU,

@3) #|U" is K'-QC if h is K-QC,

@ WU’ is L-bilipschitz if h is locally L-bilipschitz.
Here 6 depends only on t=(U, UV, W, F,¢), K’ depends on © and K, and L’
depends on t and L.

Proof. We shall closely follow the proof of [TV,, 2.20]. Choose open sets A4
and A4, such that U'c A4, Ac4,, A,cU and A4, is compact. Since % is solid,
there is ¢,=>0 such that |g(x)—g(»)|=¢/2 whenever g€ Z, |x—y|=¢ and x, y€A.
Next, by Theorem 3.6, there is §,=0 such thatif f/: 4NV —R" is a LIP embedding
with d(f,id; AnV)=46,, then there is a LIP homeomorphism f’: R"—R" such that
(3.10) d(f,id)=¢, ff=f in WnU’, fIIRN\(ANV)=id.

Finally, we choose J=0 such that ycgd; and |g7'(x)—g~1(y)|=J, whenever
geF, xcgd, yeR" and |x—yp|=35. We show that the lemma is true with this J.

Since ¢l & is compact and since its members are LIP approximable, there is
a finite family &’ of LIP embeddings U—R" such that for every g€cl # we can
choose g'€¢#’ with d(g’, g; A)=min (¢/2,5/2). The family #’ depends only
on 7. Hence there are K and L,, depending only on 7, such that for every g'¢#’,
g’l4; is Ky-QC and L, -bilipschitz.

Let h: V—R" and g€# be as in the lemma. Since d(g’, g; 4,)=5/2 and
B(gA, 36)cgAd,, we have B(gAd, 56/2)cg’A,, which implies B(g'A4,25)Cg’A4,.
Since d(g’,h; AnV)<26, we can define an embedding f: 4n¥V—-R" by
f=g *hlAnV. Then fl[AnV]cCA,. Moreover, d(f,id; AnV)=5,. To show
this, let x€AnV. Then [g(f(x))—gX)|=5+|g'(/(x)—g'X)|=5+h(x)—g' )=
36. By the choice of &, this yields |f(x)—x|=0;.

If (a) /1 is K-QC, fis KK,-QC. If (b) & is locally L-bilipschitz, f is locally LL,-
bilipschitz. By the choice of J,, there is a LIP homeomorphism f’: R"—R" satis-
fying (3.10). Moreover, by Theorem 3.6, f” is K;-QC in case (a) and L, -bilipschitz
in case (b), with K; depending on t and K, L, on t and L. Then #'=g'(f’|U): U~R"
is the desired embedding. In case (a) it is K, K;-QC and in case (b) L,L, -bilipschitz
in U. In WAU’ we have I'=g'f'=g’f=h, and thus (2) is true. Furthermore,

d(w',g; U) =d(g'f", gf ;s A+d(gf’, g; A).
Since f'A=A, d(g'f", gf"; A)=d(g, g"; A)=¢/2. Since d(f’,id: A)=e,;, the choice
of & implies that d(gf”, g; A)=¢/2, and we obtain (1). O

3.11. Stable homeomorphisms and the annulus conjecture. Let C be one of the

categories TOP, LQC, LIP. A C-homeomorphism f: R*—~R" is said to be C-stable
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if ' can be written as a composite map f;...f; where each f;: R"~R" is a C-homeo-
morphism such that f;|U;=id for some cpen U;>0 [BG]. The stable homeo-
morphism conjecture for C states that every sense-preserving C-homeomorphism
f: R"—R"is C-stable. Sullivan [Su] proved this for C=LQC and LIP in all dimen-
sions; we give this in 3.12 below. For the case #=3, see also [Vi,] and [Kk, 4.5
and 4.6]. For C=TOP, the conjecture is known to te true for n=4 by Kirby
and Siebenmann; the case n=4 is unsolved.

To formulate the annulus conjecture we need some terminology. A set SCR"
is an (n—1)-dimensional C-sphere if there is a C-homeomorphism f: S—S""%
For C=LQC this means that f is quasisymmetric in the sense of [TV,]. We say
that S is locally C-flat if every point x€S has a neighborhood UcR" such that
there is a C-homeomorphism #&: (U, Un S)—~(B", B"™"). By a basic flattening
theorem, every locally C-flat (r#—1)-dimensional C-sphere ScR" is C-flat, that
is, there is a C-homeomorphism f: (R", S)~(R", S"™!). For C=TOP this is a
well-known result of M. Brown. For C=LIP it is given in [LuV, 7.8]. The case
C=LQC follows from Theorem 4.10 and from the Schoenflies theorem.

The annulus conjecture for C states that if S; and S, are locally C-flat (n—1)-
dimensional C-spheres in R" and if S; lies in the tounded component of R™\S;,
then the closure of the domain tounded by S;uU S, is C-homeomorphic to the
standard annulus B™\8"(1/2). The stable homecmorphism conjecture implies the
annulus conjecture; see [BG] or [Kr].

3.12. Theorem. The steble homeomorphisim conjecture and the annulus conjecture
are true in the categories LQC and LIP in cll dimensions.

Proof. Let Cte either LQC or LIP, and et & be the set of all C-stable C-hcmeo-
morphisms f: R"—R". It suffices to show that & is the group H{(R") of all sense-
preserving C-homeomorphisms f: R"—R". The case k=0 of Lemma 3.3 implies
that id is an interior point of & in H{ (R"). Since & is a subgroup, it is both open
and closed in H} (R"). Hence it suffices to show that H (R") is connected. We
show that every f¢ H} (R") can be joined by a path to id. There is x,€R" at which
f is differentiable with a positive jacobian. We may assume that x,=0=f(x).
Set g,(x)=f(tx)/t for t=0 and g,=f"(0). Then the path f—g, joins the linear
map f’(0) to f. Since detf”"(0)=0, it follows from elementary linear algebra that
f7(0) and id can be joined by a path. [

3.13. Conventions. In the rest of this section, C will denote either LQC or
LIP. We say that a homeomorphism f: " '—S""* is LQC if it is quasisymmetric
in the sense of [TV;] and [V&,].

3.14. Theorem. Let f: S" '—S""! be a sense-preserving C-homeomorphism
and let O<a<1. Then f can be extended to a C-homeomorphism g: B"—B" such
that g|B"(a)=id.
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Proof. Tt follows easily from 3.12 that f can be written as the composition
fi--.fi of C-homeomorphisms f;: S"~'—~S8""* such that each f; is the identity
in some nonempty open subset of $”"~!. Hence we may assume that f|V'=id for
some open nonempty ¥ S" L. It suffices to find an extension g such that g|U=id
for some open UcB", U=f. Indeed, we can then choose a C-homeomorphism
h: B*~B" such that B"(@)chU and h|S" '=id, and the desired map is /igh~L.

If C=LIP, we let g be the cone of f. Suppose that C=LQC. By [TV,, 3.15.4],
we can choose a QC extension g;: B"~B" of f. Choose a QC homeomorphism
@: R"=R" such that ¢|S""\V=id, B"C¢B" and |p(0)|>1. Setting

gx) =90 gl if lex) =1,
gx) =x if o) > 1,
we obtain the required map g: B"->B". O

3.15. Notation. For O<a<b we let A(a,b) denote the closed annulus
B"(5)\B"(a).

3.16. Theorem. Let O0<a<b, let O<r<b, andlet f: A(a, b)—~R" be a sense-
preserving C-embedding such that the bounded component of R™ fS""(b) contains
B*"(r)ufS"*(a). Then there is a C-embedding g: B"(b)—~R" such that g=f near
O0B"(b) and g|B"(r)=id.

Proof. Choose r; and a; such that r<r,<a;<b, a<a, and B'(r)n
fA(a;, b)=0. Let R be the domain bounded by S" *(r)ufS" '(a). By the
annulus theorem 3.12, there is a sense-preserving C-homeomorphism %: A(ry, a;)~R
with AS"~*(r)=S""'(r). By Theorem 3.14, h~1f|S""%(a;) can be extended to
a C-homeomorphism ¢: A(ry, a))~A(ry, @) such that ¢|S""'(r;)=id. Similarly,
h|S""'(r) can be extended to a C-homeomorphism #4;: B"(r)—~B"(r,) with
hy|B"(r)=id. The desired g: B"(b)—~R" is obtained by setting

g(x) = f(x) if ay=Ixl=0b,
gx) =hlpw) if r =IxI=a,
g)=hx if xl=r. O
3.17. Theorem. Let O<a<b—<c<d andlet - A(a,b)u A(c, d)~R" be a sense-
preserving C-embedding. Suppose also that fA(a, b)ufS" *(c) lies in the bounded
component of R™\fS""*(d) and that fS" '(a) lies in the bounded component of

R™_fS""Y(b). Then there is a C-embedding g: A(a, d)—~R" such that g=f near
04 (a, d).

