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1. Introduction

D. Sullivan has recently given an important variation of the theory of
R. D. Edwards and R. C. Kirby [EK] on the deformation of embeddings. The
essential difference between these theories is that Sullivan replaces the n-torus 7'
by a more complicated closed manifold Q" and the natural covering map e: Ro*Tn
by a covering map e': B"*Qn where -Bo is the open unit ball in Å,. Sullivan's
theory is particularly useful in the categories of quasiconformal and lipschitz maps.
For example, he proved in both categories the annulus theorem in all dimensions.
Moreover, he established approximation theorems, which implied the existence of
a lipschitz structure on every topological z-manifold without boundary for nl4,
and also the hauptvermutung for these manifolds in both categories. For a<3
these results can also be obtained by PL methods, see [TuJ and [VäJ.

In this paper, we first develop Sullivan's theory for manifolds which may have
boundary. For example, we prove in both categories the hauptvermutung for
n -manifolds with boundary, n*4,5. In the quasiconformal case our proof makes
use of the extension of a quasiconformal map from R'to Ä!I1, proved by the authors
in [TVl with the aid of Sullivan's theory.

Since the presentation of [Su] is very sketchy, a large part of this article (most
of Sections 2 4) is devoted to a fairly detailed exposition of Sullivan's theory.
We take on faith the most difficult part, namely the existence of the Sullivan groups
(defined in 2.9), and we assume that the reader is familiar with the basic ideas of
[EK], but otherwise our presentation is reasonably self-contained.

We also keep track of the dilatations and the bilipschitz constants of the maps,
and obtain quantitative versions of Sullivan's results. These are applied in Section 5

to give estimates for these constants in certain extension problems. For example,
we obtain a dilatation estimate in the quasiconformal Schoenflies theorem, pre-
viously known only in a very special case. In Section 7 we consider the approxima-
tion of quasiconformal and certain more general homeomorphisms by homeomor-
phisms which satisfy a bilipschitz condition, either locally in the euclidean metric
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or globally in the quasihyperbolic metric. This metric and ihe

a solid homeomorphism are considered in detail in Section 6.
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2. Basic constructions

2.1. Notation and terminology. The one-point compactiflcation of the euclidean

Å'X0 of .R':rR'XÄ'--. Let (X,d)be a metric space. If aQX and r>0, we

let Bo(a,r) or B(a,r) denote t]le open ball {x€X: d(x,a)=r). More generally,

if g*AcX, wewrite B(A,r):{xQX: d(x,A)-r} where d(x,,4) is the distance

between x and A. If A and B are nonempty subsets of X, we let d(,4,.8) denote the

distance between A and B and d(A) the diameter of A. If x:Rn, we let ddenote

the standard euclidean metric, and write

B"(x,r): B(x,r), B(r): 'B(0, r), Bn : B(0, l),

s'-'(r, r): LB(x, r), s'-'(') : s'-r(0, r), ^s'-1 : '§'-1(0, 1)'

The closed unit cube [-1, 1]' of Å'is denoted by 1", andthe open cube (-r,r)n
by I"(r). However, we set 7:[0, 1], although 11:[-1, 1]. The upper half space

of Rnis Äi:{x€R': r,=0}. If ,4 is anysubset of Å', we set A*-AoR"+'
lf f and g are maps into a metric space (I., /), defined in a set ,4, we write

d(f,e;,4) : sup {a(f@),g(x)): xe .a}.

Let (X,d) and (Y,d') be metric spaces. A map f: X*Y is ZJipschitz,

tr>O, if
d' (f(*), f(Y)) = Ld(x, Y)

for all x,y€X. If L>l and if, in addition,

d'(f(x),fQ)) = d(x, v)lt,

/ is Z-bilipschitz. If each point x of X has a neighborhood U such that flU is

lipschitz, Z-lipschitz, bilipschitz or Z-bilipschitz, f is said to be locally lipschitz,

locally Z-lipschitz, locally bilipschitz or locally .L-bilipschitz, respectively. We let

LIP denote the category of metric spaces and locally lipschitz (: LIP) maps. A locally

bilipschitz embedding or immersion is said to be a LIP embedding or a LIP immer-

sion, respectively.
Let AcR" beasetsuchthat AcclintA. If n>2, an embedding f: A*R"

is said to be K-quasiconformal or K-QC if its restriction to each component of

int,4 is K-QC in the sense of [väJ. lf n:1, / is said to be K-quasiconformal if
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its restriction to each component of intr4 is K-quasisymmetric [LeYr, II.7.l]. We

allow the possibility thatf is sense-reversing. The concept "locally quasiconformal"

(LQC) is defined in the obvious way.
We can define LQC manifolds and LIP manifolds in the well-known manner

using atlases (see also [LuV, § 3] and [LT, 4.6). Observe that every LIP manifold

is an LQC manifold.
lf AcB, we let id denote the inclusion map A*8.
If X and Y are metric spaces, we shall consider the space C(X, n of all con-

tinuous maps I X* I endowed with the compact-open topology. We let H(X)c
C(X, X) denote the group of all homeomorphisms f: X*X.

If ,4 is a subset of a topological space X, we let "neat A" mean "in a neigh'

borhood of A".
If AcR", if f: A*Rp isamapandif xs(A is anaccumulationpointof 24,

we set
tf(x)_f(xs)l

L(xo,f): tim*3pffi.

If a is a rectifiable path in R", l(u) will denote its euclidean length.

The I -dimensional case needs often a special treatment, since the properties of
l-dimensional quasisymmetric maps are different from the properties of higher'

dimensional quasiconformal maps. On the other hand, it is usually easy to give

a direct proof for the l-dimensional case. To avoid technicalities, we make the

lbllowing conuention: The symbol a is always an integer at least two, unless other'

wise stated.
The following elementary lemma is well-known (see, for example, [Fe, p. 64]):

2.2. Lemma. Suppose that A is a conuex set in Rp and that f: A*R^ is a map

such that L(x,f)<Lo for euery x€A. Tlrcnf is Lo-lipschitz. a

2.3. Möbius tansformatiors. We let GM(m) denote the group of all Möbius

transformations of R'. Thus GM(m) is generated by similarity maps and inversions

in spheres (in fact, by inversions alone). The image of a p-sphere under a Möbius

transformation is always a p-sphere, if we regard a p'plane as a p-sphere through -.
We let Möb. denote the subgroup of GM(m) consisting of maps g such that

gB^:B*. Then Möb. is generated by inversions in all orthogonal spheres of
S'-1. The group of all sense-preserving maps in Möb- is written as Möbj. There

is a natural topology in GM(m), which can be defined in several ways. It is the

l.opology of pointwise convergence and also the compact-open topology. More'
over, the induced topology of Möb- can be defined by the metric d(f, S; B^).

2.4. Hyperbolicmetric. Let 0€p€m-1, and let ZcR' be ap'plane (affine

subspace). The hyperbolic metric o, of R'\7 is defined by the element of length

dor,:ldxlld(x, O. This means that if a,å(R\7, or(a,b) is the infimum of the
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line integrals

(2.s) f ldxlJM
taken over all rectifiable paths a joining a and b in R'\7. If ä is a half space

whose boundary contains T, and if a,b(H, it is sufficient to consider paths a
in ä. If p:m-|, or(a, b) is deflned only if a and å belong to the same component
of R'\L The metric o. is invariant under the Möbius transformations g which
respect T,thatis, gT:7. Indeed, this is easy to verify if g is a similarity or if g(x)-
xllxlz, and the general case follows from these.

Let ,ScÅ' be a p-sphere of radius r. The hyperbolic metric o" in R'\S
is defined as follows: Choose h(GM(m) such that å^S is a p-plane Z. Then

o s(a, b) : o r(h (a), h (b)).

lf p:7n-1, ot(a,b) is again defined only if a and å belong to the same component
of R'\,S. The metric o" is independent of the choice of h, and it is invariant under
the Möbius transformations which respect ,S. It can also be deflned explicitly by
the element of length

(2.6)

where

dot(x) -
2r ldxl

d(x, S)D(x, S)'

D(x, S) : max {lx-Yl: Y€^S}.

In particular, if ,S:,S'-1, the hyperbolic metric of .B'is defined by

.t 
1dxldo5@):fu.

The formula (2.6) follows by direct computation. Howeler, we shall only need
the fact that dor(x)d(x, S)lldxl is bounded away from 0 and - near ,S. We shall
often omit the subscript ,S from o" if there is no danger of misunderstanding.

If p:7n-1, a hyperbolic ball B.(x, r) is always a euclidean ball or a half
space or the exterior of a euclidean ball.

2.7. Möbius coordinates. Let m and k be positive integers, and set n:mlk.
For every z€R'\,S'-l we define the Möbius coordinates ((B^ and 4€Rk as

follows: There is a unique orthogonal /c-sphere Sf of S'-1 through z which inter-
sects B- orthogonally. (Again, ft-planes are considered as ft-spheres through -.)
Then ( is the unique point of Sf n.B'. Furthermore, there is a unique zz-sphere

§f through ,S--1 and z. Let C be the z-component of ,Sf\,S'-l. Then (0,4) is
the unique point of C^(0X.R&). Each point z is uniquely determined by its Möbius
coordinates, and we write z:l|ril. All this is easy to see if m:k:l, and the
general case follows by considering two-dimensional sections through O, z, arrd
the orthogonal projection of z in J?'. If z€S--1, we set €:2, but4 is not defined.
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2.8. Lemma. Let g€Möb^. Then the mop g* defined by S*14711:[SG),tl)
ls lz Möbr.

Proof. If g is a reflection in an orthogonal (z-l)-sphere of ,S'-1, then g* is

the reflection in the (n - l)-sphere with the same center and the same radius. Hence

g*€Möb,. The general case follows from this. n
2.9. Sulliuan groups. Let G be a subgroup of Möbj. We consider G as a tran§-

formation group of .Ba. Assume that G has the following properties:
(1) c is discrete.

Q) G acts freely on ,B'. This means that g(x)#x whenever x€B^, g€G
and g*id.

Each orbit Gx, x€B^, is discrete and closed in B^. Let Qbe the orbit space

B*lG with the quotient topology. The natural map zr0: B**Q is a covering map,

and Q is an z-manifold without boundary. Moreover, zo defines a DIFF (and

hence LIP and LQC) structure on Q. The hyperbolic metric on of Q is defined

as follows: If p,q(Q, or(t,t) is the hyperbolic distance of 211(p) ar,d r;t(q)
as subsets of B-. Then zo: B^*Q is locally a hyperbolic isometry. Indeed, set

r(x):o(x,(Gx\x)/a. Then zo embeds B,(x,r(x)) isometrically onto

B"o(no@), r(x)).

The LIP structure of p is also defined by the metric oe. Each pair p, eCQ can be

joined by a hyperbolic geodesic.

We say that G is a Sulliuan group if , in addition, it has the following two prop-
erties:

(3) B-IG:Q is compact.
(4) lt q(Q, there is a LIP immersion a: p\4*"pn.
The orbit space Q will be called a Sulliuan manifold. By a deep result of

Sullivan [Su], a Sullivan group exists for every m. We fix for each positive integer

rn a Sullivan group G- and the corresponding Sullivan manifold Q^:B^|G-, The
point z6(0)€ Q^ will be denoted by qo.

For every m we fix r*((0, ll2) such that ns: Bm *Qil is a hyperbolic isometry
in a neighborhood of each closed hyperbolic ball of radius r.. This is possible by
tlre compactness of Q-. Then, if 0<r<r^ and q€.Q-, the pre-image of Boo(q,r)
is a disjoint union of hyperbolic balls in B^, andT0 maps each of these isometrically
onto B"o(q, r). We let D'denote the hyperbolic ball B,(O,r-)cB' and s,:
tanh(r^12) the euclidean radius of D^.

2.10. Some constructiofls. I*t m and k be positive integers. Set fi:m+k and
,4[:E'\,S'-1. Then each zQAf, has Möbius coordinates tcB^ and qQff; see

2.7. Wethus obtain a naturalhomeomorphism a: Ai-B-XBk defined by ul{ ril:
((,rl). Setting n:nsXid: B-XBL*Q.XBk and e:nu we obtain the commuta-

307



308 P. Turn and J. VÄrsÄlÄ

tive diagram

Ai- "'* B*XBI
l,/el /tl//

Q^xBo

Here z and e are covering maps. Observe that e(0):(q0,0). The map e plays an
important role in the straightening of /<-handles on an z-manifold. It corresponds
to the natural covering map R*XIr*T-XIL of the Edwards-Kirby theory.
ForO-handleswedefine A3:8" ande:roi B"*Q". Fora-handles we set Al:8"
and e:id: Bo*8".

ln Ai we have the euclidean metric d of R" and the hyperbolic metric a of
R15--'. In .B'X.Bi we use the metric q deflned by

Q(x, x'): max (o(xr, xi), lxr'-x'rl).

Replacing o by op we obtain a metric on Q^XBL, also denoted by q. Then z is
an isometry in each set of tfie form .8"(x, r*)YtBk.

