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MEROMORPFtrIC SOLUTIONS OF THE RICCATI
DIFFERENTIAL EQTJATION

STEVENI B. BANK, GARY G. GUNDERSEN and ILPO LAINE1

§ 1,. Introduction

The special position of the Riccati differential equation

1,v' : a(z) + b (r)w * c(z)wz

with rational coefficients within the collection of birational differential equations

w':R(2, w) was first established by J. Malmquist in his classical paper [l]. It has

been more then twenty years since the appearance of the fundamental work con-

cerning the Riccati differential equation in the complex domain by H. Wittich in
his four articles [13], [14], [15] and [17] and the respective parts of his monograph

[6]. This work done by H. Wittich was preceded by work of K. Yosida (see, e.g.,

[9]) and followed by work of E. Hille [5]-[8], C.-C. Yang [18] and K. Yosida [20],
among others (see, e.g., [9], [10D.

Of course, many important problems concerning the Riccati differential equa-

tion (1.1) and its solutions still remain open. For instance, it has been largely open,

under what conditions a Riccati equation (1.1) with meromorphic coeffi.cients which
are not all entire, actually admits meromorphic solutions in the complex plane.

This article is mainly devoted to presenting some contributions to this problem.

We should perhaps point out here that the problem of whether such meromorphic
solutions are rational or transcendental in the case when the coefficients are rational,
has been treated earlier by H. Wittich [13] and [17].

In this article, the term "meromorphic function" means meromorphic in the

wholo complex plane, unless otherwise explicitly stated. Almost all of our treatment
is concentrated in the special case of (1.1):

u' - A(z)*uz(1 .2)
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with A(r) meromorphic.
then the transformation

(1.3)

This can be motivated in the following way. If c(z)*0,

I b (r) c' (z)w-au_M_w
transforms the general equation (1.1) into the special case (1.2) with

(1.4) A- *-+++-+(l'-++*++,
see [16], p.77. The special case (1.2) may be considered as a normal form of the
Riccati differential equation (1.1) with c(z)70. Because of our main problom,
this specialization means r:o loss of generality. In fact, a solution w of the Riccati
differential equation (1.1) is meromorphic (resp. rational) if and only if the cor-
responding solution of the differential equation (1.2) is meromorphic (resp. rational,
if all coefficients of (1.1) are supposed to be rational).

In § 2, we give some criteria for the existence of meromorphic solutions of
(1.2). This section is mainly of a technical nature, to be applied in §§ 3-6.

In §§ 3-5, we assume that A(z) is entire. It is well-known that all solutions of
(1.2) are meromorphic functions in this case ([4], Satz 4.5). The main results in
this part are as follows. In § 3, we are dealing with the general case (1.1) with con-
stant coefficients. Using the Schwarzian derivative, we prove that all nonconstant
solutions of the Riccati differential equation (l.l) with c(z):c*0 are either trans-
cendental meromorphic functions or Möbius transformations. In § 4, we assume
A(z) to be a nonconstant polynomial of degree n. We prove that if z is odd, all
solutions of (1.2) are transcendental (see also [13], p. 285), while if a is even, then
(1.2) admits at most one rational solution. Moreover, any finite set of distinct
points in the complex plane can be the pole set of a rational function satisfying
a differential equation of the form (1.2) with A(z) a nonconstant polynomial. In
§ 5, A(z) is assumed to be transcendental entire. In this case, the relation A:u'-u2
shows that all solutions of (1.2) are transcendental, and that the order of any mero-
morphic solution is at least the order of l. We prove that it A(z) is a transcendental
entire function, then for any positive function EQ) on (0, *-) satisfying the
condition that limsup,**- (loglog EQ)llogr)-L, the equation (1.2) possesses

at most two distinct meromorphic solutions u1, u2 which satisfy the condition
T(r,u):o(<PQQ, A))) for i:1,2, as r**- outside a possible exceptional set
of finite linear measure. If the order of A(z) is finite, then the equation (1.2) admits
at most two distinct meromorphic solutions of finite order. In addition, when
A(z) is of finite order, the number of entire solutions of (1.2) is at most two.