Proof. Replacing a by a slightly larger number and d by a slightly smaller
number, we may assume that fS" (a) and fS"'(d) are locally C-flat. By the
annulus theorem 3.12, we may assume that |f(x)|=|x] for all x€04(a, d).
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By Theorem 3.16, there is a C-homeomorphism g;: B"(d)—~B"(d) such that
g1=f near 0B"(d) and g,=id near 0B"(a). Together with an auxiliary inversion,
Theorem 3.16 also implies that there is a C-homeomorphism g,: R™\B"(a)—
R™B"(a) such that g,=f near dB"(a) and g,=id near R™\B"(d). Then g=
g:81]4(a, d) is the desired embedding. [

4. LQC and LIP approximation of homeomorphisms

4.1. In this section we show that if C=LIP or LQC, and if M and N are C-mani-
folds without boundary of dimension #4, then every homeomorphism f: M—-N
can be approximated by C-homeomorphisms. We next prove the same result for
manifolds with boundary provided that ns%4, 5. In particular, we obtain the LIP
and LQC hauptvermutung for these manifolds. For manifolds without boundary,
these results are due to Sullivan [Su]; the LIP case for manifolds with boundary
has been proved by J. Luukkainen (unpublished). The key of the proof is the fol-
lowing result whose PL analogue is true only for £33 (by Kirby and Siebenmann).

4.2. Lemma. (C-straightening of TOP handles.) Let m=0 and k=0 be inte-
gers with m+k=n=2, n#4, let C be either LQC or LIP, let U be an open neigh-
borhood of I", and let f€E(U; R") be a C-embedding near I™XdI*. Let £>0. Then
there is an isotopy ¢: I-E(U; R") such that:

D @o=f.

(2) o, =f near UN\intI" for all t€l.

3) lp(x)—f(x)|=¢ for all tel and xcU.

4) ¢, is a C-embedding near I™X9I*UI™(1/2)XI*.

Proof. By the Schoenflies theorem, we may assume that U=R" and that f
is a homeomorphism onto R".

Choose 6€(0,1) such that |f(x)—f(»)|=¢/2 whenever x,ycl"(2) and
|x—y|=6. Then P ={gcH(R"): d(g,id; I")<d} is a neighborhood of id in
H(R"). Choose r=0 such that fis a C-embedding in A4"=B"(I"XdI*, 2r). Apply
Theorem 3.4 with G=R", A=B"(I"X9dI*, r), B a compact neighborhood of
I"(1/2)xI*(1—r) in intI", and B’ a compact neighborhood of B in int /"
We obtain a neighborhood £ of id in H(R") and a map : #XI—~H(R"). Since
¥(id, r)=id, we may assume that im Y 2,, replacing £ by a smaller neighbor-
hood.

Since ns4, there is a PL homeomorphism g€ H(R") such that d(g,f; R")<
g2 and g7lf=hc?. If k=0, we need here the deep stable homeomorphism
theorem of Kirby—Siebenmann, unless f is known to be stable. Set /,=y (4, ).
We show that ¢,=gh, is the desired isotopy. First ¢,=gh,=gh=f. Outside B’
we have ¢,=gh=f. If x€B’, then |h,(x)—x|<d, and we obtain

9. () /()] = |g(h () =1 (h ()| +|f (h () —f(x)| = e/2+¢[2 = e.
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In B, ¢,=gh,=g is PL, hence a C-embedding. In A4, k, is a C-embedding for every
t. In particular, ¢,|4=gh,|4 is a C-embedding. Consequently, ¢, is a C-embedding
in int Auint B, which is a neighborhood of I™XoI*uI™(1/2)xI*. O

4.3. Notation. If M and N are n-manifolds without boundary, we let E(M; N)
denote the set of all embeddings f: M —N.

4.4. Theorem. Let C be either LQC or LIP, let M and N be wn-dimensional
C-manifolds without boundary, n=4, let A, BCM be closed, and let B'CM be
a neighborhood of B. Let f: M—~N be an embedding such that f is a C-embedding
near A, and let ¢: M —(0, =) be continuous. Then there is a continuous map ¢: I—
E(M; N) such that:

(1) @o=1.

) o,=f in M\B’ and near A.

(3) ¢, is a C-embedding near AU B.

@ d(o,(x), f(x))<e(x) for all tcI and xcM, where d is a given metric of N.

Proof. 1. Special case. M is open in R", N=R", and B is compact. Choose
an open neighborhood 4’ of A4 such that f|4" is a C-embedding. Choose a com-
pact PL manifold Pcint B’ such that Bcint P. Choose a fine handle decom-
position # of P as in [RS, p. 82]. Let i(H) denote the index of a handle Hec#.
Define H=H' if HNnH' #0 and i(H)=i(H'). Then H=H'=H” implies
H=H". Let #, be the set of the handles Hcs# such that there is H' € with
H=H' and H nA=0. We may assume that Pj=usfcd’. Let H,,..., H
be the handles of #\#, arranged in order of increasing index. For each j we
choose a PL embedding pu;: R"—~B'\A4 such that for i(H;)=k, m=n—k and
Hf=p;I" we have

(1) %14 = H;,

Hfn(PyUH,U...0H;_;) = u;[I"XI"].

We may assume that H;nH=0 whenever i(H;)=i(H,) and j#k.

The isotopy ¢ is defined in s steps as follows: Set fy=f, and suppose that
the (j—1)™ step has produced an embedding f;_;: M—~N. We apply Lemma 4.2
with the substitution fi>f;_;u; and with a small e. This yields an isotopy
¢’: I-E(R"; R"). Define an isotopy ¢’: I-E(M; N) by ¢l/=¢,;u;* in H} and
by ¢/ elsewhere. Combining the isotopies @, ..., ¢° gives the desired ¢.

2. General case. Let A’ be as in the special case. Choose a closed B,C B\ A4
such that cl (B\By)cA4’. Choose a locally finite covering # of B, by open subsets
of M such that for every Wc#, W and fW can be C-embedded in R and W is
compact in B\ 4. By [Mu, 2.7] we may assume that % can be expressed as %,u
...u4,, where each collection 2 is disjoint. For every WcZ# we choose a smaller
open set W’ such that W’c W and such that the sets W’ cover B,. The isotopy
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¢ is constructed in n+1 steps so that the j t step is active only in U%;. We give
the first two steps. Set E=cl (B\ By).

Let WeB,. We apply the special case with the substitution ff|W, A—~EnW,
B—W’, B’— a compact neighborhood of W’ in W, and with a small e. This yields
an isotopy of f|W forevery W¢ 4,. These isotopies can be extended by f|M\ (V%)
to an isotopy of f, which produces an embedding f;: M—N.

In the second step, we take W%, and apply the special case with ffi|W,
A—~(EV(U{W’: WEB))nW, B—W’, and B and ¢ as above. [

4.5. Corollary. Let M and N be n-dimensional C-manifolds without boundary,
n#4, andlet &: M—(0, <) be continuous. Then for every homeomorphism f: M —~N
there is a C-homeomorphism g: M~N such that d(f(x), g(x))<&(x) for all xEM.
In particular, the hauptvermutung is true for these manifolds in the categories LQC
and LIP. O

4.6. Theorem. Every topological n-manifold without boundary, n#4, has a LIP
manifold structure (and hence an LQC manifold structure).

Proof. The theorem follows in a well-known manner from Theorem 4.4. See,
for example, [Kr, Theorem 10]. O

47. Lemma. Let C be either LQC or LIP. Let A be closed in B*"*, let BCB"™!
be compact, and let f: B".—~R", be a clean embedding such that f |[B"! is a C-
embedding and such that f is a C-embedding near A in B".. Then, for every &>0
there is an isotopy ¢@: I-~E(B" ; R",) such that:

(1) o=/

(2) @|B""t=f|B""" for every tcl.

(3) For some b€(0,1), o, =f in B\ B (b) for every t€l.

(4) @, is a C-embedding near Av B.

() |@x)—f(x)|<e for all xcB" and tel.