2.11. Lemma. The homeomorphism u: (Ai,o)*(B-XBk, g) ,.f bitipschitz.

Proof. Set F:B^(ll2) and E:u-l[FXBft]. Since a is a diffeomorphism,
ulE is L-bilipschitz for some Z. Define the action of Möb. on B*XBL by g(xr, xr):
(ghrx). Then every g: B-yBk*B-:l.Bk is a g-isometry. Since gu:ug for
all g€Möb., ulgE is Z-bilipschitz for every g(Möb,. Since the sets g.E cover
Ai, it easily follows that u is lJipschitz and that u-r is 2L-lipschitz. D

2.12. Lemma. Suppose that O=k=n-l and that f: Al*Ai is a homeomor-
phism such that f is locally L-bilipschitz in the hyperbolic metic o'o/ R\,S'-t and
such that o(f,id)<M=-. Then f is Lr-bilipschilz in the euclidean meffic of R'
with Lr:)LsM.

Proof. It suffices to show thatf is Zr-lipschitz. Settin_e ö(x):61r, ^S'-1) we
obtain bV Q.6)

L(x, f) = 2Lö (f(x)) I 6 (x)

for all x€A. By Lemma 2.2, it suffi.ces to show that ö(f(x))la@)=e'. Let x€Ai
and let abe a rectifiable path joining x and,f(x) in,4[. Since ö: Af;*1{ is l-lip-
schitz, [Vä1, 5.3] implies

ffi= Iry='Iosn#
d' 

{^dt 

u="o 

,orr,id) = sM. tr
ä (x)

Hence
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2.13. Lifting of maps. Since .B'XB& is simply connected and n: B*XEb-
Q^XBL is a covering map, every (continuous) map f: Q-xBk*Q^XBe can be

lifted to a map f: B^xBk*B-xBk such that nf:fr. The lifting f is unique
as soon as we knowÅO), wt icf, can be chosen arbitrarily in n-tf(qo,O).

The set
go: {feH(Q xBk): aG id) - r^12)

is a neighborhood of id in H(Q*xEk;. In what follows, we shall only consider

Iiftings of maps fe *0. We let f denote the unique lifting of f€hn satisfyng

fQ)en,Q,r^12)XBk. The map/is a self-homeomorphism of ,B'XBr. Indeed, if
f(Zo, then also f -1€go, and (7-t1^:(f)-'. The lifting f can also be directly
defined as follows: For x: (xr, xr)€B^X.Ek let

n*: Bo(x1, r-)xBk * Boo(ns(x1), r^)XBk

be the isometry deflned by z. Then /(z(x))€im lr,, and we can define f(*):
n;lfn(x). From this description it is easy to see that e(fr,f):Q(h,f) for all

ft,fr(go. In particular, q(f,id)=r-12 for every f(hs. Furthermore, if the action
of Möb. on .B'XB-& is defined by g(xr, xr):(gxr, xr), then sf:fs for every

f€Zo and g€G*.
We define the action of Möb, on Ai by g[(, q1:l1(),d. By Lemma2.8

this action is conformal. For f€Zo we set f'6:u-1fu: Ai*Ai. Then/* is an

e-lifting of f, that is, ef*:fe. From the above considerations and from Lemma 2.ll
we easily obtain the following properties of/*:

2.14. Lemma. The correspondence .f*f* is a continuous map go*H(A». If
f(9o and g<G*, gf*:f*g. There is q cottstant M, depending only on n such that
o(f*,id)<M* for all -f(Zr. Euery f* can be extended åy idlS'-l to a homeo'

morphism f: B"*8". n
2.15. Local and global bilipschilz constants. It is usually much easier to show

that a given embedding is locally l-bilipschitz than Z-bilipschitz. For example,

let G be open in Ä', and let f: G-R" be an embedding. Suppose that G can be

expressed as a locally finite union of sets ,4, such that flA, is Z-bilipschitz for
everyj. Then flÄtaG is also l-bilipschitz, and the local convexity of Ro implies
that/is locally Z-bilipschitz. However, /need not be bilipschitz even if G:Grv Gz

with flG, bilipschitz. However, we show that if we restrict the embeddings to a

compact subset of G, the difference between l-bilipschitz and locally Z-bilipschitz
maps becomes fairly small. For this, we need the tollowing result of F. John [Jo,
Theorems II and IIII:

2.16. Lemma. Suppose that f: B'*Rn is a locally L-bilipschitz immersiott v,ith

.f(0):0. Then

(t) B" (t I L) cf B" c Bn (L),
(2) flB'(llLz) is L-bilipschitz. tr
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2.17. Lemma. Let G be open in R", and let A be compact in G. Let f: G*R"
be a locally L-bilipschitz embedding. fhen (flA)-r is Lrlipschitz with L, depending

only on G, A and L. If G is connected, flA is Lr-bilipschilz.

Proof. We may assume that G*R". Set r:d(A,AG), and let xr, xr€A. lf
lx1- xrl=v1 12, Lemma 2.16 implies lf@r) -f(*r)l>lxr- xrllL. Suppose that

lx1-xrl>7112. Then the balls B"(xr,rl2L2) are disjoint. By Lemma2.16,
B" ( f(x ), r I 2Ls) cf B" (x i, r I 2L2), which implies

lf@r) -f(xr)l = r I L' > r lxr- x2ll Ls d (A).

Hence (flA)-' is Zr-lipschitz with Lr:riax(L,Lsd(A)lr).
Next assume that G is connected. For a,bCG let dr(a,å) be the infimum

of the lengths of all rectifiable paths a joining a and b in G. Then d, is a metric of
G defining its usual topology. Since,4 is compact, d1(A)-:-. Suppose that x, ye A.
If lx-yl-r, the segment xy lies in G, which implies lf(x)-f0)l=-Ll*-yl. Assume

that l*-yl=r. Choose a path a joining x and y in G such that /(a)<l+dJA).
Since / is locally Z-bilipschitz, I ( fu) = 

il {a) = t(t + dr@». Hence

lf@)-fu)l < L(l+d!(!4)) = r(t +d,(A))lx-vllr.

Consequently, f is L2-lipschitz with Lr:111ax(t, L7t +d1(A))lr). tr

3. Deformation of embeddings near the identity

3.1. In this section we present Sullivan's version of the Edwards-Kirby theory.
Let M be a manifold, possibly with boundary. If XcM, an embedding f: X*M
is said tobe cleanif f-t$14:yn|M. The family of all clean embeddings f: X*M
is denoted by E(X; M). It AcX, we set

E(X, A; M) : {f(E(X; M): flA : id}.

We flrst give a quantitative canonical Schoenflies theorem for embeddings

near id.

3.2. r-emma. Let A:B'\8"(ll2), artd let

g : {fe E(A; R'): d(f, id) = li3o}.

Then there exist a contirtuous map E: 9*E(8"; R"), o uniuersal coilstant ax, afl(l a

constant b, depending only on n such thqt:
(1) E(,ölS'-r{lS'4-1 for all f(9.
(2) EGd):id.
(3) If f rs K-QC, EU) is å,K3-QC.
(4) If f is locally L-bilipschitz, EU) is locally asLs-bilipscltitz.
(5) If ,f is L-bilipschitz, E(f) is arLs-bilipschitz.
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Proof. The map E("f) is constructed by the furling idea of M. Brown. We can

follow the proof of [GVm1, Lemma 9, p.241]. However, since we do not assume

that ^S'-lcim e, we choose q:0.9, and define the radial map I by ,2,[0, bl:10, a),

).lb,ql:la,q1, Alq, -]:[4, -]. Moreover, we must have 2c:b/a in order that
the construction be valid in the LIP category. If we choose a:0.6, å:0.8, c:213
and d:0.65, the construction is possible for all e(9. Then E:@-ö) satisfies

(1), (3), (4) and (5). Replacing Ek) by q(e)E$d)-t, we find E satisfying all con-

ditions of the lemma. n

3.3. Irmma. (Staightening of handles near id.) Let m>O and k>O
integers such that m*k:n>2. Then there exist a neighborhood I of id
E(1", I^X1It; -R'XIt) and a continuous map

{/t gxI * E(1",1^xllk; P.,xIk)

with the following properties:
(1) /(id, t):id for all t(1.

Q) ,lr@,O):h for all h€0.
(3) tl,(h,t)101":hl0l' for all h(9 and t(1.
(4) rl, (h, t)l(I* xlI\U (I* (l l2)x1o) : id for all h ( 0.
(5) If h€g ,s "K-QC, then {(h, r) rs K1-QC with Krdepending only on K and n.

(6) If h@ is locally L-bilipschitz, then rlt(h,t) is locally Lr-bilipschitz with

L, depending only on L and n.

(7) If h€g is L-bilipschitz, then t@,t) is h-bilipschitz with L, depending

only on L and n.

Proof. Recall the notation D^:B.(O,r-):B*(s^) from 2.9. With the aid

of an auxiliary bilipschitz homeomorphism of R', we may replace the cubes .I'
and Ik by closed unit balls B'and Bk, and the cubes l^(ll2) of (4) by the ball
B,(0,r^12). Performing a preliminary deformation given by [EK, Proposition 3.2],

it suffices to consider embeddings h<E(B^xBk, E^xlBk; ,R'xBk) such that
h:id in C:B^(9110)X(Bk\Bk(U2)). This deformation multiplies the dilatation
and the bilipschitz constant of h at most by a factor depending only on n. Let u: Af,-
B^X.BL be the homeomorphism defined in 2.10. We flrst show that for every

h<(B^xBk, B^x\BkvC; R*xBk) which is sufficiently close to the identity, there

is a homeomorphism g: ,R'*.R', continuously dependent on å, such that (i) 9:16
if h:id, (ii) g:1a-t\ru ', o-t1D^XBkl, (iiD B:id in R'\B', and (iv) g respects

the QC and bilipschitz properties of ä.

lf m:0, h: B"*8" is a homeomorphism with ålS'-l:id. Hence we can

choose s:åu(idl/R'\B). Suppose that m>1. Let us first recall the Sullivan

covering map zr0: B^*Q^ from 2.9. It is injective in a neighborhood of the ball
D^. Choose a point p€O'\zoD' and a LIP immersion ao: Q'r.p*B^(9110).
By the LIP Schoenflies theorem fLuY,7.\, we may assume that aozo=id in a neigh-

borhood of D^. Set a:aoXid: (Q'\p)XBk-B*xBk. Then ae:u in a neigh'

311
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in
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borhood of u-LlD^xBk7. Choose t>0 such that 4t-<min(r*,os(p,roD^)), and
set Dr:Boo(p,jt) for j=4. We can now construct the following variation of the

main diagram of Edwards-Kirby.

R"
TJ

Afr
I

l"
*

Q*xBu
U

RN

LJ

A,i

t,
+

Q*xBo
il

Q*xBo
il

Q*xBo
U

(C*\rr)xBo
1.,
{

.;qm y fiE

h4

h,

eo'xBo\D rxBo(3I4) 
hzt *

n
Q* xBo\D ,xro(5/8) 

t2-*

TJ

(e.\D r)xBo t"- 
*

l*,
I

v

fimyfix 

- 

h*

We start liom the bottom with h in a neighborhood I of id. On each step,

we may replace I by a smaller neighborhood. We first find h1 as in [EK, p. 68].

The embedding å, is the extension of h, via the identity, and the homeomorphism
å, is found by the canonical Schoenflies theorem 3.2. The homeomorphism ån is

the lifting if given by 2.13, and g is the extension of ha via the identity. \f I is a
sufficiently small neighborhood of id, the properties (D, (ii) and (iii) are easily verified.

If K>l or I>1, welet Kr, Kr,... or Lr,Zr,... denoteconstantsdepending
only on K and n or I and z, respectively. Suppose that h is f-QC. We divide Q-XBV
into the following three sets:

&: (0-\Dr)x8", Fr: DrXBk(314), Fr: D"x(Be\Bk(3/4)).

Set Er:s-r Fi, i:1,2,3, Since Q' is compact, we can choose a set U, open in Ai,
such that U is compactin Aiand such that eU:Q^xBk. Then aelU\e-t[DrXEo]
is locally.Ll-bilipschitzinthe euclidean metric. Since aehn:hae in Er, holErnU
is &-QC with Kr:l(!,f'-4. Since ån is compatible with G by 2.14 and since G'
acts conformally on Ai, hnlE, is fr -QC.

The set Ez has a countable number of components Ert, j(N, and e maps

each E2i homeomorphically onto F2. In each Erj, hn is constructed by Lemma3.2

using an auxiliary bilipschitz embetiding which is defined in a neighborhood of E,
and which maps .E2"; onto B'. Hence the dilatation ol halE2i depends only on K,
n and7. However, if i*j, there is g€G' such that hrlErr:ghng-'lEri. Hence

holE, is J(r-QC.

P. TurrA and J. VÄlsÄrÄ



Lipschi tz and quasiconformal approximation and extension

Finally, halEr:id, which implies that ån is K3-QC with K,:*ax(K''K')'
cf. [Vär, 35.1]. Hence g is Ku-QC.