Our final section (§ 6) comprises a major part of this article. Supposing ,4(z)
in the differential equation (1.2) to be non-entire, it appears that the maximum num-
ber of distinct meromorphic solutions of (1.2) depends on the highest of the multi-
plicities of the poles of A(z). More precisely, if all poles of A(z) are simple, then
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(1.2) admits at most one meromorphic solution, and if A(z) possesses at least ono
pole of multiplicity =3, then (1.2) admits at most two distinct meromorphic solu-

tions. The case where A(z) admits at least one double pole and no poles of higher
multiplicity, appears to be the most complicated. lf A(z) has a double pole at zo

with the Laurent expansion

and if
A(r) - B@-zo)-'+..., fi *0,

B - {1 - n'ln is an integer = 2},

then the existence of a double pole of A(z) with 4B{B indicates tb't the Riccati
differential equation (1.2) admits at most two distinct meromorphic solutions.
The maximum number of distinct meromorphic solutions reduces to one, if there
exists a double pole of A(z) with 4fr:1. The case where all double poles satisfy
4p(B remains somewhat problematic. A series of examples, beginning from Exam-
ple 6.6, illustrate the various possibilities which may occur in the framework of
§ 6, including the possibility of non-existence of meromorphic solutions. The authors
would like to thank here their colleague Matti Jutila, University of Turku, who
pointed out some number theoretic information needed to discover Example 6.6.c.

In this section

(r.2)

§ 2. Existence of meromorphic solutions

we shall consider the special case

u' - A(r)*uz

only, for reasons described in § l. We should perhaps point out that Proposition 2.1

will be improved in Theorem 2.5.

Propositior 2.l. If the Riccati dffirential equation (1.2) with A(z) mero-
morphic possesses at least three distinct meromorphic Solutions ilt, uz, ur, then the

equation (1.2) possesses a one-parameter family (u")"ec of distinct meromorphic
solutions with the property that any meromorphic solution ulal of (1.2) satisfies

u:u" for some C€C.

Proof. Suppose that u1, u21 \ &ta three distinct meromorphic solutions of (1.2)

and denote
w, : (ur-u2)-1, wr: (ur-u3)-7,

Clearly ,ilr, wz both satisfy the linear differential equation

(2.1)

Denoting further
w' +2urw - 1.

Uo: w:___wz * 0
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we get

(2.2) u's+2urur: g.

Let us consider the family of distinct meromorphic functions,

w": w1*Cun, C(C,

For any C€C, the function w"is a solution of the differential equation (2.1). There-
fote wr*O. Hence

uc : ut-(wc)-r

is a meromorphic function. An elementary calculation shows that z" satisfies the
differential equation (1.2). Finally, the meromorphic functions (r")"r" are distinct,
since the functions (wc)cec are distinct.

On the other hand, let u*u1 be any meromorphic solution of (1.2). Clearly
yy:(u1-u)-l satisfles (2.1) and

(wlu)' : lluo, (wrluo)' : lluo.
Therefore

{wlu): C*(wrluo)

for some complex constant C. Hence

t{ : }vr* Ctsn: wg
resulting in u:uc.

Remark 2.2. By the above prool, all solutions of (1.2) are rational as soon
as (1.2) possesses three distinct rational solutions. This is a well-known result
due to H. Wittich ([17], p. 284). One should perhaps note already here, that (1.2)
may possess a one-parameter family of meromorphic solutions such that these solu-
tions are transcendental except for two, one or no exceptions. This follows by the
subsequent rosults and examples.

Proposition 2.3. Let u1 artd u, be two distinct meromorphic solutions of the
differential equation (1.2) with A(z) meromorphic. If all poles of u, and u, are simple
and the residues of2u, (resp.2ur) are ifitegers at all poles of u, (resp. ur), then the
equation (1.2) possesses a one-parctmeter family (uc)cec of distinct meromorphic solu-
tions with the property that any meromorphic solution ulu, satisfies u:uc for
some C€C.

Proof. Clearly wo:(u1-ur)-l satisfles the linear differential equation

(2.1) w'*2urw : 1.