Proof. Choose numbers 0<bh,<by,<b<1 such that BcB""'(b). By the
Schoenflies theorem, we can extend f|B"~*(b) to a C-homeomorphism g: R" "'~
R*1 such that gis QC if C=LQC. For n=2 this follows from [LeV,, II, Lemma
7.2], Let F: R".—~R" be a C-homeomorphism with F|R""'=g. For C=LIP,
we may choose F=gXid; for C=LQC we apply [TV,, 3.12]. Then W=F ~'fB',(b)
is a neighborhood of B""(by) in R".. Choose r=0 and set a;=(r?+b)"® and
V;=B"(—re,,a)n R’ for j=1,2. Then V,c W if ris large enough. Let o: I—
E(R'\B""'(b;); R\\B""'(by)) be the obvious vertical isotopy through LIP
embeddings such that o,=id, o/R™\V.=id, and imo,=R,\V;. Then it is
easy to verify that the lemma is true for a sufficiently large r and with ¢ as follows:

¢, = Fo, F7'fa7* in B% n(imo,)

@, =F in B*\imua,. O
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4.8. Theorem. Theorem 4.4, Corollary 4.5 and Theorem 4.6 are true for n-mani-
Sfolds with boundary, n#4,5. In Theorem 4.4, E(M; N) denotes the set of all
embeddings g: M—~N such that g7*ON=0M, and we assume that f€E(M; N).
If flOM is a C-embedding, Theorem 4.4 is also true for n=>5, and we can choose ¢
so that @ OM=f|0M for all €l

Proof. We prove the special case of 4.4; the rest of the proof is essentially
unchanged. We assume that in 4.4 M is open in R”, that N=R" and that B is
compact. We may assume that B’ is compact. Choose an open neighborhood A’
of 4 such that f|4” is a C-embedding. Applying 4.4 to fo=f|M A R" (for n=2
see Remark 4.9) we find a small isotopy ¢’: I-E(MnR"; R"Y) of f, which
is active only in a compact neighborhood D of (BN R"")\ 4" in (int B’ R"")\ 4
and which produces an embedding ¢;: M R*'>R""! which is a C-embedding
near (AuB)n R, Using a spindle neighborhood of D in M, ¢’ can be extended
in a well-known manner to a small isotopy ¢: I-E(M; N) of fsuch that ¢,=f
in M\ B’ and near A4 for all t€1l. If f]oM is a C-embedding, we let ¢ be the con-
stant isotopy.

Choose a covering of (BN R"")\ 4’ by half balls U, ..., U, such that U,c
B\ 4 and such that ¢,|U;nR""! is a C-embedding. Applying Lemma 4.7 s
times gives a smallisotopy y: I—~E(M; N) of ¢, whichis active onlyin U, u... uUj,
satisfies Y,|0M=¢,|0M for all t€], and produces a map ¥/, which is a C-embedding
near AU(BNR"Y) in M.

Choose compact B;, B, such that B=B,UB,, B;Cint R",, and y; is a C-
embedding near B,. Apply 4.4 with the substitution M—int M, N—int R",
A—(AuB,)nint M, B—B,;, B’~— a compact neighborhood of B, in B’nint M,
S~V lint M. We obtain an isotopy y of ¥, and the desired isotopy is the com-
bination y*y*x¢@. O

4.9. Remark. Suppose that n=2. Then in the proof of 4.8 we need the special
case of Theorem 4.4 for n=1. For C=LIP this is very easy. We prove the case
C=LQC. We may assume that M CR! is an open interval, that B is a compact
subinterval, that N=R' and that f is increasing. Replacing 4 by a closed neigh-
borhood, we may assume that A4 is the union of a locally finite family of closed
intervals. Replacing B by a finite family of disjoint subintervals and treating each
of these separately, we may assume that B=[0, 1], B’=[—1, 2], and that B'n A4
is either empty or [—1,r] or [—1,r]U[l—r,2] for some rc(0,1/2). It suffices
to find an embedding f;: M—~R' such that (1) =/ in M\ B’ and near 4, (2) f;
is LQC near A4uB and (3) d(fi,f; B')<e. Indeed, we can then define ¢,=
(1-)f+1f.

Suppose, for example, that B’nA=[—1,r]. Choose sc(r,1/2) such that f
is QC near [0, s]. There is a QC extension g: R'-R' of f|[0,s] such that g is
C* outside [0, s]; see [LeVy, p. 12]. Choose s,€(s, 1/2) such that g(s;)<f(3/2).
Define fi: M—R' as follows: fi(x)=f(x) if x=s or x=3/2, i(x)=g(x) if
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s=x=s,, and f, is a suitable PL function on [s;, 3/2]. Then f; satisfies (1) and (2),
and (3) can easily be arranged.

4.10. Theorem. Let M and N be LQC n-manifolds and let f: OM~ON be an
LQC embedding. Then f can be extended to an LQC embedding of a neighborhood
of OM.

Proof. Since dM and ON have TOP collars, f can be extended to an embedding
of a neighborhood of 9M. If n>4, the theorem follows directly from the last
statement of Theorem 4.8. However, since the last isotopy y of the proof of Theo-
rem 4.8 is not needed in the present case, the theorem is also true for n=4. O

4.11. Remark. The LIP version of 4.10 is clear, since the boundary of a LIP
manifolds has a LIP collar [LuV, 7.5]. The concept “LQC collar” seems to be
meaningless, since there is no natural way to form products in the category LQC,
cf. [Tuy, Example 4]. Theorem 4.10 acts as a substitute for collaring in the LQC
manifold theory.

5. Extension

5.1. In this section we consider the following problem: Let G be open in R",
and let UcG be an open set such that UudG is a neighborhood of 9G in G.
Suppose that f: G—~R" is an embedding such that f|U is K-QC. Does there
exist an embedding g: G—R" such that g=f near dG and such that g is K’-QC
with some K’ depending only on G, U and K? The following example shows that
without any restrictions the answer is negative: Let G=B"(4)\ B", U=(B"(2)\B")u
(B"(4)\B"(3)). For 0<a<l we let f: G-R" be a radial embedding such that
f(¥)=ax for 1<|x|<2 and f(x)=x for 3<|x|<4. Then f|U is 1-QC, but the
dilatation of g must converge to < as a—0.

We shall show that the answer is positive if U is connected. Moreover, for
n=4 we must also assume that f is QC. In Theorem 5.7 we shall show that the
connectedness condition can be replaced by a condition concerning the size of the
boundary components of fG. As special cases, we obtain quantitative versions of
the Schoenflies theorem and the annulus theorem.

Corresponding results are also true in the category LIP.

5.2. Lemma. Let GCR" be open, let f: G—~R" be an embedding and let
g: G—~R" be an immersion such that f=g near 0G. Then gG=fG, and g is an
embedding.

Proof. We may assume that G is connected and that f and g are defined on G.
Then the topological degree u(y, f, G) is 1 for y€fG and u(y,f, G)=0 for

y€ R'™\_fG. Moreover, u(y,f, G)=u(y, g, G) for all y¢R™\ f0G and u(y, g, G)=
+card g71(p). See, for example, [RR, § I1.2]. The lemma follows. T[]
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In the following theorem, all closures and boundaries are taken in R":

5.3. Theorem. Let G be a domain in R", let U and V be open in G such that
UvoG and VUG are neighborhoods of 6G in G, VnGc U, and U is connected.
Let f: G—~R" be an embedding such that f|U is K-QC and such that either n=4 or
Sis QC. Then there is a K'-QC embedding g: G—~R" such that glV=f\V and K’
depends only on G, U, V and K.

Proof. Choose a connected open set U;CcG such that VAnGcU; and U;n
GcU. Then C=9U;nG is a compact subset of UN\Y. Choose open sets G,,
G,, Gy, G, such that G;,,CG;, CCG,, and G,cU\V. We apply Theorem 3.4
with the substitution G+—G,, 4—~G,, 4'—G,, B—~G,, B'—G;, K—K?2 We obtain a
neightorhood 2 of id in E(G,; R"), a continucus map : 2XI—-FE(G,; R")
and a numter K;=K, depending only on K and n. Letting ¢ denote the spherical
metric of R" we choose &,=>0 such that the set

N,(d, Gy, &) = {f€E(Gy; R"): q(f(x), x) < ¢, for all x€G,}

is contained in 2. Set e=min (g, ¢(G,, dGy)), and fix three distinct points a;,
az, a3 in U. Let & te the family of all K-QC embeddings #: U—~R" such that
(1) u(a)=a; for j=1,2,3, and (2) u has an extension to a QC embedding
v: G—~R". Then & depends only on G, U and K. Since U is connected, & is solid
(3.8 and [V&,, 19.5 and 21.1]). Hence there is &'>0 such that g(u(x), u(y))=¢’
whenever x, y€G,, ¢g(x,y)=e and uc#. Furthermore, there is a finite family
{us, ..., uycF suchthat F is covered by the sets N, (u;, Gy, &), | =j=s. For each
J€lt, s] we choose a QC extension v;: G—~R" of u;. Choose K,=K,(G, U, K)
such that each v; is K,,-QC.

Let f: G—~R" be an embedding such that f|U is K-QC.