Suppose that h is locally Z-bilipschitz. Arguing as in the QC case we con-

clude that ån is locally Zr-bilipschitz in the hyperbolic metric of R'\^S"'-'. On

the other hatd, o(hn,id)=M, by 2.14. It foilows from2.l2that hn is (globally)

Lr-bilipschttz in the euclidean metric. Hence g is Z2 -bilipschitz'

Deflne the Alexander isotopy gr: N*R" by gr(x):tg(vl7) for 0<l<l'
go:id. choose a biiipschitz embedding b: B"*B*(314)xBk such that u:a in

;'48-Ol2)x.Bkl. Le; fr: RntR" be the isotopy deflned by fr:ugr'o-L in uB"

and by.4:id outsideuB". The desired deformation ry' is obtained by setting

*(h, t):7h: B^xBk * I(.xBk.

lf å is in a sufficiently small neighborhood g of id, {/(h,l) is in

E (B"xBk, B^ xlBk ; A' X Ek),

and the properties (1)-(7) of Lemma 3.3 are easily checked (remembet that D^c
B-(112)). n

3.4. Theorem. Let G be openin R", andlet A, A', B, B', C, C' be subsets of G

satisfyirug the following conditions: A and C are cloSed in G, B is compact, and

AcintA', BcintB', CcintC'. Tlrcn there exist a neighborhood 0 of id in

E(G, C'; R"), an open neighborhood A" cA' of A in G and a continuous map tlt: gY

I*E(G, C; R') such that thefollowing conditiorts qre satisfiedfor all t€I and lt(0:
(1) ,, (id, /) : id.

{2) .1, (h,0):lt.
(3) ,l/(h,t):h in G\B'.
(4) ,1, (h, 1) lB u C - id.

(5) If h rs LQC riz Lnt A' , ,1, (h, t) /r LQC Ln A" '

is Kt -QC with K1 depending onb) ofi K and n.

If hltnt A' is K-QC, { (lr, t)lA"

313

(6) If G c R" atld if ltlA' ,s a LiP embedding,

embedding. If hlA' is locatly L-bilipschitz, ,1,(h, t)lÄ"
thert ,1, (h, t)lA" ,r a LIP
is locally Lr-biliPschitz rl;ith

L, depending only on L ond n.

(7) If GcR" artd if hlA' is L-bilipschitz, ,!(h,t)la" is Lr-bilipschitz tvitlt L1

depending only on L qnd n.

Proof. we may assume that -(8. choose a compact PL manifold Pcint B'

such that ,Bcint P and a fine handle decomposition of P. As in [EK, pp.7l-731,

we can find a neighborhood I and a map ry' satisfying (l)-(4) by successive applica-

tions of Lemma 3.3, starting with zero handles. In order that (5)-(7) also be true,

we must choose P and the handle decomposition in a regular manner. For example,

we can start with the cell decomposition 76 of Äo consisting of all cubes with

vertices in 2kZ" and with side length 2k, whete k is a small negative integer'

we let P be the underlying polyhedron of a finite subcomplex T1 of To

such that Bcint P and such that QcB' whenever QQ.T0 and p meets P. Then
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Pcint.B'. choose a simplicial subdivision T, of T, without new vertices [Rs, 2.9J.
Then the second barycentric subdivision ( defines a handle decompositi on .* of
Pasin[RS,p.82]. Leti(ä)betheindexof ahandle H(lf,. Define H<H, if
HnH'*A and i(H)=i(H'). Then H<H'=H" implies H=H". Let lf,obe
the setof thehandles HClf, suchthatthereis H'e.,# with H<H' and H, nCl\.
We may assume that Po:vffcC'. Let Hr,...,FI" be the handles of a(\tro
arranged in order of increasing index. For eachTwe choose a pL embedding pr: Å,*
B'\C such that im pr; is a small neighborhood of H, and such that for i(H):k,
m:n-k and H!:prI, we have:

(i) pill^(ll2)xlof:Hi.
(iD ijlY x lrln (Po u ir, u ... v H i -r) : p,fR^ x0 Ik).
(iii) There are similarity maps ar: R'-Ån such that the embeddings ai4i

belong to a finite set depending only on a.
The desired isotopy ,lr(h,t) is a composition g"x...xg., where

e1(h, t) : ltit{lriLhltill^, t)ltla in Ht,
<P1(h, t) : 7 outside ärt,

and r!1, is given by Lemma 3.3 with k:i(Hi).
The conditions (5)-(7) follow from the corresponding conditions of Lemma 3.3.

In (5) we also need the fact that a set of finite (r - l)-dimensional measure is remov-
able for K-QC homeomorphisms [vä1, 35.1]. In (7) we use the following elementary
lemma: Let GcRu be open, let AcG be compact, and let f: G*R" be an
embedding such that flA and "flc\1 are Z-bilipschitz. Thenfis l-bilipschitz. tr

3.5. 'fheorem. In Tlteorem 3.4, the coruditions (2), (3), (4) can be replaced by the

following ones:

(2') rtt(h,07 : i6-
(3) r/(ft, r)lG\B' : id.
(4') rtt(h,t1:7 in BvC.
Proof, We may assume that B' is compact. Choose a closed neighborhood

Arof A in int A' and a compact neighborhood .B, of B in int B'. Apply 3.4 with
A and,B replaced by A, and Ar. We obtain a map {rn: ?XI*E(G, C; R,) and
an open neighborhood, A{c.A' of A. Choose an open neighborhood A', of A
wittr clo A"cA'd. Replacing I by a smaller neighborhood we may assume that
hBcB, and that hfA"aB'fcrlro@,t)A'{ for all h€3 and rr(/_ Then the map
r!(h, t):r!o@, t)-'h has the required properties. tr

3.6. Theorem. Let Gc.N be open, let BcG be compact, let B'cG be a
neighborhood of B, and let e>0. Then there ,r ä>0 such that for euery Llp embed-
ding h: G-P( with d(h, id)<ä there is a LIP homeomorphism h': .R,*Å, such that

(1) d(h"id) < e,
(2) h'lB : hlB,
(3) h'lR\B',: id.

F. TurrA and J. VÄlsÄrÄ
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Furthermore, if h is K-QC, h' is K1'QC with Kt depending only on K and n. If h is

locally L-bilipschitz, h' is Lr-bilipschitz with L1 depending only on L and n.

Proof. We may assume that B' is compact. We apply Theorem 3.5 with A:
A':G and C:C':0 and obtain amap lt:TxI*E(G;R'). Since ry'(id,r):id
for every t€l, we may assume, replacing I by a smaller neighborhood, that

l{r(h,t)(x)-xl=e for all h(9, t€I and x€G' There is ä=0 sachthat h(9
whenever heE(G;-R') and d(h,id)<ö. We can then define h'by h'lG:rlr(h,l)
and by å'lÅ'\G:id' n

3.7. Remark The qualitative part of Theorem 3.6 is the same as lTYz,2.l9l.
This is all that was needed from Sullivan's theory in the proof of the QC extension

theorem from dimension n to fl +1. However, it is possible to simplify this proof

by making also use of the quantitative part of Theorem 3.6; see 7.1. We shall use

this simplification in the proof of Theorem 7.4, which can be considered as a gen-

eralization of the result in [TVJ. For this purpose, we give a quantitative version

of [TVr, 2.201, For this and for later purposes, it is convenient to introduce the fol-

towing notion:

3.8. Solid families. I_.et x and I. be metric spaces. A family .4 of embeddings

f: X*Y issaidtobesolidif clfr isacompactfamilyof embeddings. If I:Rn
and if XcN is either open or compact, .4 is solid if and only if it is pointwise

bounded, equicontinuous and inversely equicontinuous' More precisely:

(l) For every xq€X, the set {"f(rJ' f<,f} is bounded.

(2) For every xs(X and e>0, there is a neighborhood U of xo such that

l,f(x)-/(rJl<e whenever x€U and fe 9.
(3) For every xq€X and for every neighborhood U of xo, there is e'>0 such

that lf(x)-f(xo)l=e' whenever x(X\U and feq.
Indeed, by Ascoli's theorem, (1) and (2) ate true if and only if clr is com-

pact in C(X, R'), and (3) means that the members of cl F are embeddings'

The corresponding statement is true if we replace Ä' by R' and the euclidean

metric by the spherical metric. However, in this case the condition (l) is super-

fluous.
Let UcR' be open and let E"rr(U; Ä') be the farnily of all LIP embeddings

f: (I*R". Byaresultof Sullivan[Su], ,E"r.(t/;Ä') isdensein E(U;R') if n*4.
we shall prove this in Section 4 (coroilary 4.5). we say that an embedding .f: u*R"
is LIP approximable if /€cl Errn(U;.i?'), which is always trte if nl*.

We next give a quantitative version of [TV2, 2.20]. This will be needed in Sec-

tion 7.

3.9. kmma. Let (J, U', V, ll be open sets in R" such that

W c V : u, A' c. (J, W ntJ c. V,
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and U' is compact. Let fi be a solid family of embeddings g: U*R". For n:4
we also assume that the members of fr are LIP approximable. Let e>0, K=1,
L>7. Then there are 6>0, K'>1, L'=l roith thefollowin properties:

Let h: V*R" be aLIP embedding, and let g€.7 be such that d(g,h;V)=ö.
Then there is aLIP embedding h': U*Rn such that

(l) d(h', s; U')=e,
(2) h':h in WnU',
(3) h'lu' rr J('-QC if h is K-QC,
(4) h'lu' is L'-bilipschitz if lt is locally L-bilipschitz.

Here ö depends only on r:(U,U',V,W,fr,e), K' depends on r and K, and L'
depends on r afld L.

Proaf. We shall closely follow the proof of [TVr, 2.20]. Choose open sets I
and A, such that A'cA, ÄcAr, ÄrcU and Ä, is compact. Since fi is solid,
thereis e.>0 suchthat lg(x)-g(y)l=el2 whenever S€9,1x-yl<e, and x,y€A.
Next, by Theorem 3.6, there is ä.=0 such that if f: A nY *R" is a LIP embedding
with d(f,id; A nV)=ör, then there is a LIP homeomorphism /': Ä'*-Rn such that

d(f ', id) < er, _f ' : f in Wn(J', ,f'lA'\(A nV) : id.
Finally, we choose ä>0 such that y€gA, and lg-,(r)-S-r(y)l=ä, whenever
g€9, x€gA, y<R" and lx-71=3ä. We show that the lemma is true with this ä.

Since cl I is compact and since its members are LIP approximable, there is
a finite family fr' of LIP embeddings U*Rn such that for every g1cl 3 we can
choose g'(g' with d(g',9;1r)=mi., (e12,ö12). The family 9' depends only
on c. Hence there are Ko and Zo, depending only on z, such that for every g'Cfr',
g'lA1 is r(r-QC and Io-bilipschitz.

Let h: Y*R" and g€fi be as in the lemma. Since d(g', g;Ar)=ö12 and
B(gA,3ö)cgAr, we have B(gA, 5ö12)cg'Ar, which implies B(g'A,Zö)cg'Ar.
Since d(g',lt;AnV)-.2ö, we can define an embedding f: AIV*R" by

f:g'-rhlAaV. Then flAnVlcAr. Moreover, d(f,id;AaV)<ör. To show
this, let x€Anv. Then lg("r(r))-g(r)l=ö+ls'(f(x))-s'(r)l:ä+lh(x)-g'(x)l=
3ä. By the choice of ö, this yields l/(x)-xl=är.

If (a) h is K-QC, / is .I(ifo -QC. If (b) å is locally Z-bilipschitz , f islocally LLo-
bilipschitz. By the choice of är, there is a LIP homeomorphism /': R'*.Rn satis-
fying (3.10). Moreover, by Theorem 3.6,f is fr-QC in case (a) and Zr-bilipschitz
in case (b), with K1 depending on r and K, Lron r and L, Then h':g'U'lU): II*R"
is the desired embedding. In case (a) it is r(.K1-QC and in case (b) Zol.-bilipschitz
in U'. In WaU' wehave h':g'f'-g'f:h, and thus (2) is true. Furthermore,

d(h', g; U') = d(g'f', gf'; A)ld(g.f', g; A).

Since f 'A:A, d(g'f', Cf'; A):d(g, g'; A)=e12. Since d(f',id; A)=er, the choice
of e, implies that d(d', g; A)=e12, and we obtain (1). tr

3.11. Stable homeomorphisms and the annulus conjecture. Let C be one of the
categories TOP, LQC, LIP. A C-homeomorphism f: R"*Rn is said tobe C-stable
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if f can be written as a composite map ft...fo where each fi: R"-N is a C-homeo-

morphism such that f.lUi:ia for some open Ui*0 IBGI. The stable homeo'

morphism conjecture for C states that every sense-preserving C-homeomorphism

f: R"*N is C-stable. Suitrivan [Su] proved this for C:LQC and LIP in all dimen-
sions; we give this in3.l2 below. For the case n=3, see also [Vär] and [Kk,4.5
and 4.61. For C:TOP, the conjecture is known to be true for n*4 by Kirby
and Siebenmann; the case r1:4 is unsoived.

To formulate the annulus conjecture we neecl some terminology. A set ,Sc-P
is an (z-t)-dirnensional C-sphere if there is a C-homeomorphisrn /: S*^S'-1.
For C:LQC this means thatf is quasisymmetric in the sense of [TVt]. We say

that ,S is locally C-fiat if every point x€^§ has a neighborhood [/cR' such that
there is a C-homeomorphism h: ({I,UaS)*(B',8'-t). By a basic flattening

theorem, every localiy C-flat (n-l)-dimensional C-sphere ,SclR' is C-flat, that
is, there is a C-homeomorphism f: (Ro, S)*(R', S'-1). For C:TOP this is a
well-known result of M. Brown. For C:LIP it is given in [LuV, 7.8]. The case

C:LQC follows from Theorem 4.10 and from the Schoenflies theorem.