Since 2u, has only integer residues, there is a meromorphic function 7 in the com-
plex plane such that 2ur:y'1r, see, e.g., ll2l, p. 193. Therefore (2.1) may be
written as

Q.3) w'*(y'ly)w - l.
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All solutions of (2.3) are meromorphic. In fact, wo is a particular solution of e.3)
and the solutions of the corresponding homogeneous linear diffbrential equation
w'*(y'fy)w:O are plainly meromorphic. The family of distinct solutions of (2.3)
may be written

wc : tro* C!-t,

where C(.C. A straightforward calculation proves that

uc : ur*(wo* Cy-r;-t

satisfies (1.2) for all complex constants c. Finally, the meromorphic functions
(uc\c<c are distinct, since the functions {wc)cec are distinct.

on the other hand, let ulu, be any meromorphic solution of (1.2). clearry
p:(u1-u)-1 satisfies (2.3). Hence

(ur-u)-' : wo*C!-L

for some C€C, resulting u:u".
Proposition 2.4. suppose that the dffirential equation (1.2) with a(z) mero-

morphic admits a meromorphic solution uo such that at some pole of un the residue of
2uo is not an integer. Then (1,2) possesses at most two distinct meromorphic solu-
tions.

Proof. Suppose (1.2) possesses three distinct meromorphic solutions ut:uo,
u, and ar. Following the proof of Proposition 2.1 we may write the formula (2.2)
in the form

uif uo: -2uo'

Therefore the residues of 2us would all be integers and we have a contradiction.
The followin-e theorem may be considered as a summary of the preceding

propositions. one should note that its complete proof will be postponed until
§ 6.3.

Theorem 2.5. a) If the Riccati dffirential equation (1.2) with a(z) meromorphic
admits an entire solution ur, then all solutions of (1.2) are meromorphic functions.
The collection of tlrcse meromorphic solutions has the form 4l:urv(ug)..., where
(uc\cec is a one-parameter family of distinct solutions of (l.z) with the property that
u1*us for all CeC.

b) If all meromorphic solutions of the Riccati dffirential equation (1.2) with A(z)
meromorphic are nofi-entire, then the following possibilities may occur:

If (1.2) admits a meromorpltic solution. u, such that either
(i) u, has a pole of multiple order >2 or
(ii) u1 has at least one (simple) pole such that the residue of 2u, at this pole is not
an integer, then (1.2) has at most tt+'o distinct meromorphic solutions.
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Finally, if all meromorphic solutions u of (1.2) haue just simple poles such that all
residues of2u are integers, then

(iii) the equation (1.2) has at most one tneromorphic solution or
(iv) all solutions of (1.2) are meromorphic functions and, supposing u1 to be a partic'
ular (non-entire) solution of (1.2), the collection of all meromorphic solutions has the

same form as in part a).

Proof. a) Since er, is entire, ,q:ui-u', is an entire function. Therefore all

solutions of (1.2) are meromorphic functions ([4], Satz4.5). To prove the second

assertion, we may solve the equation (1.2) explicitly. In fact, let u be a primitile of
2u, and F be a primitive of e'. Then all solutions of (2.1) are meromorphic and

they can be represented in the form

w : e-'(Cl F),

where C is a complex constant. Immediately we may verify that all meromorphic

functions of the form
(2.4) uc : ur- e'(C + n1-t

satisfy the equation (1.2). Conversely, any meromorphic solution u*ur of (1.2)

is of the form (2.4) for some complex constant C. b) Proposition 2.3 proves the

cases (iii) and (iv) immediately. Similarly, Proposition 2.4 proves the case (ii).

Finally, the case (i) will be postponed until Corollary 6.13. See also Remark 6.14.

§ 3. The Riccati differential equation with constant coefficients

The Riccati differential equation (l.l) with constant coefficients a(z):a,
b{z)=b, c(z)=c10, is particularly simple, elementary and well-known. Therefore

the following proposition actually contains nothing new. However, we have not

found in the literature the following simple idea about using the Schwarzian deriva-

tive in this connection.

Proposition 3.1. The Schwarzian deriuatiue

,S(w) : (*" l*)' - * (w" fw')z

of all nonconstant solutions w of the equation (1.1) with constant cofficients such that

c*0 is a constant:
S(w) : (4ac-bz)12.

Therefore, all nonconstailt solutions of (l.l) are either transcendental meromorphic

.functions, if S(w)*O, or Möbius tansformations, if S(w):O.