Case 1. f is QC. We show that g can be chosen to be K, K; -QC. By an auxiliary
Mobius transformation we may assume that f(a;)=a; for j=1,2,3. Then f|UCZ.
Hence fEN,(u;, Gy, &) for some jc[l,s]. Since q(u;G,,u;0G)=¢, fG,cu;G,.
Setting h=u;'f|G, we thus obtain a K*-QC emtedding /: G,~G,, which belongs
to N,(id, Gy, &) and hence to 2. Then the K;-QC embedding /i, =y (h, 1): G,—~R"
satisfies the conditions /,|G,=id and |G\ G;=h|G,\G,. Define g: G-R" as
follows:

g(x) = f(x) for x€U\G;,

g(x) = u;(h(x)) for x€(GynU)UG,.
g(x) = v;(x) for xeG\T,.

Then g is a well-defined immersion. Since g=f in ¥, g is an embedding by Lemma
5.2. Since g is K, K;-QC, Case 1 is proved.

Case 2. n=4. Applying Theorem 4.4 with the substitution M—G, A—U,NG,
B—cl (G\U,), B'"—~G\V, fi~f, we obtain a QC embedding ¢,: G—~R" such
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that ¢,|U;=f|U; is K-QC. Hence this case reduces to Case 1 with U replaced
by U;. O

5.4. Quantitative QC Schoenflies theorem. Let O<r<1, and let f: B\ B"(r)>R"
be a K-QC embedding. Then there is a K'-QC embedding g: B"—~R" such that
gloB"=f10B" and K’ depends only on K, n and r.

Proof. Choose s¢(r,1). By the QC Schoenflies theorem, there is a QC
embedding f;: B"-R" such that f,(x)=f(x) for s=|x|=1. The theorem follows
from 5.3. O

5.5. Remark. Theorem 5.4 was proved by M. Néétdnen [N4&] in the special
case where f0B" is a sphere. A shorter proof for this case was given by D. B. Gauld
and M. K. Vamanamurthy [GVm,]. If n=3, it follows from the extension theo-
rem of [TV,] that K’ can in this case be chosen to be independent of ¥ [TV,, 3.14]. O

5.6. Nonconnected U. Suppose that U in Theorem 5.3 is not connected. Let
Z, be the family of all K-QC embeddings u: U~R" which have a QC extension
v: G—R". In the proof of 5.3 we used the normalization u(a;)=a;, which gave a
solid subfamily & c%,. This is not possible if U is not connected. However, there
are other restrictions which give rise to solid families. As an example we prove
the following result:

5.7. Theorem. Let G, U, V be as in Theorem 5.3 except that U is not necessarily
connected. Let a=0 and let f: G—~R" be an embedding such that f|U is K-QC
and such that either n4 or fis QC. Suppose that for each component U, of U,
the spherical diameter of (cl fU)N G is at least a. Then there is a K'-QC embedding
g: G—R" such that glV=fV and K’ depends only on G, U, V, K and o.

Proof. By Theorem 5.3 we may assume that U is not connected. Let & be
the family of all K-QC embeddings u: U-R" such that » has a QC extension
v: G—~R" and such that for each component U; of U, g((cl uU))\uG)=a where
q is the spherical metric of R". It suffices to show that & is solid, since the proof of
5.3 will then be valid also in the present case.

From [Vi,, 19.2] it follows that & is equicontinuous, and hence cl & is com-
pactin C(U, R"). Suppose that (f;)is a sequence in # converging to a map f: U—~R"
uniformly on compact sets. Let U; be a component of U. Then f|U; is either con-
stant or an embedding [Vd,, 21.3]. Assume that f|U, is constant. Choose a com-
pact set A U; such that no component of R™\ 4 meets both dU; "G and dU\G.
Then for every /, no component of R™ f;4 meets both of; U, nf;G and df; U\ f;G.
Hence there are disjoint sets ¥, and W, which are unions of components of R™\ f;4
such that ¢(W)=« and q(W,)=a«. This contradicts the fact that the maps f;|4
converge uniformly to a constant. Hence f|U; is an embedding for every com-
ponent U; of U. From this it easily follows that fis an embedding. [T
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5.8. Quantitative QC annulus theorem. Suppose that in Theorem 3.17,
f: A(a, b)uA(c, d)~R" is K-QC and that d(fS"""d))/d(fS" *(@)=M. Then
g: A(a,d)~R" can be chosen to be K'-QC with K’ depending only on a, b, c, d,
M, K and n.

Proof. Using an auxiliary similarity map of R® we may assume that Ocim f
and that d(fS"'(d))=1. Thus d(fS"'(@))=1/M. Choose a€(a,b) and
d,€(c, d). By Theorem 3.17, there is a QC embedding f;: 4(a, d)—~R" such that
fi=f in A(a, a)UA(d;, d). The theorem now follows directly from Theorem
57. O

5.9. Lipschitz versions. There are several ways to formulate the results of this
section in the category LIP. First, one can consider either L-bilipschitz or locally
L-bilipschitz embeddings. Second, one can use either the euclidean or the spherical
metric. The proofs are fairly easy modifications of the proofs given in the QC case.
As an example we give the bilipschitz version of Theorem 5.4:

5.10. Quantitative bilipschitz Schoenflies theorem. Let O<r<1 and let
f: BN\GB"(r)~R" be an L-bilipschitz embedding such that fS"~'(r) is contained
in the bounded component of R"™ fS"~Y. Then there is an L’-bilipschitz embedding
g: B"~R" such that g|0B"=f|0B" and L’ depends only on L, n andr. [

6. Quasihyperbolic metric and solid homeomorphisms

6.1. This section is a preparation for Section 7. We give some properties of
the quasihyperbolic metric of a domain in R". This metric has been considered in
[GP], [GO] and [Vu]. Our work partially overlaps with [Vu]. We also introduce
the solid homeomorphisms which are more general than QC homeomorphisms but
which share certain common properties with the latter class of maps.

6.2. Quasihyperbolic metric. In the rest of Section 6, D and D" will always
denote proper subdomains of R”, where n=2 is a fixed integer. For x¢D we set

en(x) = d(x,0D)™".

The quasihyperbolic metric k;, of D is defined by the element of length g, (x)|dx|.
This means that for a, b¢ D we have

kp(a, b) = inf [ gpds

where the infimum is taken over all rectifiable paths « joining @ and b in D. If oD
is an affine subspace T of R", kj, is equal to the hyperbolic metric ¢ of D, defined
in 2.4.
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Gehring and Osgood [GO, Lemma 1] proved that each pair of points a, b in D
can be joined by a quasihyperbolic geodesic «, that is,

kn(a, b) = [ epds.

If 02AcD with A compact in D, we define the relative size of A in D as
the number
. __d4)
() = Z 5Dy

Observe that if rp(4)<2 and if a, b€ A, the segment ab lies in D. Moreover, if
rp(4)<1, then 4 is contained in a ball in D.
We start with the following elementary and well-known property of R":

6.3. Lemma. Let ECR" be a bounded set, and let t=0 be such that |a—b|=t
whenever a,b€E and a=b. Then card E=x,(d(E)/t) where x,(6)=(l+ayn)"

Proof. Choose a closed cube Q of side length d(E) such that FcQ. Let k
be the integer for which k—1=d(E)Vn/t<k. Divide Q into k" closed cubes Q; of
side length d(E)/k. Then d(Q;)<t, and thus each Q; contains at most one point
of E. Hence card E=L". [

6.4. Lemma. Let u=>0 andlet ACD be a compact connected set with rp(A)=p.
Then there is a constant c=c(u, n)=1 such that each pair of points a, b€A can be
Jjoined by a path o in D such that 1(«)=cla—b|. Infact, one can choose c=x,(2+2u)/4
for all u and c=1 for pu<2.

Proof. Set t=d(A4,0D), and let a,bcA. If |a—b|<2t, we can join a and
b by a line segment in D. Suppose that |a—b|=2t. Since A4 is connected, the neigh-
borhood B(A4, t/2) is arcwise connected, Choose an arc C joining a and b in
B(A4, t/2). Let = be the natural ordering of C with a<b. Define points a=ay<
ay<...<a;=b of C by a;,;=max(CnB"(a;, 1/2)). Then |a;—a;|=t/2 whenever
0=i<j=s—1. Furthermore, d(C)=d(A4)+t=(1+p)t. Hence Lemma 6.3 implies
s=x,(2+2u). Let o be the broken line with vertices g, d;, ..., a,. Then a is in
D, and

() = st/2 = %,24+2wW)]a—bl/4. O

6.5. Lemma. Let u=>0 andlet ACD be compact and connected with rp(A)=u.
Then there is ¢;=c;(u, n)=1 such that

kD(aa b)d(AaaD) =c
a—b]

whenever a, b€ A and a=b. Moreover, lim,_ ,ci(u, n)=1, and c,(u, n) is increas-
ing in Q.

IIA

1
4]
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Proof. Set M=d(A) and t=d(A4, dD). Define r=r(u)€(0,1) by
r = min (u, 1/2).