The annulus conjecture for C states that if ,Sr and ,S, are locally C-flat (n-l)'
dimensional C-spheres in R' and if ,St lies in the bounded component of Å'\,Sr,
then the closure of the domain bounded by SruS2 is C-homeomorphic to the

standard annulus -8'\,8'(1/2). The stable homeomorphism conjecture implies the

annulus conjecture; see [BG] or [Kr].

3.12. Theorem. Tlte stcble homeomorpltis'm conjecture and the qtnulus cortjecture

are true in the categorues LQC qnd LIP in all dintensions.

Proof. Let C be either LQC or LIP, and lct fr be the set of all C-stable C-hcmeo'
morphisms f: R"*R". It suffices to show that I is the group H[(R') of all sense'

preserving C-homeomorphisms f: R"*R". The case ft:O of Lemma3.3 implies

that id is an interior point of F in HI (R"). Since I is a suhgroup, it is both open

and closed in Hf(Ä'). Hence it sufflces to show lhat HI (R') is connected. We

show that every fCH[ (R') can be joined by a path to id. There is -ro€Å' at which

/ is differentiabie with a positive jacobian. We may assume that xo:0:/(xo).
Set g,(x):71tx)lt for ,>0 and Eo:.f'(O). Then the path t-g, joins the linear
map f'(O) to / Since det/'(0)>0, it follows from elementary lirrear algebra that

/'(0) and id can be joined by a path. tr

3.13. Conuentions. ln the rest of this section, C will denote either LQC or
LIP. We say that a homeomorphism Jr: Sr-1*Str-l is LQC if it is quasisymmetric

in the sense of [TVJ and [Vär].

3.14. Theorem. Let jf: Sn-1-S'-1 be a sertse-presercing C-homeomorphism

and let 0-a=7. Then f can be extenCed to q C-honrcomorphism g: B'*fr' such

that glB"(a):if,.
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Proof. It follows easily from 3.12 that f can be written as the composition

fr...fo of C-homeornorphisms d: S'-1*Sn-1 such that eachI is the identity
in some nonempty open subset of S'-1. Hence we may assume that flY:id, for
some open nonempty VcSn-\. It suffi.ces to find an extension g such that gltJ:id
for some open UcB", U*9. Indeed, we can then choose a C-homeomorphism
h: B'*P such that B*(a)chU and ål^§n-l:id, and the desired map is hgh-t.

If C:LIP, we let g be the cone of/. Suppose that C:LQC. By [TVz, 3.15.4],

we can choose a QC extension gr: Bo-8" of / Choose a QC homeomorphism

E: N*N suchthat EIS'-\Iz:id,B"cEB" and lE(0)l>1. Setting

s(x) : E-, grE(x) if lE(x)l = 1,

g(x):x if IE(x)l =1,
we obtain the required map g: Bo*P. tr

3.15. Notation. For O=a=b we let A(a, b) denote the closed annulus

B'(å)\B',(a).

3.16. Theorem. Let 0=a=b, let O<r<b, andlet f: A(a,b)*R" be a smse-

preseruing C-embedding such that the bounded component o/ R'\,f^S'-t(b) contains

B'(r)vf S"-t(a). Then there is a C'embedding g: B'7b1*11' such that g:f near

08"(b) and glB^(r):id.

Proof. Choose r, and a, such that r<rr<q.r<.$, a<a! and B'(r)n
fA(ar,b):@. Let .R be the domain bounded by S'-1(r)u/,So-t(at). By the

annulus theorem 3.l2,therc is a sense-preserving C-homeomorphism h: A(rr, aJ*R
with å,S'-1(rr):S'-'(rr). By Theorem 3.14, h-Lfls"-'(ar) can be extended to
a C-homeomorphism cp: A(rr, a1)*A(rr, ar) such that El,Sn-l(rJ:id. Similarly,
ålS'-1(rr) can be extended to a C-homeomorphism h1: B"(rr)-fi"1vr) with
h1lB"(r):ifl. The desired g: B*(b)*y is obtained by setting

g(x) : f(x) if a, = lxl = b,

g(x) : n(q@)) if r, < lxl = ar,

g(x) : hr(x) if lxl = rr. n

3.17. Theorem. Let 0<.a<.b<.c<.d andlet f: A(a,b)vA(c,d)-R" bea sen§e'

preseruing C-embedding. Sappose also that fA(a,b)vfS'-t(c) Iies in the bounded

componeflt o/ -R'\/,S'-t(d) and that f S'-l(a) lies in the bounded component of
R'\/S'-l(å). Then there is a C-embedding g: A(a,d)-R" such that g:f near

\A(a, d).

Proof. Replacing a by a slightly larger number and d by a slightly smaller

number, we may assume that f S'-L(a) and /S'-l(d) are locally C'flat. By the

annulus theorem 3.l2,we may assume that l/(x)l:lxl for all x€|A(a,d).
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By Theorem 3.16, there is a C-homeomorphism gr: B'(d)-fi'(d) such that
gr:f near 08"(d) and gr:i6 near \B'(a). Together with an auxiliary inversion,
Theorem 3.16 also implies that there is a C-homeomorphism 92: .P\,B'(a)*
R'\B'(a) such that g2:f near 08"(a) and gr:i6 near R'\,B'(d). Then g-
gzglA(a, d) is the desired embedding. tr

4. LQC and LIP approximation of homeomorphisms

4.1. In this section we showthat if C:LIP or LQC, andif M and Nare C-mani-
folds without boundary of dimension n#4, then every homeomorphism f: M-N
can be approximated by C-homeomorphisms. We next prove the same result for
manifolds with boundary provided that n*4,5. In particular, we obtain the LIP
and LQC hauptvermutung for these manifolds. For manifolds without boundary,
these results are due to Sullivan [Su]; the LIP case for manifolds with boundary
has been proved by J. Luukkainen (unpublished). The key of the proof is the fol-
lowing result whose PL analogue is true only for k*3 (by Kirby and Siebenmann).

4.2. Lemma. (C-straightening of TOP handles.) Let m>0 and k>O be inte-
gers with m*k:n>2, rt*4, let C be either LQC or LIP, let U be an open neigh-

borhood of 1", and let f€E(U; R') be a C-embedding near I^XIIL. Let e>0. Then

there is art isotopy E: I*E(U; R") such that:
(1) Eo:f-
Q) Er:f near U"',1n|In for all t€l.
(s) IE(x)-/(x)l=, fo, all t€I and x(u.
@) E, is a C-embedding near I^X|IvvI^(ll2)Xlk.
Proof. By the Schoenflies theorem, we may assume that U:N and that /

is a homeomorphism onto .P.
Choose ä€(0, 1) such that lf@)-f0)l=-ulZ whenever x,y(1"(2) and

lx-yl=ö. Then ?t:{s(H(R"): d(g,id;1')=ä} is a neighborhood of id in
ä(Ä). Choose r>0 suchthat/is a C-embeddingin A':8"(I*XAIk,2r). Apply
Theorem3.4 with G:Rn, A:8"(I*x0Ik,r), B a compact neighborhood of
i*(ll2)Xlk(l-r) in intl", and B' a compact neighborhood of -B in intl'.
We obtain a neighborhood 0 of id in H(R) and a map tlt: TXI*H(Ä'). Since

ry'(id, t):i6, we may assume that im tcTr, replacing I by a smaller neighbor-
hood.

Since n#4, there is a PL homeomorphism C€ä(A') such that d(g,f; R)<.
el2 and. g-tf:h(9. If k:0, we need here the deep stable homeomorphism
theorem of Kirby-Siebenmann, unless / is known to be stable. Set h,:rlt(h, t).
We show that qr:gh, is the desired isotopy. First Eo:gha:gh:f. Outside B'
we have <pr-gh:f. If x€B', then lhr(x)-xl=ä, and we obtain

I 
q, @) - f (x)l = | 

g (h, (x)) - f(rr, (r) I + 
| 
f (h, (x)) - f (x)l =' I 2 + 

" 
I 2 :'.
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In B, Er:ghr-g is PL, hence a Ccmbedding. In A, hris a C-embedding for every

f. In particular, cprlA:ghrlA is a C-embedding. Consequeniy, Eris a C'embedding
in int AvintB, which is a neighborhood of I*x0IkvI^(ll»XIk. f]

4.3. Notation. \f M and N are n-manifolds without boundary, welet E(M; N)
denote the set of all embeddings I M*N.

4.4. Theorem. Let C be either LQC or LIP, let M and N be n-dimensional

C-manifulds without boundary, n#4, let A,BcM be closed, and let B'cM be

aneighborhood of B. Let f: M-N be an embedding such thatf is a C'embedding

near A, and let e: M*(0, *) be coiltinuoas. Then there is a continuous map Q: I-
E(M; N) such that:

0) Eo:f.
Q) C,:f itr M\B' and near A.
(3) E, is a C-embedding near Av B.

@) d(E,@),f(x))=e(x) for all t€I artd x(M, where d is a giuen metric of N.

Proof. l, Special case. M is open in R', N:.t?, and B is compact. Choose

an open neighborhood A'of ,4 such that flA' is a C-embedding. Choose a com-

pact PL manifold Pcint,B' such that Bcint P. Choose a fine handle decom-

position tr of P as in [RS, p. 82]. Let i(H) denote the index of a handle HQf .

Define H=H' if HaH'*0 and i(H)<i(H'). Then H=H'<H" implies

H=H". Let tro be the set of the handles H(tr snch that there is H'(tr with
H<H' and H'nA#fi, We may assume that Po:eaf,ocA'. Let Hr,...,H"
be the handles of lf,\tro arranged in order of increasing index. For each 7 we

choose a PL embedding pr: R'*B'\1 such that for i(H):k, rn:n-k and

H!:1ttI" we have 
ttiu*(rp)xlur: Hi,

Ht a(Pov Hru... uä.;-J : prll^Xllk).

We may assume rhat Hf aäf:fl whenever i(Hj):i(Hk) and j+k-
The isotopy g is defined in s steps as follows: Set fs:f, and suppose that

the (i-l)th step has produced an embedding ft-r: M*N. We apply Lemma4.2
with the substitution f*fi-ilti and with a small e. This yields an isotopy

E': I*E(R";R'). Define an isotopy Ei: I*E(M;ID by Eir:Eitti' in ärI 31d

by Ei elsewhere. Combining the isotopies e|, ..., E" gives the desired E.

2. General case. Let A' be as in the special case. Choose a closed B.c.B\,4
such that cl (,8\A)c,4'. Choose a locally flnite covering fi of Bo by open subsets

of M such that for every W€4, l[/ and fW can be C'ernbedded in Ä' and E is

compact in B'\,4. By [Mu, 2.1 we may assume that # can be expressed as Oov
...u#n, where each collection 0 t is disjoint. For every W(fi we choose a smaller

open set W' suchthat W'cW and such that the sets W' cover Bo. The isotopy

P. TUrIA and J. VÄtsÄrÄ
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g is constructed in n +1 steps so that theith step is active only rn vDt. We give

the first two steps. Set .E:cl (B\Bo).
Let W(Oo. We apply the special case with the substitution .f*flW, A-EaW,

B*W', B'- a compact neighborhood of W' in W, and with a small e. This yields

an isotopy of flw for every WQ go. These isotopies can be extended by flM\(v 9Ao)

to an isotopy of f, which produces an embedding f1: M*N.
In the second step, we take W(#t and apply the special case with f*frlW,

A*(Ev(v{W': W<go»)aW, B*fi', and B'and e as above. n

4.5. Corollary. Let M and N be n-dimensional C-manifulds without boundary,

tt*4, and let e: M*(0, *) be continuous. Thenfor euery homeomorphism f: M*N
there is a C-homeomorphism g: M*N such that d(f(*), g(x))=e (x) for all x€M.
In particular, the hauptaernwtung is true for these manfolds in the categorl'es LQC

andLlP. tr
4.6. Theorem. Euery topological n'manifuld without boundary, n*4, has a LIP

manifold stucture (and hence anLQC manifold structure).

Proof. The theorem follows in a well-known manner from Theorem 4.4. See,

for example, [Kr, Theorem 10]. n

4.7. Lemma. Let C be either LQC or LIP. Let A be closed in B"-L,let BcBn-l
be compact, and let f: B"**R'+ be a clean embedding such that fln"-' is a C'

embedding and such that f is a C-embedding rtear A in B"*. Then, for euery e>O

there is an isotopy cp: I*E(B"*; R"*) such that:

Q) Eo--f.
(2) qrlB'-L:flB"-L for euery t(1.
(3) For some b((0,1), E,:f ;n ,B|\Bi(å) for euery t€l.

$) E, is a C-embedding near Av B.

(S) IE,(x)-/(Dl<.e for all x(8"+ and t€[.