Proof. The first assertion follows by a straightforward calculation. For the

second assertion, we have to prove that the Schwarzian derivative S(R) of a rational
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function R is a constant if and only if R is a Möbius transformation. To this end,
let Ä be a nonconstant rational function such that .S(.R) is a non-zero constant,
say a. Then f:R"lR' is a rational solution of the differential equation

.f' : a+*f'.
This implies an immediate contradiction. In fact, the constant solutions of (3.1)
result in

R(z) : C1+ Crstzl--z")

and this is never a nonconstant rational function. On the other hand, the non-
constant solutions of (3.1) are never rational.

§ 4. The equation u': A(z)+uz, A(z) a nonconstant polynomial

It is well-known that all solutions of the differential equation

(1.2) u' : A(z)+uz

are meromorphic, as soon as A(z) is a polynomial ([4], Satz 4.5). The following
theorem can be considered as a completion of the earlier results due to H. Wittich,
see [13] and [16].

Theorem 4.1. Let A(z) be anonconstant polynomial of degree n. If n is odd,
then all solutions of the dffirenlial equation (1.2) are transcendental meromorphic

functions, and if n is euen, then (1.2) admits at most one rational solution. Moreouer,
giuen any finite set E of distinct points in the complex plane, there exist a nonconstant
polynomial A(z) and a rational solution u of the coruesponding dffirential equation
(1.2) such tltat the set of finite poles of u coincides with E.

Proof. Let u be any solution of (1.2). Then a is a meromorphic function such
that all poles of rz are simple and the residue of u at all poles is -1. Therefore
there exists an entire function g such that u:-g'lg. Clearly g satisfies the linear
differential equation

(4.1) g"+A(z)B:0.

If the degree n of A(z) is odd, then g has infinitely many zeros, since the order of
g is (n+2)12 by the Wiman-Valiron theory. Therefore its logarithmic derivative
cannot be rational, hence z must be transcendental (see [3], p. 285, where this result
was already mentioned). Let then rz be even and let ur, urbe two distinct solutions
of (1.2). Then z: -s'Js, and ur: *sils, for some entire functions 91, gr. Since
u1"*u2, the entire functions gr, g, must be linearly independent. By [l], Theorem 1,

at least one of gr, 92 possesses infinitely many zeros. Thus the corresponding solu-
tion of (1.2) is transcendental.
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To prove tho second assertion, suppose first .E:0. Then we have only to
take any nonconstant polynomial P(z). The polyno'mial P(z) satisfies (1.2) with
AQ):P'(z)-P(z)2. Suppose now that E consists of one point only, say ar. Then,

for any nonconstant polynomial P(z) possessing a zero at z:a,r, the rational
function u(z): -(z-ur)-t + P(z) satisfies (1.2) with A(z): p'1r1- P(z)z*
2P(z)l(z-ur). Clearly A(z) will be a nonconstant polynomial.

Before going to prove the general case, we flrst derive a necessary condition to
be satisfled before a rational function

14.2)

(4.4)

(4.5)

u(z) 2+-*P(z),P(r) polynomial,
i_i z-di

can be a solution of (1.2) with a polynomial coefficient A(z). Clearly the degree of
A(z) must be at least 2 andthe degree of P(z) at least 1. A straightforward calcula-

tion gives
A(z) : u' (z) - u (z)z : P' (z) - P (z)z + QQ),

where

Qk) - ZP(z)
11

Z-di z-aj

is to be a polynomial. Evaluating Q@)

QV) - ZP(z)

we obtain

,,ä,(ry;.*:)

nlrt..y ' -) Y
e z-di - i,Ft

i-j

9t +2
i7t Z-dr

i=j

I + I -+.,+ I l
k:t Z - d* \ \ '/ A,L- d.k d4-t- A'* Cp+t- ry-k C,r- U,p)