Let D’ be the neighborhood B(A4, rt). Then M=put and rp(A)=p/r. By Lemma 6.4,
there is a path a joining @ and b in D’ such that [(x)=cla—b| with c=c(u/r, n).
Then

cla—b|

(I—-nt’

1A

, _ [ _ds
k.D(a’ b):JQDdS:/(l—r)t

This proves the second inequality of 6.5 with ¢;=c/(1—r). For p=1/2 we have
c;=1/(1—p), and hence ¢;~1 as p—0.

To prove the first inequality, let o be a rectifiable path joining a and b in D.
If imacD’, then

(6.6) fQDdSEI ds . |a—b|

t+M+rt — (I+p+rt’

a
If imad D', « has two subpaths a;, «, joining 4 and D\D’in D’. Since |a—b|=
M=ut, we obtain

f ds = j ds _ 2r 2r|a—b|
: p @S = t+M+rt — l+u+r — (I+p+rut’

it}

o Uay
Together with (6.6) this gives the first inequality of 6.5 with
¢, = (1+p+r) max (1, u/2r).
For u=1/2 we have ¢;=1+2pu, and hence ¢;,~1 as pu—0. O

6.7. Corollary. The quasihyperbolic metric of D is LIP equivalent to the euclidean
metric. O

6.8. Remark. Since c,(u, n)—~1 as p—0, the identity map i: (D, kp)—~(D, d)
is locally almost 1-quasisymmetric in the following sense: For every x€D and
e=0 there is a neighborhood U of x such that i|U is n-quasisymmetric in the sense
of [TV,] with n(£)=(1+¢)t.

Lemma 6.5 also shows that r(4) cannot be much smaller than the quasihyper-
bolic diameter kp(A) of A. More precisely, we have the following result:

6.9. Lemma. Let ACD be compact. Then

rp(A) = 2(efo™ —1).
If, in addition, A is connected,

kp(4) = ¢i(rp(A), n)rp(A).
Proof. The first inequality follows from the inequality

kp(a, b) = log (1+ep(@)la—bl),
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proved in [GP, (2.2)]. The second inequality follows directly from 6.5. See also
[Vu, 2.18 and 2.19. (4)]. O

6.10. Solid homeomorphisms. A homeomorphism f: DD’ is said to be solid,
if fand £~ are uniformly continuous in the quasihyperbolic metrics of D and D’.
We say that a homeomorphism f: D—~D’ is @-solid if ¢: [0, =)0, ) is a
homeomorphism and if

¢ (kp(a, b)) = kp (f(a), /(b)) = @(kp(a, b))

for all @, b€ D. From the convexity of the quasihyperbolic metric it easily follows
that f is solid if and only if f is ¢-solid for some ¢@. Moreover for every r>0 one
can choose ¢ so that ¢|[r, ) is linear (see the proof of Lemma 6.21).

F. W. Gehring and B. G. Osgood [GO, Theorem 3] proved that every K-QC
homeomorphism f: D—~D’ is ¢g-solid with

(6.11) @k (1) = c max (¢, 1%,

where a=KYA=" and c¢=c(K,n). On the other hand, a solid homeomorphism
need not be QC. For example, if f,g: D—~D’ are homeomorphisms such that g
is solid and f=g outside a compact set, then f is solid. The simple extension
Fy;: RPFA>R'F of a QC map f: R'—>R" considered in [TV,] is solid in Hrl=
int R%™* but not usually QC (see 7.1). The following theorem, which is closely
related to a result of Gehring [Ge, Theorem 4], shows, however, that quasiconfor-
mality can be characterized in terms of solidity:

6.12. Theorem. A homeomorphism f: D—D’ is quasiconformal if and only if
there is a homeomorphism @: [0, =)—~[0, =) such that the restriction of f to every
subdomain of D is @-solid.

Proof. If fis K-QC and if Gc D is a subdomain, then f|G is K-QC and hence
@x-solid with g as in (6.11). Conversely, suppose that f|G is ¢-solid for every
domain GcD. Let xéD. For r=0 we let L(r) and /(r) denote the maximum
and minimum of |f(y)—f(x)| over y€S" '(x,r)=S,. Set G=D\x and G'=
D'\ f(x)=fG. Then for sufficiently small r we have rs(S)=2 and L(r)/l(r)=
re(fS,). Since kg (fS,)=¢(ks(S,), Lemma 6.9 implies that L(r)//(r) is bounded
by a constant depending only on ¢ and n. Hence f is K-QC for some K=K(¢, n)
[Vd;, 34.2]. O

6.13. In the rest of this section we give alternative characterizations to the
solidity of a homeomorphism in terms of solid families of embeddings (see 3.8).
This explains the term. In Section 7 we show that for n=4 solid homeomorphisms
can be approximated by QC mappings which are bilipschitz in the quasihyperbolic
metric.
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By a cube in R” we always mean a closed n-cube with sides parallel to the coordi-
nate axes. For every cube Q, we let z, be its center and 2], its side length. Thus
O=zo+/4l". Let ap: R">R" be the affine map

OCQ(x) = ZQ“*‘;.,Qx.
Thus ay/"=Q. For t=0 we let Q(z) be the open cube apl"(t)=zo+Aol"(2);
the corresponding closed cube is then denoted by Q(z).
If DCR" is a proper subdomain and if l1<r=s, we let #}(r,s) denote the

family of all cubes Qc D such that Q(r)cD and Q(s) & D. Furthermore, we
set Ap(r)=Hp(r,r). If QcAp(r,s) and if 1=¢<r, then obviously

2tVn
r—t

(6.14) 2 00 =

s—t

6.15. Lemma. Suppose that 1=t<r=s and that QcAHL(r,s). Then
agll™(2): (I"(2), d)—~(D, kp) is cy-bilipschitz with c,=cy(t, r, s, 1).

Proof. Let c1=c1(2t1/ﬁ/(r—t), n) be the constant given by Lemma 6.5. If
x, y€I*(t), we obtain from 6.5 and (6.14):

faloal. zg0) = TR = S,

r—t

log(X)—ao)l _ _ Ix—yl
¢ d(Q@), D) e(s—t)Vn

Hence we can choose c,=max (c;/(r—1), cl(s—t)l/;—z). 0

kp (oo (%), %o )=

6.16. Notation. Let f: D—~D’ be a homeomorphism and let QD be a cube.
We set
db=d(f0. 00, o2 =T 1~ g,
dé QJ%Q
Thus B is an affine map of R", and f, is an embedding defined in ag™D.
If QcAp(r,s), this set always contains the open cube I"(r). Observe that

Jfo(0)=0.

6.17. Theorem. Let f: D—D’ be a homeomorphism. Then the following con-
ditions are equivalent:

(1) fis solid.
(2) Thereis r=>1 such that {follI": Q€A p(r)} is solid.
() If 1=t<r=s, then {fplI"(t): Q€A p(r,s)} is solid.

Proof. Trivially (3) implies (2). We show that (2)=(1)=(3).
Suppose that (2) is true. We first show that f is uniformly continuous in the
quasihyperbolic metric. Let ¢>0. By (2), there is M=>0 such that d(foI")=M



Lipschitz and quasiconformal approximation and extension 331

for all Q€A (r). This implies r,.(fQ)=M. By Lemma 6.5 we obtain

L _ kp(f@), f(®)dh _

(19 BV 7 R
for all a, b€Q, where ¢;=c;(M, n). By (2), there is ,€(0, 1) such that |f,(x)|=
g/c, whenever |x|=8, and Q€XA,(r). Let cy=c,(1,r,r,n) be the constant of
Lemma 6.15, and set 6=0,/c,. We show that kp(f(a), f(b))=¢ whenever a, bé D
and kp(a, b)=9.

Let Qcxy,(r) be the cube with center zo=a. By Lemma 6.15, kp(a, 0Q)=
1/¢s=d, and hence b€Q. Thus ay'(@)=0 and og'(b)=>bcI". By 6.15, |p'|=
cxkpla, b)=6,. Hence |fy(b")|=¢/c,. By (6.18) this implies

kp(f(@), f(b)) = il fo(B)] = &

Hence f is uniformly continuous.

We next show that f~! is uniformly continuous. Let §’=0. By (2) there is
&;>0 such that |fy(x)|=e, whenever Q€#;(r), xcI", and |x|=min (1, 6/cy).
We show that kp(f(a), f(b))=&,/c; for all a, béD such that ky(a, b)=9d".

Choose Q€ #p(r) such that zo=a. If b€Q, then az'(h)=>b"cI", and Lemma
6.15 implies |b'|=d"/c,. Hence |fy(b)|=¢,. By (6.18) this yields

kp (f(a), f(B)) = | fo()/ey = &yfey.
If ¢ Q, then (6.18) implies

kp (f(a), f(b)) = kp (f(a), f0Q) = d(0, fooI") e, = &)/cy.