Proof. Choose numbers Q<Sr<fir'<S'<l such that BcB"-t(br). By the

Schoenflies theorem, we can extend flB"-'(b) to a C-homeomorphism g: .P-1*
Å'-1 such lhat g is QC if C:LQC. For n:2 this follows from [LeV2,II, Lemma

7.2), Let F: Å|*R! be a C-homeomorphism with FIR'-1-g. For C:LIP,
wemaychoose 7':glid; for C:LQC weapply[TV2,3.12]. Then W:FnfB"*(b)
is a neighborhood of B"-'(br) in R!. Choose r>0 and set ar:(rz+b?'l' und

Vi:B"(-re,, ai)nR"a fot j:1,2. Then VrcW if r is large enough' Let a: I*
E(Rl\B'-l(åJ; ni\B'-'(br)) be the obvious vertical isotopy through LIP
embeddings such that do:id, allRi\V2:id, and im ar:Ri17r. Then it is

easy to verify that the lemma is true for a sufficiently large r and with g as follows:

et : Fu, F -tfa, ' in B\ n(im a,)

Qt : F in -B[\im 4,. f,
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4.8. Theorem. Theorem 4,4, Corollary 4.5 and Theorem 4.6 are true for n-mani-

folds with boundary, n*4,5. In Theorem 4.4, E(M; N) denotes the set of all
embeddings g: M-N such that g-LIN:\M, and we c*sume that fi€E(M;N).
If flDM is a C-embedding, Theorem 4.4 is also true for n:5, and we can choose E
so that E,l\M:fl|M for all tU.

Proof. We prove the special case of 4.4; the rest of the proof is essentially
unchanged. We assume that in 4.4 M is open in Å!, that N:Åi and that ,B is
compact. We may assume that B' is compact. Choose an open neighborhood ,4'
of I such that flA' is a C-embedding. Applying 4.4to fio:flMaR-L (for n:2
see Remark4.9) we find a small isotopy q': I*E(MaR"-1;.R'-1) of fi which
is active only in a compact neighborhood D of (BnÄ'-r)\,4' in (int -B'nRn-1)\,4
and which produces an embedding E'L: MaR"-L*R'-1 which is a C-embedding
near (Au,B)nÅ'-l. Using a spindle neighborhood of D in M, q'can be extended
in a well-known manner to a small isotopy E: I-E(.M;N) of /such that qr:f
in M\,8' and near A for all t(1. lf fl\M isa C-embedding, we let E bethe con-
stant isotopy.

Choose a covering of (-BnÅ'-1)\,4' by half balls Ur, ..., U" such that Urc
B'\,4 and such that ErlUrnR'-l is a C-embedding. Applying l*mma(.I s
timesgivesasmallisotopy {t: I*E(M;N) ofgrwhichisactiveonlyin (Jrv.-.v(J",
satisfles rlrrl\M:qrl\M for all t<1, and produces a map ry', which is a C-embedding
near Au(BnR'-r) in M.

Choose compact Br, B, such that B-BrvBr, Srcint,R|, and rlr, is a C-
embedding \ear Br. Apply 4.4 with the substitution M*int M, N'*int R"*,
A*(Au,B)nint M, B'*81, B'*a compact neighborhood of B, in B'aintM,
f*rlrlint M. We obtain an isotopy X of {t, and the desired isotopy is the com-
bination XxV xE. tr

4.9. Remark Suppose that n:2. Then in the proof of 4.8 we need the special
case of Theorem 4.4for n:1. For C:LIP this is very easy. We prove the case

C:LQC. We may assume that McRt is an open interval, that B is a compact
subinterval, that N:R1 and that/is increasing. Replacing Aby a closed neigh-
borhood, we may assume that A is the union of a locally finite family of closed
intervals. Replacing B by a finite family of disjoint subintervals and treating each
of these separately, we may assume that B:[0, l], B':1-1,2f, andthat B'aA
iseitheremptyor [-1,r] or [-l,r]u[l -r,2f for some r€(0,U2). It suffi.ces

to find an embedding f1: M*R1 such that (l)Ä:f in M\B' and near A, Q).f,
is LQC near AuB and (3) d(fr,f;B')=e. Indeed, we can then define g,:
(r-t)f+tf,.

Suppose, for example, that B'aA:[-I, r]. Choose s((r,ll2) such that /
is QC near [0,s]. There is a QC extension g: R1*Å1 of /l[0,s] such that g is
C1 outside [0, s]; see [LeVr, p. l2]. Choose sl((J, 1/2) such that g(sr)<f(312).
Define f1: M*Rr as follows: fr(x):f(x) if x<s or x>3f2, fr(x):g(x) if
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J<x<§l, andfr is a suitable PL function on [sr, 3121. Thenfl satisfies (l) and (2),

and (3) can easily be arranged.

4.10. Theorem. Let M and N be LQC n-manifulds and let f: 0M*0N be an

LQC embedding. Then f can be extended to an LQC embedding of a neighborhood

of 0M.

Proof. since 0M and åN have ToP collars, f canbe extended to an embedding

of a neighborhood of 0M. lf n*4, the theorem follows directly from the last

statement of Theorem 4.8. However, since the last isotopy X of the proof of Theo-

rem 4.8 is not needed in the present case, the theorem is also ttve fot n:4. D

4.71. Remark The LIP version of 4.10 is clear, since the boundary of a LIP
manifolds has a LIP collar [LuV, 7.5]. The concept "LQC collar" seems to be

meaningless, since there is no natural way to form products in the category LQC,

cf. ffu2, Example 41. Theorem 4.10 acts as a substitute for collaring in the LQC

manifold theory.

5. Extension

5.1. In this section we consider the following problem: Let G be open in R',

and let UcG be an open set such that Uv\G is a neighborhood of 0G in G.

Suppose that f: G*R' is an embedding such that flU is K-QC. Does there

exist an embedding g: G*Ro such that g:f near 0G and such that g is K'-QC
with some K' depending only on G, (J and K? The following example shows that

without any restrictions the answeris negative: Let G:B'(4)\8",U:(8"(2)\B'),
(B'(4)\E'(3)). For l-a=l we let f: G*R" be a radial embedding such that

f(x):ax for 1<lxl<2 and f(x):x for 3<lxl=4. Then flU is l-QC, butthe
dilatation of g must converge to - as a *0.

We shall show that the answer is positive if U is connected. Moreover, for
fl:A we must also assume that f is QC. In Theorem 5.7 we shall show that the

connectedness condition can be replaced by a condition concerning the size of the

boundary components of fG. As special cases, we obtain quantitative versions of
the Schoenflies theorem and the annulus theorem.

Corresponding results are also true in the category LIP.

5.2.l*mma. Let GcR' be open, let f: G*R" be an embedding and let
gz G*R" be an immersion such that f:g near 0G. Then gG:fG, and g is an

embedding.

Proof, We may assume that G is connected and that f and g are defined on G.

Then the topological degree p(y,f, G) is +1 for y(fG and p(y,f, G):0 for

/€R\/G. Moreover, tt(y,f,Q:tr(y,g,@ for all y6R'118G and p(y,g,G):
tcard s-rb). See, for example, [RR, § II.2]. The lemma follows. n
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In the following theorem, all closures and boundaries are taken in R':

5.3. Theorem. Let G be a domain in R", let U and V be open in G such that
Uv|G and Vv\G are neighborltoods of AG in G, VnGcU, and (J is connected.
Let f: G*R' be an embedding such that flu is K-QC and such that either n*4 or

"f 
,r QC. Then there is a K'-QC erubedding g: G*R' such that glv:flv and K'

depends only on G, U, V and K.

Proof, Choose a connected open set UrcG such that VnGc(J, and Ara
Gc t/. Then C:AUrnG is a compact subset of U\7. Choose open sets Gr,
Gr, Gr, Gn such that G,*rcG,, CcGo, and GrcU\Z. We apply Theorem 3.4
with the suhstitution G*Gz, .A*Gz, A'*Gz, B*Ga, B'nGe,, K*Kz. We obtain a
neighborhood I of id in E(Gr; R'), a continuous map {t: gXI*E(Gr; R,)
and a number Kr=-K, depending only on K and n. Letting g denote the spherical
metric of R' we choose sr>O such that the set

Ärr(la, Gr, er) : {fe E(Gz; R'): q(f(x), r) = e, for all x(G2}

is contained in 9. Set e:min (er, q(Gr, åG)), and fir three distinct points a1,
a2, as ifl U. Let fr be the family of all K-QC embeddings u: (I*Rn such that
(l) u(ar):q.; for 7:1,2,3, and Q) u has an extersicn to a QC embedding
u: G-R". Then I depends only on G, U and K. Since U is connectecl, .f is solid
(3.8 and [Vär, 19.5 and 21.1]). Hence there is e'>0 such that q(u(x),a(!))=e'
whenever x,y€G1, q(x,y)=t and ueg. Furthermore, there is a finite family
{ur,...,u"}cF suchthat F is coveredby the sets ÅIn(e1, Gr,e'), 1=/<s. For each

"l([i,s] we choose a QC extension ur: G*R' of ur. Choose /(0:K0(G,U,K)
such that each u, is .I(o -QC.

Let f: G*R' be an embedding such'that flU is K-QC.
Case l. /isQC. Weshow thatgcanbe chosentobeJQK'-QC. Byanauxiliary

Möbius transformation we may assume that f(a1):a, for j: 1,2,3. Then flu(?.
Hence f(Nr(ur,Gr,e') for some f€[1,s]. Since q{urG2,ui|G1)>e', fGrcurGr.
Setting h:uilflGz we thus obtain a J$-QC embedding h: G,*Gr, which belcngs
to ÅIn(id, Gr,e) and hence to 9. ThentheK.-QCembeclding hr:r!(h, 1): Gr*fl,
satisfies the conditions årlGn:i6 and /alG\8:ålcr\Co. Deflne g: G*R, as

follows:
s (x) - f{x) for x€ UI\GB,

s (x) : u j(l,r (r)) for x€(Gz 
^ 

ur) U Gn ,

s(r) - u j(x) for x€ G\-tå.

Then g is a well-defined immersion. Since g:f in V, g is an embedding by Lemma
5.2. Since S is if,&-QC, Case I is proved.

Case 2. n#4. Applying Theorem 4.4 with the substitution M*G, A*UtoG,
B*cl (\U1), B'*G\V, f-f, we obtain a QC embedding Er: G*Ro such
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that ErlUr=flu, is f-QC. Hence this case reduces to Case 1 with U replaced
by ur. n

5.4. Quantitative QCschoenfliestheorem. Let 0=r= l, and let f; B'1.8'1r;*p-'
be a K-QC embedding. Then there is a K'-QC embedding g:.8'*R' such that
glDB':fl\B" afld K' depends only on K, n and r.

Proof. Choose s€(r, 1). By the QC Schoenflies theorem, there is a QC
embedding fr: B"*R" such that fr(x):f(x) for s<lxl=l. The theorem follows
from 5.3. n

5.5. Remark Theorem 5.4 was proved by M. Näätänen [Nä] in the special
case where/å-B' is a sphere. A shorter proof for this case was given by D. B. Gauld
and M. K. Vamanamurthy [GVmrf. lf n>3, it follows from the extension theo-
rem of [TVl that K'can in this case be chosen to be independent of r [TVz, 3.14]. tr

5.6. Nonconnected U. Suppose that U in Theorem 5.3 is not connected. Let
gobe the family of all J(-QC embeddings u: (J*R" which have a QC extension
u: G*Rn. In the proof of 5.3 we used the normalization u(a):ai, which gave a

solid subfamily I c%o. This is not possible if U is not connected. However, there
are other restrictions which give rise to solid families. As an example we prove
the following result:

5.7. Theorem. Let G, U,V be cs in Theorent 5.3 except that U is not necessarily

connected. Let a>0 and let f: G*R' be an embedding such that flu is K-QC
and such that either n*4 or /ts QC. Suppose that for each component U, of U,

the spherical diameter o/ (cl/Ur)\ f G is at least a. Then tltere is a K'-QC embedding
g: G*Rn such that glv:flv and K' depends only on G, (J,V, K and a.

Proof. By 'Iheorem 5.3 we may assume that U is not connected. Let I be

the family of all K-QC embeddings u: [I*R" such that u has a QC extension
u: G*R' and such that lbr each component [\ of (1, q((cl zu)\zG)>a where
q is the spherical metric of R'. It suffices to show lhat F is solid, since the proof of
5.3 will then be valid also in the present case.

From [Vär, 19.21 it follows that I is equicontinuous, and hence cl fr is com-
pact in C(U, R"). Suppose that(f) is a sequence in F converging to a map f: U*R'
uniformly on compact sets. Let Urbe a component of U. Then fiU, is either con-
stant or an emtredding [Vär,21.3]. Assurnethat flU, is constant. Choose a com-
pactset AcU, suchthatnocomponentof R\l meets both 0U1nG and åU\G.
Then for everyj, no component of R'\[l meets both \flUrnfrG and lfiuN4G.
Hence there are disjoint sets Y[/rand W, which are unions of components of R'$,4
such that qlWr)=u and q(Wr)>oc. This contradicts the fact that the maps frlA
converge uniformly to a constant. Hence flU, is an embedding for every com-
ponent U, of U. From this it easily follows that./is an embedding. I
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5.8. Quantitative QC annulus theorem. Suppose that in Theorem 3.17,

f: A(a,b)vA(c,d)*N is K-QC and that d(fs"-L@))ld(fs'-'(q)=M. Thm

g: A(a,d)*R" can be chosen to be K''QC with K' depending only on a, b, c, d,

M, K and n.