Hence the necess aty conditions are

(4.3) P(a) :--l--+ . +=+-+=l-*... +--l-
dt-dt d7-ilX-t dk-dk+t d*-Un

for k:1, ...,fl.
To prove the second assertion in the general case, let E corrtain at least two

points, say E:{or,..., a,} with n>2. We may dotermine the coefficients

§r., ..., §n-r of the polynomial
rt-L

P(z) - Z, §,zi
i:0

in such a way that the rational function (4.2) using dL, ..., oc, from the given set,E

and the polynomial (4.4) is the rational solution we are looking for. In fact, an

application of (4.3) results in a linear system of equations

fro*§$i+...+13,-1(ni)'-1 - P(u), i- 1,...,n.
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The linear system of equations (4.5) has a unique non-trivial solution, since its
determinant is non-vanishing being the well-known Vandermonde determinant.
Therefore (4.5) defines a rational function

solving the equation

Example 4.2. If

u(z):--L- 1 --L +1r.z-l z z+l'2

This rational function satisfies the Riccati differential equation

s' : !-Z z2+1t2.24

u(z)=-- t++"i fr,zi
i:1 z-qi i:0

(1.2), where

A(,) : * {2, 
p,,'l- [Ä 8,,') + ok)

E - { - 1 , 0, + 1}, the above procedure results in

limsupry<r.

§ 5. The equation u': A(z)auz, A1z1 transcendental entire

In this section we apply the standard notations and results of the Nevanlinna
theory, see, e.g., [3]. Specially, the abbreviation n.e. means "everywhere in (0, + -)
outside a possible exceptional set of flnito linear measure".

Again, all solutions of the differential equation

(1.2) 74' : A(z)*uz

are meromorphic functions. Because of the relation A:u'-tt2 thpy must be tran-
scendental. Let o denote the order of A(z). From the same relation we observe

that the order o(u) of any solution u of (1.2) satisfies o(u)>o. We now obtain the
following

Let E U) be any positiue function on (0, * *) satisfying theTheorem 5.1.

condition

(5.1)

If A(z) is a transcendental entire function, then the equation (1.2) admits at most tv)o

distinct meromorphic solutions ur, u, that satisfy the condition

(5.2) T(r,u1): o(q(T(r, A))) n.e. QS r * 6
for i:1,2.



(4.1) g" + A(r)g : 0,

with A(r) transcendental entire, we conclude that

(s.3) r(r, A) : *{r,+) - o(loe r*log r(r,

Using the notation of Proposition 2.1 we get the
written as

(5.4) u[-Z(e' I S) u, _. 0.

By (5.4), uo must be of the form
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Proof. Let u1, u2, us ba three distinct meromorphic solutions of (1.2) that
satisfy the condition (5.2). All poles of ar, if there are any of them, are simple and
the residue of u, at all poles is -1. Therefore there is an entire function g such
that ur:-g'lg. Since g satisfies the linear differential equation

g)) Il.e. as r --+ oo.

equation (2.2) which may be

t1uo: _ -Cg'Ut- Uz LlL- LIB

for some complex constant c+0. From our hypothesis on E, there exist positive
numbers oc<l and .R.(a) such that g(r)=exp(r') for all r>.Rr(a). Applying
(5.5) we get therefore n.e. as r*- the following inequalities for some real number
M=0:

T(r, g) : o(E(T(r, A))) = o(exp (T(r, A)))

= o(exp [(MlogT(r, g)+Mlogr)'])

= o(exp [M.(logT(r, g))+Mlogr))

= o (exp [og (7(r, g))' + M loe r))

< o(rM(T(r, g))).
This yields immediately

T(r, g) - o(rMl$-e)) n.e. as r + @.

Because of (5.3) we then obtain

T(r, A): O(log r) n.e. as r * 6.

This is impossible A(z) being a transcendental function.

Corollary 5.2. If A(z) is a transcendental entire function of finite order,
then the equation (1.2) admits at most two distinct meromorphic solutions of finite
order.

Proof. Let ur, tt2, us be three distinct meromorphic solutions of (1.2) of finite
order. we may follow the proof of rheorem 5.1 up to the formula (5.5). Therefore
g must be of finite order. But then (5.3) implies T(r, A):Q(lsgy1 which is
impossible.

(s.s)
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The following two examples (together with Example 5.6) show that Theorem 5.1

is essentially the best possible. Example 5.3 shows that in the condition
limsup,*-(loglog E!)llogr)=1 the bound l cannot be increased, while Exam-
ple 5.4 shows that Theorem 5.1 does not hold in general, if A(z) is a noncntire
meromorphic function.