Hence f~' is uniformly continuous.

Next suppose that (1) is true. Thus f is ¢-solid for some homeomorphism
@: [0, <)—>[0, <). We must show that the family ¥={foll"(t): Q€A p(r,s)} is
solid. Since f,(0)=0 and since I"(¢) is connected, it suffices to show that ¢ is equi-
continuous and inversely equicontinuous (see 3.8). Let &=0. For Q€Xy(r,s)
set Q’=0(t). Then (6.14) and Lemma 6.9 imply k,(Q")=c; forsome c;=c;(r, t, n).
Consequently, kp(fQ)=¢(c;). By Lemma 6.9 this yields rp(fQ)=2(e*“’—1)=
¢s. Hence, by Lemma 6.5,

o

1 _ k(@ o) _
G =" f@-rsor

for all a, b€Q’, where c;=c;(c4, n).
Let x, y€I"(r). Since df=d}, (6.19) and 6.15 imply

| fo)—fo(W)] = cikp (f(ag(x)), S (1))
= Ci@(kb(ae(x), ) o))
= c1p(c2lx—yl),

(6.19)

where cy=c,(t, 1, s, n). Hence ¢ is equicontinuous.
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We finally show that ¢ is inversely equicontinuous. Let =0, andlet x, yeI"(¢)
with |x—y|=45. We want to find a positive lower bound for |f,(x)—fo(»)], valid
for all Q¢ Ap(r,s). By (6.19) and 6.15 we obtain

| fo(0) —fo( = ke (flag(x)), g (1)) dy/ e dy
= @ Y(/cy) dhy/cidhy.
Hence it suffices to find a positive lower bound for dj/d}. First, we have
dljdh=rp(fO)rp(fQ). Here rp(fQ)=c,. Hence, if rp(fO)=1, djjd)=1/c,.
Suppose that rp(fQ)<1. Then Lemma 6.9 implies
rp(fQ) = kp (fO)/es(1,n) = ¢ 7 (kp(Q))/ey (1, 1),
where, by Lemma 6.9 and by (6.14),

kp(Q) = log (14 rp(0)/2) = log (1+1/(s—1)).
The theorem is proved. [J]

6.20. Remark. The proof of Theorem 6.17 shows that a quantitative version
is also true. Thus, if f: D—D’ is a ¢-solid homeomorphism and if 1=t<r<s,
then {folI"(t): Q€A y(r, s)} is contained in a solid family & of embeddings
I"(t)~R", depending only on ¢, ¢, r, s and n. Conversely, if & is a solid family
of embeddings of 7" and if {f,|[": Q€A (r)}CF, then fis ¢-solid with ¢ depend-
ijng only on & and r.

6.21. Lemma. Suppose that a homeomorphism f: D—D’ is locally L-bilipschitz
in the quasihyperbolic metric. Then f is L-bilipschitz in the quasihyperbolic metric.

Proof. It suffices to show that f is L-lipschitz. Let «, b€éD, and choose a
quasihyperbolic geodesic joining @ and b. Divide o to subpaths o, ..., a, such
that fis L-bilipschitz on each im ;. Let a;_, and a; be the end points of «;. Then

3 kD' (f(aj— 1)a f(aj))

1A

ko (f(a), 1(b))

J

= L Z; kD(aj_l, aj)
Jj=

= Lkp(a, b). O

7. Lipschitz approximation of selid and QC homeomorphisms

7.1. In this section we first show that if n=4, every solid homeomorphism
D—D’ can be approximated arbitrarily closely in the quasihyperbolic metric by
homeomorphisms which are bilipschitz in the quasihyperbolic metrics of D and D’
(and hence QC). The method is a variation of the proof of the extension theorem
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in [TV,]. In fact, in [TV,] we first extended a QC homeomorphism f: R"—~R" to
a homeomorphism F,: R\"'—~R'*' by

Fy(x, 1) = (f(x), max {| f(») —f(0)|: yeB"(x,n}).

Then the restriction of F, to H=int R%"* is solid but not necessarily QC. We
constructed an approximation F of F H which is bilipschitz in the hyperbolic
metric and hence QC. Since kg(F, F;)<o, F and F, have the same boundary
values, and thus Fuf is the desired extension of f.

The proof in [TV,] was based on the qualitative part of Lemma 3.9 of the present
paper. However, it is possible to simplify the proof by making also use of the quan-
titative part of 3.9. Indeed, it is not necessary to introduce the points z” in [TV,
(2.8)], and Carleson’s finiteness idea is only needed in the approximation of the
maps F,|Q, not in the glueing process. We shall use this simplification in the
proof of Theorems 7.4 and 7.18.

As an application of our result we extend to higher dimensions a result of
Ahlfors concerning QC reflections in R2.

In general, the dilatation of the approximating homeomorphism depends on
the closeness of the approximation. However, we show in 7.18 that every K-QC
homeomorphism D-—D’, n#4, can be approximated arbitrarily closely in the
majorant topology by LIP homeomorphisms which are K;-QC for some K;=
K, (K, n).

7.2. A cube decomposition. Let D be a proper subdomain of R". We define
a decomposition 2 (D) of D into closed cubes as follows. For k€Z let £ (k)
be the decomposition of R" into closed n-cubes of side length 2* and with vertices
in 2¥Z". Set L=u{Z(k): kcZ} and H°(D)={QcZ: Q(3)cD} (see 6.13 for
notation). Each cube of #°(D) is contained in a maximal cube of (D). Let
A1(D) be the family of all maximal cubes in 2#'°(D). We divide each cubte of
#1(D) into N=2" cubes bisecting the sides of Q. This gives the family % (D)
of cubes in D.

We divide " (D) into disjoint subfamilies 5 (D), ..., #y(D) as follows: Divide
I" into cubes Q;, ..., Qy bisecting the sides. Then set #;(D)={x,Q;: Q€A (D)}
where o, is as in 6.13.

Similar decompositions have been used, for example, by H. Whitney [Wh, p. 67],
E. Stein [St, p. 167] and M. Kiikka [Kk, p. 7]. The following properties of £ (D)
are readily verified (notation as in 6.13):

7.3. Lemma. (1) v (D)=D.

Q) If Q,Rex (D), Q#R and QnNR#0, then intQnint R=0 and
AolAg€{1/2,1,2}.

(3) # (D) H(5, 19).

@) If Qe 4 (D), then 1/1=ry(Q)=Vn/2.

(5) If O, ReA;(D), then QnR=0. O
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7.4. Theorem. Let n=4, let ¢=0, and let ¢: [0, ©)—~[0, <) be a homeo-
morphism. Then there is a number L=L(p, e, n)=1 with the following property:

Suppose that D and D’ are proper subdomains of R and that f: D—~D" is a
@-solid homeomorphism. Then there is a homeomorphism F: D—D’ such that

(1) kD'(st)éaz

(2) F is L-bilipschitz in the quasihyperbolic metrics of D and D’,

(3) Fis L*2.QC.

Proof. The proof of Theorem 7.4 will te completed in 7.11. From now on,
we assume that #, €, ¢ are given as in the theorem and that f: D—~D" is ¢-solid.

7.5. Lemma. There is M =M (¢, n) such that
1M = dbjdf =M, df=Md(fQ(2),dD’)
whenever Q, REX (D) with Qo R=0.

Proof. By 6.9 and 7.3.(4), kp(Q)=M, for some M,=M,(n). Hence k(fQO)=
@o(M,). Since dj=dl+d(fO)=(1+rp(fQ))d}, Lemma 6.9 implies df=Md]
with M=2e°™v, By symmetry, dj=Mdj. The last inequality follows from the
fact that Q(2Q)c U{Re A (D): RnQ=0}). O

7.6. Lemma. There is a number cy=c;(p, n)=1 such that
BLIfAQ2): (fQQ2), kp) ~ (R", d)
is cy-bilipschitz for every Qe A (D).

Proof. Set A=fQ0(2). Since Q(2)c#;(5/2,15/2), 6.9 and (6.14) imply
rp(A)=M,=M,(p,n). Hence we can apply Lemma 6.5 with ¢;=c;(M;, n). For
a,bc A we obtain

1B4(a)—Bh(b)| = la—b|/df = cikp (a, b)d(A4, 0D")/d} = ¢1kyp (a, b).
By 7.5 we also get
B4 (a)—BL(b)| = kp.(a, b)d(A, dD")[c, d} = kp (a, b)/Mc, .
Hence the lemma is true with c;=Mc,. O
7.7. Constructions. We set
H¥(D) = H;(D)U ... U A(D),
Vi(D) = u{Q(1+27""1): Qe A (D)},
Wi(D) = u{Q(1+277=%): QeA* (D)}
with Vo(D)=W,(D)=0. If QcA(D) and 1<1=3/2, we set
VoD, t) = I"(t)nog'Vi_1(D),
Wo(D, 1) = I"(t) noag "W, (D).
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Then for every 7€(1, 3/2] there is a finite family S(n, #) such that V,(D, t) and
Wo(D, t) belong to S(n,t) fcr every demain D and for every Q€ (D).