Proof. IJsing an auxiliary similarity map of -Ro we may assume that 0(iml
and that d(fs'-L(d)):|. Thus a(fs"-'(a))=llM.choose a1((a,b) and

drq(c,d). By Theorem 3.17, there is a QC embedding fr: A(a,d)*N such that

fr:f in A(a, ar)vA(dr, d). The theorem now follows directly from Theorem

5.7. n
5.9, Lipschitz uersions. There are several ways to formulate the results of this

section in the category LIP. First, one can consider either Z-bilipschitz or locally

Z-bilipschitz embeddings. Second, one can use either the euclidean or the spherical

metric. The proofs are fairly easy modifications of the proofs given in the QC case.

As an example we give the bilipschitz version of Theorem 5.4:

5.10. Quantitative bilipschitz schoenflies theorem. zel 0=r= I and let

/: B\f,(r)*R" be an L-bilipschitz embedding such that,f§'-'(r) is contained

in the bounded componeni o/ -R\/S'-t. Then there is art L'-bilipschitz embedding

g: B"*R" such that gl\B":fllB" and L' depends only on L,n andr. tr

6. Quasi§perbolic metric and solid homeomorphisms

6.1. This section is a preparation for Section 7. We give some properties of
the quasihyperbolic metric of a domain in R'. This metric has been considered in

[GP], [GO] and [Vu]. Our work partially overlaps with [Yu]. We also introduce

the solid homeomorphisms which are more general than QC homeomorphisms but

which share certain common properties with the latter class of maps.

6.2. Quasihyperbolic metric. In the rest of Section 6, D and D' will always

denote proper subdomains of -iRn, where n>2 is a fixed integer. For x€D we set

qo(x): d(x,DD)-r'

The quasihyperbolic metic k, of D is defined by the element of length qr(x)ldxl.
This means that for a, be D we have

ko(a, b) - inf

where the infimum is taken over all rectifiable paths a joining a and b in D. If 0D

is an affi.ne subspace T of R", k, is equal to the hyperbolic metric o, of D, defined

in 2.4.

{ noa'
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Gehring and Osgood [GO, Lemma l] proved that each pair of points a, b in D
can be joined by a quasihyperbolic geodesic «, that is,

ku(a, b) :

If glAcD with Ä compact in D, we define the relatiue size of A in D as

the number
d(A)rp(A): 

«i_,q, aö

Observe that if ro(A)<2 and if a,bQA, the segment ablies in D. Moreover, if
rp(A)<|, then A is contaihed in a ball in D.

We start with the following elementary and well-known property of lP:

6.3. Lemma. Let EcN be a bounded set, artd let t>0 be such that la-bl>t
wheneoer a,beE attd a#b. Then cardn=-x.(d(E)lt) where x,(a):7t+ufr)".

Proof. Choose a closed cube Q of side length d(E) such tbat EcQ. Let k
be the integer for which k-l=d(E)l/ilr<k. Divide Q into ft' closed cubes Q; of
side length d(E)lk. Then d(Qr\-.t, and thus each Q; contains at most one point
of .E Hence card E<k". n

6.4. Lemma. Let trt>O andlet AcD beacompoctconnectedsetwith ro(A)=1t.
Then there is a constailt r:r(lr,n)>l such that each pair of points a, b(A can be

joined by a path a in D such that l(a)=cla-bl. Infact, one can choose c:x,(2+2p)14
for all p. and c:l for p.<2.

Proof. Set t:d(A,lD), andlet a,bQA. If la-bl=21, we can join a and

b by a line segment in D. Suppose that la-bl>2t. Since I is connected, the neigh-

borhood B(A, tl2) is arcwise connected, Choose an arc C joining a and b ia
B(A, tl2). Let < be the natural ordering of C with a<b. Define points a:ao<
aL<...< as:b of C by ai al:rnax (C aB" (ar, tl2)). Then la1-a1l>tl2 whenever
0<i<7=s-1. Furthermore, d(C)=41u4)+t=(1+p)t. Hence Lemma 6.3 implies
s<xrQ,+2p). Let a be the broken line with vertices ao,al,...,c". Then a is in
D, and

l(a) = stf2 = x,,(2+2p)la-blla. tr

6.5. Lemma. Let trt>0 andlet AcD be compact andconrtectedv,ith ro(A)=1t.
Then there is c1:c1(p,n)>l such that

f nrat'

kr(a, b)d(A, å.D) *ct
la-bl

wheneuer q,bCA and a*b. Moreouer, limrro crQt,n):\, and ctQt,n) isincreas-
ing in p.

I_=
cr
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Proof. Set M:d(A) and t:d(A, åD). Define r:r(pX(O, l) by

r : min (p,ll2).

Let D' betheneighborhood B(A, rt). Then M<pt and rr,(A)<plr. By Lemma 6.4,

there is a path a joining a and b in D'such that l(a)=cla-ål with c:c(1tlr,n).
Then

ko@,b)= ! oods= I ,--!fr =t+
dd

This proves the second inequality of 6.5 with q:cl(l-r). For p=ll2 we have

h:ll(l-p), and hence cr*l as P+0.
To prove the first inequality, let a be a rectifiable path joining a and b in D.

If im acD', then
o f ds -_ la-bl(6.6) Jarat=l7a7a*" =(1+pTD7'

If im a *D', d has two subpaths ar, a, joining A and D\D'in D'. Since la-bl=
M=Ft, we obtain

I noa, = . I f* *n = ir., = tli!+,!r1,,
a1U*2

Together with (6.6) this gives the flrst inequality of 6.5 with

cr : (l *P*r)max(1, trtl2r).

For ,4--ll2 we have cr:1*2p, and hence cr*7 vs p*Q. tr

6.7. Corollary. The quasihyperbolic metric of D is LIP equiualent to the euclidean

metrrc. u

6.8. Remark Since c1(p,n)*l as p*0, the identity map i: (D,kp)*(D,d)
is locally almost l-quasisymmetric in the following sense: For every x(D and

e>0 there is a neighborhood U of x such that ilU is 4-quasisymmetric in the sense

of [TVJ with 41r;:11*e)r.

Lemma 6.5 also shows that ro(A) cannot be much smaller than the quasihyper-

bolic diameter ko(A) of ,4. More precisely, we have the following result:

6.9. Lemma. Let Ac.D be compact. Then

ro(A) = 2(eko<4 -l)-
If, in addition, A is connected,

kD(A) = cr(ro(A), n)ra(A).

Proof. The first inequality follows from the inequality

ko@, b) = log (1 * pr(a)la-bl),



Lipschi tz and quasiconformal approximation and extension 329

proved in [GP, (2.2)]. The second inequality follows directly from 6.5. see also

[Vu, 2.18 and 2.19. (4)]. tr
6.10. Sotid homeomorphisms. A homeomorphism Jr: D*D' is said to be solid,

if f and f-a are uniformly continuous in the quasihyperbolic metrics of D and D'.

We say that a homeomorphism f D*D' is cp-solid if 9: [0, -)*[0, -) is a
homeomorphism and if

q-r(kr(o, b)) 1 ko,(flo), f(b)) 1 E(koto, b))

for all a, beD. From the convexity of the quasihyperbolic metric it easily follows

that f is solid if and only if / is g-solid for some E. Moreover for every r>0 one

can choose g so that Ellr, *) is linear (see the proof of Lemma 6.21).

F. W. Gehring and B. G. Osgood [GO, Theorem 3] proved that every K-QC

homeomorphism I D*D' is g6-solid with

ExU) - c max (t, t"),(6.1 1)

where a:Ku(l-n) ur6 c:c(K,n). On the other hand, a solid homeomorphism

need not be QC. For example,if f,g: D*D' are homeomorphisms such that g

is soiid and f:g outside a compact set, then / is solid. The simple extension

Fr: Ä|+1*4i*t of a QC map f: R"tN considered in [TVd is solid in H"+7:
int R!11 but not usually QC (see 7.1). The following theorem, which is closely

related to a result of Gehring [Ge, Theorem 4], shows, however, that quasiconfor-

mality can be characterized in terms of solidity:

6.12. Theorem. A homeomorphism f: D*D' is quasiconformal if and only if
there is a homeomorphism E: [0, -)*[0, -) such that the restriction of f to euery

subdomain of D is rp-solid.

Proof.If/is K-QC and if GcD is a subdomain, then flc is.r(-QC and hence

g*-solid witt, cp* as in (6.11). Conversely, suppose that flG is g-solid for every

domain GcD. Let x€D. For r>0 we let l,(r) and /(r) denote the maximum

and minimum of lf(y)-f(x)l over y(^S'-r(x,r):S,. Set G:D\x and G':
D'\,f(x) :fG. Then for suffi.ciently small r we have rG(S):2 and L(r)ll(r)=
re,(fS). Since k6,(/S)=E(ko(S)), Lemma 6.9 implies that L(r)ll(r) is bounded

by a constant depending only on E andn. Hence / is r<-QC for some K:K(E,n)
N\,34.21. tr

6.13. In the rest of this section we give alternative characterizations to the

solidity of a homeomorphism in terms of solid families of embeddings (see 3.8).

This explains the term. In Section 7 we show that for nl4 solid homeomorphisms

can be approximated by QC mappings which are bilipschitz in the quasihyperbolic

metric.
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By a cube in lR'we always mean a closed n -cube with sides parallel to the coordi-
nate axes. For every cube Q, we let zobe rts center and D"n its side length. Thus

Q:zg*)'ol'. Let ag: Rn*Ro be the affine map

us(x): zs*).sx.

Thus urI":Q. For />0 we let QQ) be the open cabe url"(t):zoa),n1"(t);
the corresponding closed cube is then denoted bV QQ).

If DcrY is a proper subdomain and if l<rEs, we let tro(r,s) denote the
family of all cubes QcD such that QQ)cD and Q(t)+O. Furthermore, we
set /do(r):ffp(r,r). If Q(tr (r,s) and if l=t-<r, then obviously

(6.t4)

6.15. Lemma. Suppose that l=t<r=s and that Q(,toQ,s}.
aoli" (t): (1" (t), d)*1o, ko) is cr-bilipschitz with cr: cr(t, r, s, n).

Proof. Let ct:ctQtfnlQ-t),n) be the constant given by Lemma6.5. If
x,y€i'(t), we obtain from 6.5 and (6.14):

ctlaa(x) - aaU)l

Then

a(0ft),0D)

loa@) - ae0)l

= 
crlx-Yl 

.r-t )

_ lx-yl
hd(QO, AD) cr(s -Dl/i

Hence we can choose cz:max (cJQ-t),cr(s-)fn). tr

6.16. Notation. I*t f: D-D' be a homeomorphism and let QcD be a cube.
We set

dL: d(fe, oD'), §rak) : -P, 1e: §rsfap.

Thus p[ is an affine map of Än, and fe is an embedding deflned in aoLD.
If Q(/deQ, s), this set always contains the open cube 1'(r). Observe that

å(0):0.
6.17. Theorem. Let f: D-D' be a homeomorphism. Then the following con-

ditions are equiualent :

(l) f is solid.

Q) There is r>1 such that {fsV": Q<tr (r)} is solid.
(3) If l=t<.r<s, then {fnll"(t)t Q€trD?, s)} is solid.

Proof. Trivially (3) implies (2). We show that (2)+(l)+(3).
Suppose that Q) is true. We flrst show that / is uniformly continuous in the

quasihyperbolic metric. Let e>0. By (2), there is M>0 such that d(fol)=M

ko(ua(r), aq(») =

ko(oa(x), aeU)) =
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for all Qe trr(r). This irnplies ro,(fQ)=M. By Lemma 6.5 we obtain

(6. 18)

(6.19)

for all a,b(Q, where cr:6:r(M,n). By Q), there is ä1€(0,1) suchthat lfa@)l=
e/c, whenever lxl=ä, and Q(troQ). Let cr:cr(1,r,r,il\ be the constant of
Lemma 6.15, and set ä:är/ca. We show that kD,(f(a),f(b))=t whenever a,b(D
and kr(a,b)=ö.

Lrlt Q€trD(r) be the cube with center ze:a. By kmma 6.15, ko(a,\Q)>
lfc2>ö, and hence b(Q. Th.us uqt(a):O and asl(b):b'<1". By 6.15, lb'l=-
crkr(a,b)=ör. Hence lfa(b')l=elcr. By (6.18) this implies

k,, (f(a), f(b)) = clfa(b')l = e.

Hence / is uniformly continuous.
We next show that.f-'is uniformly continuous. Let ö'>0. BV (2) there is

er>O such that lfa@)l=-e, whenever Q€trot\, xQI", and lrl=min (1,6'lc).
We show that ko,(f(a),f(b))>e1lc1 for all a,b(D such that kp(a,b)>ö'.

Choose Qefrgl suchthat za:a. If b(Q, then unl(b):b'Qf", andLemma
6.15 implies lb'l=ö'lcr. Hence lfa@')l=er. By (6.18) this yields

kr,(f(a),f(b)) =- lfa(u')lf c,= e,lc1.