Example 5.-3. We consider the differential equation

(5.6) u' : A(z)*u2 with A(zl : - 
l- 
-:'P ?')-44

Then A(z) is a transcendental entire function such that T(r, A):/yln*O(l') as

r*-. Clearly the equation (5.6) is satisfied by

u1(z): *0+4 and u2(z) : i tt -r).
Applying the proof of Theorem 2.5.a) we find that all solutions u#u, of (5.6) are

(5.7) u(z): |1t+"1-",[1+Cexp (-e))-r, C(C.

Consider now the function eQ):exp (2rx). Then

,,* log log E(r) _ ,..r*6 l0g r

Assuming 0<r.<l the hypothesis of Theorem 5.1 will be satisfied. As r+@
we obtain

and

T(r, u) : L+O0)

for i:1,2. Therefore

T(r, u) : o(E(T(r, A))) as r + @

for f:1,2. L,etnow u*ui, i:1,2, be a meromorphic solution of (5.6). Then r.t

is of the form (5.7) for some C+O. Then

T(r, u) : d(2n3r)-trz(t +o(l) as r + @,

see [3], p. 7. Hence we obtain in this case

!Ar?, u)l(p(T(r, A)) :4 *.

On the other hand, if 
^>1, 

then all meromorphic solutions of (5.6) satisfy the
condition

T(r,u) : o(EQ(r, A))) as r * @.

E(r(r, A))- exp lr(+)'t, *o(r)))
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Example 5.4. We consider the Riccati differential equation

(5.8) r.r' : A(z)*ttz with A(z) : -å+
Then

ur(z) : (ez -l)-r
is a meromorphic solution of (5.8). All other meromorphic solutions of (5.8) can
be written in the form

n(z\: --l'* 
(l-'-=), 

= , C€C'' e'- I ' 6- ,-2"-' 1! ,-z' '

Choosing E(r):exp 1rr) with O<i-.1, we have

,,* log 
log 

E(r) : ). < L
r+@ lOg r

and

o(r(r,r)): ",,p l?)^ O+,(r))J as r +@.

For any meromorphic solution a of (5.8) we have

T(r,u)=LO+o(l)) as r +@

and therefore
T(r,u): o(E(T(r, A))) as r + @.

Theorem 5.5. If A(z) is a transcendental entire function of finite order o,

then the equation (1.2) admits at most two distinct entire solutions.

Proof. Because of Corollary 5.2 it is suff.cient to prove that the order o(z)
of all entire solutions u of (1.2) satisfies o(u):6. To prove this assertion, let u

be an entire solution of (1.2) such that o(u)=6. Writing the equation (1.2) in
the form
(5.9) uz : u' - A(z)

we may apply a variant of the Tumura-Clunie theory to (5.9), see [1]. If o(rz)< 1-,
we infer

T(r,u): m(t,u) : O(r"+')

for all e=0 by [], Sect. 7. Therefore we get o(u)<o, a contradiction. Finally,
rf o(u):1-, then [], Sect. 7, may be applied yielding

T(r,u) : m(r,u) : o(r"+"*logT(r,u)) n.e. as r + @.

Therefore
(5.10) T(r,u) : O(r"+) n.e. as r + @.
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It is now easy to prove that, for some ro, (5.10) holds for all r>ro. Hence o(u)<o,
a contradiction also in this case.

Example 5.6. Let E be a nonconstant entire function. Especially E may be
taken to be a polynomial. Let further hbe a primitive of the entire function eq and
define g: -@+h)12. An elementary calculation proves that ur:-g' and ur:
-g'-h' are two entire solutions of the differential equation

u' : -I(h'zqr'z-281+uz
of the form (1.2), where the coefficient standing for A(z) is a transcendental entire
function. Clearly o(ur):o71rr7:o(h):o(h'2*E'2-28'). Therefore the number of
exceptional solutions in Theorem 5.1, Corollary 5.2 and Theorem 5.5 is the best
possible, as shown also by Example 5.3.