By 6.17, 6.10 and 7.3.(3), there is a solid family ¥=%(p,n)CE(I"(2); R")
such that f,|/"(2)€% for every ¢-solid homeomorphism f: D—~D’ and for every
Qe (D).

We apply Lemma 3.9 with U=I"(3/2), U'=I1"(4/3), V=V,(D,3/2), W=
Wo(D, 3/2) for Qe (D), and with & ={g|I"(3/2): gc¥}. Since the family
S(n, 3/2) is finite, we obtain:

7.8. Lemma. Let ¢&'=0 and L=1. Then there are positive numbers
0=0(¢, o, n)=¢" and L'=L'(¢', ¢,n, LY=L with the following properties:

Let D be a proper subdomain of R", let Q¢ (D), let h: Vy(D,3/2)—~R" be
a locally L-bilipschitz embedding, and let g€ F be such that d(g, h; V (D, 3/2))=4.
Then there is a LIP embedding h': 1"(3/2)—~R" such that

() d(I, g; 1"(4/3))=¢,

2 W'=h in Wy(D,4/3),

(3) W|I"(4/3) is L'-bilipschitz. O

7.9. Constructions. Since ¥ is solid, there is a number g=g(¢,n)>0 such
that |g(x)—g(»)|=q whenever g€¥% and x,y€el"(7/4) with |x—yp|=1/8. Let
e, =¢3(3/2,5,15,n), cy=c3(p,n) and M=M(p,n) be as in 6.15, 7.6 and 7.5.
Define numbers dy=dy_;=...=06,>0 by Jy=min (q/(M+2),¢/c;) and ;=
6(d;, ¢, n)/M where 6( ) is as in 7.8. We also define numbers L,=...=Ly by
Ly=1 and L;=cyc3L'(d;, ¢, n, cac3L;_,), where L’( ) is as in 7.8. Observe that
the sequences (dy, ..., 0y) and (L, ..., Ly) depend only on ¢, n and e. We show
by induction that the following lemma is true for every integer j€[0, N]:

7.10;. Lemma. There is an embedding F;: V;(D)~D’" with the following prop-
erties:

(1) d(F;,f; Q(1+277"Y)=6,d}) for every Q€A} (D).

@) F,0(1+27"Cf0(3)2) for every QA7 (D).

(3) F;is locally L;-bilipschitz in the quasihiyperbolic metrics of D and D’.

Proof. Since V,(D)=0, 7.10, is true. Suppose that 7.10,_; is true. Thus we
have an embedding F;_;: V;_,(D)~D’. We define F;(x)=F;_,(x) for x¢ W;_(D).
Let Qe (D). Then follI"(3/2)€F. Set ho=PIF; 100V (D, 3/2). We first show
that d(hg, fo; Vo(D, 3/2))=6(9;, ¢, n). Let x€V,(D, 3/2). Then x€oz'R(1+27)
for some Re#* (D) with RnQ#0. By 7.5 and 7.10;_; we obtain

lhg () —fo ()l = | F(etg () — Fy -1 (o0 (%)) /4
= M5j..1 - 5(5j’ ®, n)'

Hence we can apply Lemma 7.8 with g=f,, h=h, and &=¢;. We obtain a LTP
embedding /: 1"(3/2)~R" such that (a) d(hg,fo; I"(4/3))=6; and (b) hy=hgy
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in Wy(D, 4/3). By 6.15 and 7.6, hy is locally cyc ;4 -bilipschitz in the euclidean
metric. Hence /p|I"(4/3) is Lj/cycs-bilipschitz. Setting F =B thpagt in
Q(1+277"%) we obtain a well-defined map F;: V;(D)~R". We show that F;
satisfies the conditions (1), (2), (3) and that F; is injective.
Let Qex (D). If Qexj (D), (1) follows from 7.10;_,. If QeA;(D),
we obtain
A(F;, f; QU+2-T-1) = dbd(hp, fp; 1"(14+279-D) = §;d§.

To prove (2), let again Q€A (D). If Q<4 (D), (2) follows by induc-
tion. Suppose that Q€ #;(D). Then d(hy, fo; I"(4/3))=0;=0y<gq. By the choice
of g, this implies h&]"(1+2—j‘1)cfQI”(3/2). Hence (2) is true. Observe that (2)
implies im F;CD’.

If Qe (D), F;is locally L;-bilipschitz in Q(1+27/~% by induction:
If Qc;(D), then 6.15, 7.6 and (2) imply that F;|Q(1+27/7") is L;-bilipschitz.
Hence F; is a locally L;-bilipschitz immersion. We finally show that F; is injective.
We know that F;|Q(1+2777") is injective for every Q€[ (D). Moreover, if
0, ReA (D) and QN R=0, then (2) implies that

F,0(1+277 ) A F;R(1+277"Y = 0.

Hence it suffices to show that F;(x)#F;(y) whenever j=2, x>y, x€Q(l +2797h
and y€R(1+2797%) where Q€X;(D), REA[ (D) and QN R=0. The equality
F;=(B))hpag* is valid in Q(4/3)nV;(D). Hence we may assume that y ¢ Q(4/3).
By the choice of ¢, we have d( f(ag"(x)), fo0I"(5/4))=¢. Hence | f(x)—f(»)] =qd}.
By (1) and 7.5 we obtain

|F;(x) = F;(0)| = 1 () —fO) = | F; ) = f ()l = | E;(») ()
= qdf—0,df—3;d%
= df(g—(M+1)8y) = dfoy = 0. O

7.11. Completion of the proof of Theorem 7.4. We show that the theorem is
true with L=Ly, defined in 7.9. Let f: D—~D" be ¢-solid. We show that the
map Fy of 7.10y is the required F. First, Fy is an embedding of D into D’, and
Fy is locally Ly -bilipschitz in the quasihyperbolic metric. To prove the condition
(1) of Theorem 7.4, let x¢ D. Choose Q¢4 (D) containing x. Then 7.10. (1) yields

| Fy(x)—f(x)| = dyd} = edf/cs.

By 7.6 and 7.10. (2), this implies kp(Fy(x), f(x))=e. Hence (1) is true. Moreover,
(1) implies that Fy is a homeomorphism of D onto D’.

We already proved that Fy is locally Ly -bilipschitz in the quasihyperbolic
metric. By 6.21, Fy is Ly -bilipschitz.

To prove that Fy is L¥7%-QC, it suffices to show that the linear dilatation
H(x, Fy) isatmost L} [Vi,, 34.2]. This follows from (2) and from Remark 6.8. O
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7.12. Corollary. Let n=4, let ¢>0 and let K=1. Then there is L=
L(K, &, n)=1 such that if DCR" is a proper subdomain and if f: D-D’ isa K-QC
homeomorphism, then there is a homeomorphism F: D—D’ such that

(1) kp(F, f)=e,
(2) F is L-bilipschitz in the quasihyperbolic metrics of D and D',
(3) Fis L*%QC. O

7.13. Remark. It follows from Theorem 7.4 that solid homeomorphisms and
QC homeomorphisms have similar boundary properties, at least for n=4. For
example, if b is an isolated boundary point of D and if f: D—~D’ is solid, then f
has a limit " at b, and b’ is an isolated boundary point of D’. Furthermore, let
H"=int R",, and let f: H"—~H" be solid. The f can be extended to a homeo-
morphism g: R —R", and the induced boundary map g|R"~* is QC. Itis possible
to give direct proofs for these and several other results on solid homeomorphisms.
These proofs are also valid for n=4. Cf. [Th, 5.9.6].

7.14. Quasiconformal reflections. Let E be a closed connected set in R” such
that R"™\E has exactly two components D; and D,. A homeomorphism f: R"~R"
is said to be a reflection in E if f|E=id and fD,=D,. Then fD,=D;,, fis sense-
reversing, and dD;=E=aD,. If f is a reflection in E, we can always find a reflec-
tion g in E which is also an involution, that is, gg=id. For example, we can choose
g=(f1D) v (ST |Dy).

L. V. Ahlfors [Ah, p. 80] proved that if f: R?*~R? is a QC reflection in E,
there is a reflection F in E which is bilipschitz in the euclidean metric. We shall
extend this result for all dimensions #n7#4.

On the other hand, Ahlfors [Ah, p. 75] also proved that if E admits a QC reflec-
tion, Euc is a QC circle. (By a classical result of L. E. J. Brouwer, it is always a
topological circle.) This result cannot be extended to higher dimensions. Indeed,
for every n=3 there is a QC reflection f: R"—>R" in a set E such that Euee is
a topological sphere but no nonempty open subset of E can be quasisymmetrically
embedded into R*~*. See [Tu,, Example 2].