If bqQ, then (6.18) implies

kr,(f(a),f(b)) =- kr,(f(a),f\Q) =- d(o,fr\I")lcr= etlh.

Hence ,f-' is uniformly continuous,
Next suppose that (1) is true. Thus / is q-solid for some homeomorphism

E: [0, -)*[0, -). We must show that the family g:{fnll"(t): Q(ffo|,s)} is

solid. Since/o(0):0 and since I"(t) isconnected, it suffices to show that I is equi-

continuous and inversely equicontinuous (see 3.8). Let e>0. For Q(./dr(r, s1

set Q' :QQ). Then (6.14) and Lemma 6.9 imply k r(Q)=-c, for some cs: cs(r, t, n).

Consequently, ko,(fQ')=Ek). By Lemma 6.9 this yields ro,(fQt\=2(eeG)-l):
co. Hence, by Lemma 6.5,

for all a, bQQ', where ci:ct(cn, fr).

Let x, y€|"(t). Since d&=d6, (6.19) and 6.15 imply

I fa@) - fa(y) I = cikr, ("f(ao@)), f(oaU)))

= ciE(ko@e@), dQ(y)))

= ciqkzlx- yD,

where cz:cr(t, r) S, n). Hence I is equicontinuous.
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We finally show that I is inversely equicontinuous. Let ä> 0, and let x, y(1" (t)
with lx-yl>ä. We want to find a positive lower bound for lfs(x)-fr(y)1, valid
for all Q€tro1r,s). tsy (6.19) and 6.15 we obtain

lfa@) _fq(y)l 
= kr, (f(ar(x)), f(aq(r)) agl c,1ag

= E-,(ölcr) d$,lcid$.

Hence it suffices to find a positive lower bound for d&1d6. First, we have

drrld$=r o4|q)lr u,UQ'). Here r r,(fQ')=rn. Hence, lf r r,(fQ)>|, d$ld$=l lcn.
Suppose that ro,(fQ)=l. Then Lemma 6.9 implies

rr(fQ) =- ko,(fQ)lc,(1, ,) = E-'(ko@))lcr(t,n),

where, by Lemma 6.9 and by (6.14),

ko(Q) = tog(t+rr(Q)12) =- log (l + li(s- l)).
The theorem is proved. n

6.20. Remark. The proof of Theorem 6.17 shows that a quantitative version
is also true. Thus, rf f: D*D' is a E-solid homeomorphism and if l=t<r<s,
then {fall"(t): Q€.trD?, s)} is contained in a solid family I of embeddings

I"(t)-p", depending only on (p, t, r, s and r. Conversely, if fr is a solid famitry

of embeddings of 1n andif {fnlf": Q€:{r(r))cfr, thenfis E-solid withE depend-

lng only on I and r.

6.21. I*mma. Suppose that a homeomorphism f: D-D' is locally L-bilipschitz
in the quasihyperbolic metric. Then f is L-bilipschitz in the quasihyperbolic metric.

Proof. It suffices to show that f is "L-lipschitz. LeL o, b(D, and choose a

quasihyperbolic geodesic joining a and b. Divide a to subpaths 41,...,c" such

that/is l-bilipschitz on each im at. I-.et ai-1and ai be the end points of ar. Then

ko,(f{o), f(b)l kr,(f(a j -r1, 7@ ))
§

=L Zkp(ai_1,ai)j:r
: Lko(a, b). tl

7. Lipschitz approximation of solid and QC homeornorphisms

7.1. In this section we first show that if n*4, every solid homeomorphism
D*D' can be approximated arbitrarily closely in the quasihyperbolic metric by
homeomorphisms which are bilipschitz in the quasihyperbolic metrics of D and D'
(and hence QC). The method is a variation of the proof of the extension theorem

§
/-9

./-t
.j:1
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in [TYJ. In fact, in [TVl we first extended a QC homeomorphism I lY*R' to
a homeomorphism Fr: Ri*'*Ri*' by

F, (x, t) : (f (x), max {l f (y) - f (x)l : y € B (x, t)}).

Then the restriction of ,P, to H=int,R!+l is solid but not necessarily QC. We

constructed an approximation .E of FrlH which is bilipschitz in the hyperbolic

metric and hence QC. Since ku(F, F)=-, F and F, have the same boundary

values, and thus Fvf is the desired extension of/.
The proof in [TVJ was based on the qualitatiye part of Lemma 3.9 of the present

paper. However, it is possible to simplify the proof by making also use of the quan'

titative part of 3.9. Indeed, it is not necessary to introduce the points z" in lTYr,
(2.8)1, and Carleson's finiteness idea is only needed in the approximation of the

maps FrlQ, not in the glueing process. We shall use this simplification in the
proof of Theorems 7.4 and 7.18.

As an application of our result we extend to higher dimensions a result of
Ahlfors concerning QC reflections in lR2.

In general, the dilatation of the approximating homeomorphism depends on

the closeness of the approximation. However, we show in 7.18 that every K-QC
homeomorphism DtD', nl4, can be approximated arbitrarily closely in the

majorant topology by LIP homeomorphisms which are Kr'QC for some Kr:
K1(K,n).

7.2. A cube decomposition. Let D be a proper subdomain of Å'. lVe define

a decomposition tr(D) of D into closed cubes as follows. Fot k€Z let 9(k)
be the decomposition of -P into closed z-cubes of side length 2k and with vertices

in 2kz'. set g:v{9(k): k€z} and /do(D):{QQg: QQ)co} (see 6.13 for
notation). Each cube of ffo(D) is contained in a maximal cube of tr|(D). Let
,f,(D) be the family of all maximal cubes in to(D). We divide each cube of
/{,(D) into N:2" cubes bisecting the sides of 0. This gives the family ff(D)
of cubes in D.

We divide ff(D) into disjoint subfamilies tr (D),...,trr(D) as follows: Divide
f into cubes Qr, ..., Qy bisecting the sides. Then set ffi(D):{asQi: Q€{L(D)}
where an is as in 6.13.

Similar decompositions have been used, for example, by H. Whitney [Wh, p.67],
E. Stein [St, p. 16fl and M. Kiikka [Kk, p. Z. The following properties of X{(D)
are readily verified (notation as in 6.13):

7.3. T*mma. (l) v/d(D):D.
Q) If Q,R(tr(D), Q*R and QaRtL, then intQnintR:$ and

lollR€ {l12, l, 2}.

Q) /{(D)c{r(s, lr.
(4) rf Qer(D), then tl7<rr(Q)<fi12.
(5) If Q, R<4@), then QnR:0. rl
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7.4. Theorem. Let n*4, let t>0, and let 9: [0, -)*10,*) be a horneo-

morphism. Then there is a number L:L(rp,e,n)>l with the following property:

Suppose that D and D' are proper subComains of R' and that f: D*D' is a

E-solid homeomorphism. Then there is a homeomorpltism F: D*D' such that
(t) ko,(F,f)=e,
Q) F is L-bilipschitz in the quasihyperbolic metrics of D and D',
(3) r is lzr-z-QC.

Proof. The proof of Theorem 7.4 will be completed in 7.11. From now on,

we assume thatn, e, E are given as in the theorem and that f: D*D' is g'solid.

7.5. Lemrna. There is M:M(E,n) such that

tlM = dgld{= tt, dg= ad(fQQ),0D,)

wheneaer Q,R€/{(D) with QnRlL.
Proof. By 6.9 and,7.3.(4), kD(Q)=ML for some Mr:Mt(n). Hence kr,(fQ)=

E(Mr). Since d|=d6+d(fQ):(t+rD,Uq)d[, Lemma 6.9 implies d{=ad[
with M:2ee(twr). §y symmetry, d[=aad. The last inequaiity follows from the

factthat QQ)cv{R€.r(\: RaQtL}. n
7.6. Lernma. There is a number cs:cz(e,n)>l such that

frilfT@: UAQ), k",) * (N, d)

is cr-bilipschitz for euery Q(/{(D).

Proof. Set A:f!Q). Since AQ)€trD(512,1512), 6.9 and (6.14) imply
rr,(A)1M2:Mr(E,n). Hence we can apply Lemma 6.5 with c1:cr(M2, z). For
a,b(A we obtain

I fr6@ - §ilt) I : Io - bl I dro < crko, (a, b) d (A, 8D') I d6 < c 1k p, (a, b).

By 7.5 we also get

1fr6@) - §6(u)l = ko,(a, b) d(A, LD')Icrd$>- ko,(a, b)lMc,.

Hence the lemma is true vith cr:b4sr. I
7'7' constru"'^;Y;;"1 

urrr,. ...v 4(D),
vi(D) : u {QQ +z-i-r)' Q<trt* (D)\,

wi(D) : v {Q0 * r- i -z) : Q( trf (D))

with %(D): wo(»1:9. lf Qc.,rlD) and 1-.t=312, we set

Va(D, t) : I" (t) n aöLVt-r(D),

Wo(D, t) : I'(t)naolWr-r(D).

P. TurrA and J. VÄrsÄrÄ
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Then for every r((1, 3l2l there is a finite family S(n, t) such that Va(D,l) and
Wo(D, t) belong to ,S(z,l) fcr every dcmain D and for every 8(f @).

By 6.17, 6.10 and 7.3.(3), there is a solid family 9:9(E,n)cA(t"Q); n')
such that fall'Q)<g for every g-solid homeomorphism /: D*D' and for every

Q€tr(D).
We apply Lemma3.9 with U:I'(312), U':1"(413), Y:Va(D,312), W-

Wa(D,312) for QU{(D), and with fi:{sll"Qlz): gcg). Since the family
S(n,312) is finite, we obtain:

7.8. Lemma. Let €'>0 and L>1. Then there are positiae numbers
ö:ö(e', eon)=e' and L':L'(t', e,fr, L)=L with tlrc following properties:

Let D be a proper subdomain of N, let QC{(D), Iet h: V,(D,312)-R" be

a locally L-bilipschitz embedding, and let E(fi be such that d(s,h;Ya(D,312))<ö.
Then there is aLIP embedding h': I'(312)-N such that

(t) d(h' , g; I" (413))< e' ,

(2) h':h in Wr(D,413),
(3) h'll'{413) is L'-bilipschitz. n
'7.9. Constructions. Since I is solid, there is a number q:q(E,a)>O such

that lg(x)-g(y)l=q whenever g(9 and x,y€I'(714\ with lx*yl=tlt. Let
cr:cr(3f2,5,15,n), cu:cr(E,n) and M:M(E,n) be as in 6.15, 7.6 and 7.5.
Define numbers är=är-r=...=äo=0 by är:pln(ql(M+2),elc) and äj-r:
ö(6i,e,n)lM where ä( ) is as in 7.8. We also define numbers Zo=...<L* by
Zo:1 and Li:czcsl'(öi,(p,tt,cscrLi-r), where.L'( ) is as in 7.8. Observe that
the sequences (ä0,..., äiy) and (Lo,...,Iiu) depend only on «p,n and e. We show
by induction that the following lemma is true for every integer j([0, N]:

7.10r. Lemma. There is an embedding Fi: Vi(D)-D' with the following prop-
erties:

(t) d (F j, f; Q Q + z- i -'1) =- ö, då for eu ery QUq (D).

Q) FiQ0*r-i-r)cfQQl2) for er:ery Q€t{f (D).
(3) fi is locally Lr-bilipschitz in the quasihyperbolic metrics of D and D'.

Proof. Since Z.(D):0, 7.100 is true. Suppose that 7.10i-t is true. Thus we
harr an embedding F,-r: Vi-JD)tD'. We define Fi(x): F;*r(x) for x(Wi-JD).
Let Q€$@). Then fall'(312)<s. Set ha:fr$\-selVe(D,312). We first show
that d(ha,fo;Ve(D,312))=515,, cp,n). Let x(Vs(D,312). Then n€o(ä1,R(1 +2-i)
for some R(tr;-l@) with Än Q+A. By 7.5 andT.l}it we obtain

lhs(x) -fe@)l : l,r(oq(x)) - Fj -t(aa@»ll dto

= M6it: å(öi,r?,n).

Hence we can apply Lemma 7.8 with g:.f,, h:ha and e':öj. We obtain a LIP
embedding h!n: I"(312)*Ån such that (a) d(h'e,fo;I^(413))<ö. and (b) hb:ha
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in We(D,ap). By 6.15 and 7.6, ho is locally c2csLi-1-bilipschitz in the euclidean

metric. Hence h:all"(4t3) is Lilczcz-bilipschitz. Setting F,:(8fi-Lh'nanl in

Q0+Z-i-'1 we obtain a well-defined map Ft: V1(D)*I{. We show that F,
satisfies the conditions (1), (2), (3) and that F.; is injective.

Let Q</d;(D). It QU|;-L(D), (1) follows from 7.10;-r. If Q€,ri@),
we obtain

d(Fi,f; Q0+Z-i''1): d6d(hb,fa; I"(t+z-i-')) = 6,d$.

To prove (Z),let again ?€tri(D). rf Q€tri-t(D), (2) follows bv induc-

tion. Snppose that Q</dj(D). Then d(h!r,fs; I"@13))=öi1öy=q. By the choice

of q, this implies hbf O+2-i-')cfaf Qlz). Hence (2) is true. Observe thar Q)
implies imFtcD'.

lf $€/df-L(D), .F; is locally Zr-bilipschitz in Q!+z t-'1 by induction:

rt Q€/{j(D), then 6.15,7.6 and (2) imply that FÅQQ+}-,-\ is zr-bilipschitz.
Hence {, is a locally Z, -bilipschitz immersion. We finally show that ,{ is injective.

We know that FtIQQ+2 i-') is injective for every Q<ff;(D). Moreover, if
Q,R</d;(D) and QnrR:A, then (2) implies that

Fj Q0 *2- i-\ nf'j.R(l 12- i -t1 : g.

Hence it suffices to show that Fi@)*F;(.rr) whenever i>2, x+y, x(Q(l+2-i-')
and y(Ä(1 *2-j-t> where Q(tr1@), R€/d;-,(D) and QaRt\. The equality

Fj:(P6)-th|art is valid in Q$|3)aVi(D). Hence we may assume that y$Q@13).

By theihoicö if q,we have d(fr(arl(x)),fa\r6l4))>4: Hence lf@)-f0)l=sd[.
BV (1) and 7.5 we obtain

tFi@)-F1u'='{f,-{!)J-,':;:'-"ot-tpio)-ru)t

= dfa@-(M+l)äN) = dfaöN = 0. !
7.11. Completion of the proof of Theorem7.4. We show that the theorem is

true with L:Ln, defined in7.9. Let f: D*D' be E'solid. We show that the

map.Fly of 7.10ry is the required.F. First, .F,y is an embedding of D into D', and

F1, is locally Z, -bilipschitz in the quasihyperbotic metric. To prove the condition
(1) of Theorem7.4,let x€D. Choose 8€.f @) containing x. Then 7.10. (1) yields

lrr(x)-/(x)l = öNd6= ed$lcs.

By 7.6 and 7.10.(2), this implies kD,(FN@),f(x)=e. Hence (l) is true. Moreover,
(l) implies that Fy is a homeomorphism of D onto D'.

We already proved that Fn is locally Z1r-bilipschitz in the quasihyperbolic

metric. By 6.2l,.Iju is Z1y-bilipschitz.
To prove that F* is Iff-'z-QC, it suffices to show that the linear dilatation

H(x, Fy) is at most Lk När,34.21. This follows from (2) and from Remark 6.8. tr
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7.12. Corollary. Let n*4, let e>0 and let K>1. Then there is L:
L(K, e,n)=l such that if DcR" is a proper Subdomain and if f: D*D' ls a K-QC

homeomorphism, then there is a homeomorphism F: D*D' such that

(t) kp,(F,f)<t,
(2) F is L-bilipschitz in the quasihyperbolic metrics of D and D',
(3) ,F' is 1zn-z-QC. n

7.13. Remark It follows from TheoremT.  that solid homeomorphisms and

QC homeomorphisms have similar boundary properties, at least for n*4. For
example, if å is an isolated boundary point of D andif f: D*D' is solid, thenf
has a limit b' at b, and b' is an isolated boundary point of D'. Furthermore, let

H":intÅ|, and let f: H"*H" be solid. The f car, be extended to a homeo'

morphism c: Ri*R1, andtheinducedboundarymap glR'-1 is QC. Itispossible

to give direct proofs for these and several other results on solid homeomorphisms.

These proofs are also valid for n:4. Cf. [Th, 5.9.6].

7.14. Quasiconformal reflections. Let E be a closed connected set in R'such
that Å'\E has exactly two components D1 and Dr. A homeomorphism f: N 'R"
is said to be a reflectionin -E if flE:id and fDr:pr. Then fDr:Dr, jf is sense'

reversing, and 0Dr:g:0D2,. If/is a reflection in '8, we can always find a reflec'

tion g in E which is also an inuolution' that is, gg:id' For example, we can choose

s:UlD,)v(f-rlD,).
L. V. Ahlfors [Ah, p. 80] proved that if f: R2*R2 is a QC reflection in E,

there is a reflection F in E which is bilipschitz in the euclidean metric. We shall

extend this result for all dimensions al4.
on the other hand, Ahlfors [Ah, p. 75] also proved thatif E admits a QC reflec-

tion, .Eu- is a QC circle. (By a classical result of L. E. J. Brouwer, it is always a

topological circle.) This result cannot be extended to higher dimensions. Indeed,

for every n>3 there is a QC reflection f: N*N in a set E such that .Eu- is

a topological sphere but no nonempty open subset of E can be quasisymmetrically

embedded into R'-1. See [Tu2, Example 2].

7.15. Theorem. Suppose that n*4 and that f: R"*R" zs a K-QC reflection

EcRo. Then there is a reflection F: P{-R" in E such that F is L-bilipschitz

the euclidean metric with L depending only on K and n.

Proof. Let Dr, D2 be the components of lR'\E, and let fr: D1'D, and

f2: Dr*p, be the K-QC (sense-reversing) homeomorphisms definedby f. Applying

7.12 with e:l we find homeomorphisms F1: Dr-P, and F2: Dr*p, such

that kor(Fr,ft;Dr)*|, kDr(Fz,fz;Dz)=1, and such that F, and F2 are Zr'bilip'
schitz in-the quasihyperboliö metrics of D, and D, with L1:L1(K,n). Then F: Ftv
fru(idlZ) is a reflection in E

in
in
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For x€R' and r>0 we let as usual L(x,f,r) and l(x,f,r) denote the
maximum and minimum of lf(y)-f(x)l over y€S'-l(x,r). Then there is H-
H(K,n) such that L(x,f,r)=Hl(x,f,r); see, for example, the proof of [Vär,
22.3). We showthat FisHeLr-bilipschitz, e:2.7182..., intheeuclideanmetric.
By Lemma 2.2, it sufrces to show that

(7.16)

for all x€R'.
Let f,rst x€ An\E,

Choose y and z in E
we obtain

L(x, ,F,) = I{eLr, L(x, F -t) = I{eL,

say x€D* Set r -d(x, E), y' -. d{f(*), E), y " :d(F{x), E).
such that ly - xl:r and l, -f(*)l:r' . Setting s - lrc - zl

r' = lf@)-yl = L(y,f, r) = Hl(y,f,r) 
= Hr,

y' : lf(x)-zl= l(2,f, s) = L(2,f, s)lH = slH > rlH.

Furthermore, since tcr,(f@),1x))=t, 1Ce, (2.1)l implies

t'fe<r"=er',
and (7.16) follows by Lemma 6.5.

Next assume x€E. l-nt r>0 and let ly-*l:r. lf y€D1, lfU)-xl=
Hl(x,f,r)=Hr. Since tcr"(r1fl,1y1)=t, [cP, (2.2)] irnpties lpU)-fU)l=
(e-t)d(f(y), n)=Q-t)lfQ)-xl<@-t)Hr. Hence lt-(y)-xl<eHr, which
implies the first inequality of (7.16).

Similarly, lfb) - *l= r (x, f, r) I H > r f H, and lr 0) - f U)l < @ - t) d (F ( y), E) =(e-l)lF(y)-xl, which implies lr(y)-xl=lfj)-xlle=rfHe, and we obtain the
second inequality of (7.16). n

7.17. Approximation by LIP homeomorphisms. In Theorem 7.4 we approxi-
mated a solid homeomorphism I D*D' by a homeomorphism F which was
bilipschitz in the quasihyperbolic metric. We shall next give a related result which
is weaker in two respects: (l)/is supposed to be K-QC and not only solid, (2) F
is only locally bilipschitz. On the other hand, it is stronger in the following respects:
I' is fr-QC with Kr:Kr(K,n), (2) the approximation is in the majoranttopology
and not in the uniform topology of the quasihyperbolic metric, (3) D can be the
whole space .R', and (a) it is strongly relative. Since the proof is a modification
of the proof of Theorem 7 .4, we shall omit some details. The case z < 3 was proved
by M. Kiikka [Kk] who showed that in this case r' can be chosen to be pL.

7.18. Theorem. Let D be a domain in Ro, n#4, let U be an open set in D,
and let e: u*Rl be continuous andpositiue. Thenfor euery K-QChomeomorphism

f: D-D' there is a homeomorphism F: D*D' such that
(t) lr(x)-/(x)l=e(x) for euery x((J,
Q) F:f ,z D\t/,
G) flu is a LIP embedding,

@\ F is &-QC with K, depending only on K and n.
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Proof. The theorem reduces easily to the absolute case U:D. Indeed, in

the general case we flrst replace e(x) by min(e(x), d(x,\U)) and then apply the

special case in each component of t/. We obtain a 1(r -QC LIP homeomorphism

Fr: U*fU which can be extended by /lD\U to a homeomorphism F: D*D',
which is Kr-QC with rr:s,ax (r, &) [Vär, Theorem 2].

From now on, we suppose that U:D and that f: D*D' is a K-QC homeo-

morphism. We may assume that e(x)<d(f(x),0D') if D'*R" and that e(x)=
(t + l/(x)l)-l. We replace the cube decomposition ff(D) of 7.2 by another decom'

position tr (D) which also depends on / and e. Let I be as in 7.2, and let tr'(D)
be the family of all maximal cubes of I satisfying the conditions QQ)cD and

d(fQQ\=nin ep(3). Dividing each cube of trt(D) into N:2" subcubes by

bisecting the sides we obtain the family tr(D). It has the following properties:

(1) uff (D)- D.
(2) If g, R€lf (D), Q# R and Q n R*9,

)'ql )"n€ {1 12, l, 2}.
(3) Ii Qew(D), QO:D.
(4) If x€Q€3r (r), d(fD=e(x).

/rL(D)u...v/fj(,D).

then int Qn int R:0, and

as in 7 .2, and set /f; (D):

We next show that there is fuf - M (K,' n) such that

0.1e)
I @<MM d(fR)

whenever Q,R€lf (D) with QnR*0. Wemayassume that Q*R. By symmetry,

it suffices to prove the second inequality. Since Q(S)cD, it follows from [Vän,

2.4llhat f@(3\ is 4-quasisymmetric with some 4 depending only on K and n. Let

z(Q. Then lr-ral=12*-zelfr. Since z*<A(3), this implies lfQ)-f(zs)l=
4 (1/i)l 7@ 

") -flze)1, and hence

d (fe) = zq (l;) I fk 
") - f Q dl.

Let y be a vertex of R. Then lzn-z^l'<3ly-z^1, which implies

lf(, ) -ft, i1 = q Q) d (fR),

and we obtain (7.19) with lt:2afiln)nQ).
We let «n be as in 6.13 but replace frfiby the affine map

v6Q):;ured,

and set fa:t$fae. Let 9K be the family of all K'QC embeddings g: I"(2)*11'
such that C(0):0 and d(gl"):I. The compactness properties of QC maps imply

thatg*is solid. Let 9*:{gll"(312): C€gK}. Using the notation of 7.7 we apply

Lemma 3.9 and obtain the following variation of Lemma 7.8:



340 P. Tuxra and J. VÄrsÄrÄ

7.20. Lemma. Let e'>Q, K>l and R>1. Then there are ö:ö(e',K,n)>O
and K' : K'(E' , K, n, K) = K with the following properties :

Let Q€lf (D), let h: Va(D,312)-p be a R-QCLIP embedding, and let
g ( 9* such that d(g, h ; V s(D, 3 I 2)) 

= 
ö. Then ther e is a LIP emb edding h' : I" (3 I 2) - N

such that
(t) d(h', g; I"(413))<e',
(2) h':h in Ws(413),
(3) h'll"(413) rs K'-QC. n
We introduce the numbers q and är,...,äo as in 7.9, where now ä,*:

min(1, ql(a+\) and M is the constant of (7.19). Moreover, we set Kn:l and
Ki:K'(6i, K,n, K;-r) for 1=J<N. Corresponding to Lemma7.l0, we prove for
every ,t([0, trfl:

l.2lr.Lemnn. There is aLIP embe:dding Fi: Vi(D)-D' with the following
properties:

(t) d(Ft,f; Q0+z-i-'1)=atajQ) for euery Q€,/rf (D).
(2) FjQO*r-i-t\cfQQl2) for euery Qetrf (D).
(3) Fi,'r Kj-QC.

Proof. Assume that 7.2lit is true. Define Fi(x):F1.r(x) for x(W1_JD)'
Let Q(*i(D) and set hr:t[F,-$olvo(D,312). By (7.19) we obtain

d(hs,fs; va(D,3lz)) = ö(6,, K, n).

Hence we can apply 7.20 with the substitution t'*öj, K.*K, R-Kj_r, h-he,
g-fa\"Qlz). We obtain a LIP embedding h!r: I"(312)*R" and deflne Fi:
(t§-'h:rar' in QQ+2-i-\. As in 7.10, we can verify that Fi: Vi(D)-D' sat-
isfies the conditions (l), Q), (3) and is a LIP embedding. tr

The proof of Theorem 7.1 8 can now be completed as in 7.1 l The desired map
,F is F,*, which is K" -QC with K, depending only on K ard n. Indeed, if x C e€ tr (D),
it follows from the definition of lf, (D) that

lrr(x) -f(x)l = ö, d(fq = dU! < r(x). tr
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