7.15. Theorem. Suppose that n#4 and that f: R"—~R" is a K-QC reflection
in ECR". Then there is a reflection F: R*—~R" in E such that F is L-bilipschitz
in the euclidean metric with L depending only on K and n.

Proof. Let D,, D, be the components of R™\E, and let f;: D;~D, and
fo: Dy=D; be the K-QC (sense-reversing) homeomorphisms defined by f. Applying
7.12 with ¢=1 we find homeomorphisms F,: D;—~D, and F,: D;—~D; such
that kbs(Flafl; D) =1, ky (Fy, fo; Do) =1, and such that F; and F, are L, -bilip-
schitz in the quasihyperbolic metrics of D; and D, with L;=L,(K, n). Then F=Fu
F,u(id|E) is a reflection in E.
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For x€R" and r=0 we let as usual L(x,f,r) and [(x,f,r) denote the
maximum and minimum of |f(y)—f(x)| over y€S" '(x,r). Then there is H=
H(K,n) such that L(x,f,r)=HI(x,f,r); see, for example, the proof of [Vi,,
22.3]. We show that F is HelL, -bilipschitz, ¢=2.7182..., in the euclidean metric.
By Lemma 2.2, it suffices to show that

(7.16) L(x, F) = HeL,, L(x, F™) = HelL,
for all x€R".

Let first X€R"™\E, say x€D;. Set r=d(x, E), r'=d(f(x), E), r"=d(F(x), E).
Choose y and z in E such that |y—x|=r and |z—f(x)|=r’. Seiting s=|x—z]
we obtain

r=1f)—yl =L, fir) = Hl(y,f,r) = Hr,
P =|f(x)—z| = (z,f,s) = L(z,f,s)/H = s/H = r/H.
Furthermore, since sz(F (x), f(x))=1, [GP, (2.1)] implies

Fle=r"=er,

and (7.16) follows by Lemma 6.5.

Next assume x€E. Let r=0 and let |y—x|=r. If yeD;, |[f())—x|=
HI(x, f,r)=Hr. Since k, (F(»),f(»)=1, [GP, (2.2)] implies |F(y)—f(y)|=
(e—1)d(f(»), E)=(e—D|f(»)—x|=(e—1)Hr. Hence |F(y)—x|=eHr, which
implies the first inequality of (7.16).

Similarly, |/(y)—x|=L(x,f, r)/H=r|Hand [F(3)=f()|=(e—)d(F(y), E)=
(e—1)|F(y)—x|, which implies |F(y)—x|=|f(y)—x|/e=r/He, and we obtain the
second inequality of (7.16). [J

7.17. Approximation by LIP homeomorphisms. In Theorem 7.4 we approxi-
mated a solid homeomorphism f: D-D’ by a homeomorphism F which was
bilipschitz in the quasihyperbolic metric. We shall next give a related result which
is weaker in two respects: (1) fis supposed to be K-QC and not only solid, (2) F
is only locally bilipschitz. On the other hand, it is stronger in the following respects:
Fis K;-QC with K,=K,(K, n), (2) the approximation is in the majorant topology
and not in the uniform topology of the quasihyperbolic metric, (3) D can be the
whole space R”, and (4) it is strongly relative. Since the proof is a modification
of the proof of Theorem 7.4, we shall omit some details. The case 7=3 was proved
by M. Kiikka [Kk] who showed that in this case F can be chosen to be PL.

7.18. Theorem. Let D be a domain in R", n=4, let U be an open set in D,
and let &: U—R* be continuous and positive. Then for every K-QC homeomorphism
f: DD’ there is a homeomorphism F: D—~D’ such that

(D) |F(x)—f(x)|=¢e(x) for every xcU,

) F=f in D\U,

(3) F|U is a LIP embedding,

(4) Fis K, -QC with K, depending only on K and n.
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Proof. The theorem reduces easily to the absolute case U=D. Indeed, in
the general case we first replace e(x) by min (e(x), d(x, dU)) and then apply the
special case in each component of U. We obtain a K;-QC LIP homeomorphism
F;: U~fU which can be extended by f|D\U to a homeomorphism F: D—D’,
which is K,-QC with K,=max (K, K;) [V4,, Theorem 2].

From now on, we suppose that U=D and that f: D—D’" is a K-QC homeo-
morphism. We may assume that e(x)=d(f(x), 0D’) if D’#R" and that &(x)=
(14 £(x)])~~. We replace the cube decomposition 2" (D) of 7.2 by another decom-
position # (D) which also depends on fand &. Let & be as in 7.2, and let #(D)
be the family of all maximal cubes of % satisfying the conditions Q(3)cD and
d(fQ(3))=min ¢0(3). Dividing each cube of #'(D) into N=2" subcubes by
bisecting the sides we obtain the family 2 (D). It has the following properties:

(1) u# (D)=D.

(2 If Q,Re# (D), Q%R and OnNR#P, then intQnint R=P, and
AolAr€{1/2, 1, 2}.

) If Qex# (D), Q(5)cD.

@ If xcQeH (D), d(fO)=e(x).

We divide # (D) into subfamilies 3, (D), ..., #y(D) as in 7.2, and set #; (D)=
A (D)v...uH;(D).
We next show that there is M =M (K, n) such that

1 _d(fO) _
7 = dgm) =M

whenever Q, RE# (D) with QN R>0. We may assume that O R. By symmetry,
it suffices to prove the second inequality. Since Q(5)cD, it follows from [Viy,
2.4] that f|0(3) is y-quasisymmetric with some » depending only on K and n. Let

z€Q. Then ]z—leélzR-—zQ[ﬁ Since zx€Q(3), this implies |f(2)—f(zp)|=
n(Vn)| f(zr) —f(zo)], and hence
d(f0) = 2n(Vn)1/(z0) —f(z0).
Let y be a vertex of R. Then |zo—zgx|=3|y—zg|, which implies
|f(z9) —f(zp)l = n(3)d(fR),

and we obtain (7.19) with M=2n(Vn)n(3).
We let o, be as in 6.13 but replace fJ by the affine map

(7.19)

Fo — z—1(zg)
=370

and set fo=7)f%y. Let % be the family of all K-QC embeddings g: I"(2)—-R"
such that g(0)=0 and d(gI™)=1. The compactness properties of QC maps imply
that %, is solid. Let F={g|l"(3/2): g€%}. Using the notation of 7.7 we apply
Lemma 3.9 and obtain the following variation of Lemma 7.8:
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7.20. Lemma. Let ¢'>0, K=1 and K=1. Then there are 5=65(¢, K, n)>0
and K'=K'(¢’, K, n, K)=K with the following properties:

Let Q¢ (D), let h: Vy(D,3/2)~R" be a K-QC LIP embedding, and let
g€ Fy such that d(g, h; Vo(D, 3/2))=06. Then there is a LIP embedding h': I"(3/2) - R"
such that

W) d(i, g: I"(43)=¢,

(2) W'=h in W,y(4/3),

3) W|I"(4/3) is K’-QC. O

We introduce the numters g and dy,...,8, as in 7.9, where now dy=
min (1, ¢/(M+2)) and M is the constant of (7.19). Moreover, we set K,=1 and
K;=K'(%;, K,n, K;,_;) for 1=j=N. Corresponding to Lemma 7.10; we prove for
every j€[0, N1:

7.21;. Lemma. There is a LIP embedding F;: V;(D)—~D’ with the following
properties:

(1) d(Fj, f/; QU+279"9)=6,d(fQ) for every Q€H#; (D).

() F;Q(1+277"1CfQ(3/2) for every Qc#; (D).

Proof. Assume that 7.21;_; is true. Define F;(x)=F;_,(x) for xé W;_ (D)
Let Qco#;(D) and set ho=y§F;_;04|Vo(D, 3/2). By (7.19) we obtain

d(hg, fo; Vo (D, 3/2)) = 6(5;, K, n).

Hence we can apply 7.20 with the substitution &'—6;, K—~K, K—~K;_,, h—hg,
g—foll"(3/2). We obtain a LIP embedding hy: I"(3/2)~R" and define F,=
(09 thpagt in Q(142777". As in 7.10, we can verify that F;: V,(D)~D’ sat-
isfies the conditions (1), (2), (3) and is a LIP embedding. [J

The proof of Theorem 7.18 can now be completed as in 7.11. The desired map
Fis Fy, which is Ky -QC with Ky depending only on K and #. Indeed, if x& Q€ 5# (D),
it follows from the definition of 5 (D) that

|[Fy(x)—f(0)] = 6yd(fQ) = d(fQ) = e(x). D
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