Remark 5.7. Concerning the distribution of poles of meromorphic solutions
of (1.2) when A(z) is entire, we have observed aheady that for a solution u of (1.2\

we have u:-g'lg, where g is an entire solution of the differential equation g"+
A(z)g:Q. Hence the sequence of zeros of g coincides with the sequence of poles
of u, and so we can immediately translate the results in [1] concerning the distribu-
tion of zeros of solutions of g"+A(z)g:0 into results about the distribution of
poles of solutions of (1.2).

To this end, let A("f, a) denote the exponent of convergence of the sequence
of a-points of a meromorphic functionl We have the following results from [l]:

(a) If A(z) is a nonconstant polynomial of degree n, then there is at most one
meromorphic solution u of (1.2) for which )"(u, *)*(n*2)12. lf n is odd, then all
solutions of (1.2) satisfy )"(u, *):(n*2)12.

(b) If A(z\ is an entire transcendental function whose order o(A) is a flnite
number which is not an integer, then there is at most one m€romorphic solution z
of (1.2) wiLh 1(u, *)-o(A). The same conclusion holds (regardless of the order of
e@)) rt A(z) has the property that its sequence of distinct zeros has exponent of
convergence less than o(l).

(c) In the case where ),(A,0\=o(A) the inequality A(u,*)=-o(A) holds for
all solutions u of (1.2).

(d) For any o, where 0--o<-, there is an entire transcendental function
A(z) of order o, such that the equation (1.2) admits an entire solution.
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x1' : A(r)*uz

with AQ) meromorphic and non-entire, has been somewhat problernatic, even if
A(z) is rational. It appears that criteria for the maximum number of distinct mero-
morphic solutions can be organized according to the highest of the multiplicities
of the poles of A(z). Also the subsequent examples have been organized in this way.

6.1. All poles of A(z) are simple.

Theorem 6.1. If all poles of A(z) are simple, then the equation (1.2) admits at
most one meromorphic solution.

Proof. Let u be a meromorphic solution of (1.2). Since l(z) is non-entire,

the same conclusion holds for u. Clearly, all poles of u arc simple and the residue

of u at all poles is -1. Thus there is an entire function g such that u:-g'lg.
As stated earlier, g satisfies the linear differential equation

(1.2)

(4.1)

§ 6. The equation v' : A(r) * u2, A(r) meromorphic non-entire

The existence of meromorphic solutions of

g"+A(r)8:0.

Let 91 and 92 be two linearly independent meromorphic solutions of (a.1) and let
å denote the meromorphic function g.zlh. A simple application of Abel's identity
results in h':c(gr)-2 for some complex constant c#A. Let zobe apole of A(z).
By (4.1), g, and g, both must have azero at zo. Suppose the zero of g, at zo is of
multiplicity p>1. Then (gr)-2 (resp. h)has a pole of multiplicity 2p (resp. 2p-l)
at zo. lf p>1, then gs would have a pole of order p-1>0 at zrby the defini-
tion of å. If then p-1, then §2 would have a regular point at zo such that gr(zo)*0,
again by the definition of h. Thus we get a contradiction for all pr>I. Therefore
all meromorphic solutions of (4.1) must be linearly dependent, hence their logarithmic
derivatives coincide. The assertion follows immediately.

Example 6.2. lf A(z) has exactly one simple pole and no poles of higher multi-
plicity, then the equation (1.2) admits exactly one meromorphic solution. In fact,
we may apply the Frobenius method (see, e.g., [6], p. 157) at the pole zo of A(z) to
conclude that the linear differential equation g"*A(z)g:0 admits a solution of
the form gr(z):(z-zo)qQ), where Ee) is an entire function. This follows from
the indical equation r(r-l):Q. Therefore ur(z):-S'rk)lS,"Q) is a meromorphic
function satisfying (1.2). The solution may be either rational or transcendental.
In fact, the differential equation

u' - Z-r+u,
z
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admits a rational solution

u(z) : _ 
,!*r,

while the differential equation

(6.1) u' : lrru'
z

admits a transcendental solution. To see the latter assertion, we consider an entire
function g solving the corresponding linear differential equation

s" ++8 : o'

By the Wiman-Valiron theory G"", 
".1., [16]) we may determine the order of g

resulting o(d:l12. Thereforegpossess€saninfinitenumberofzeros and u:-g'lg
is a transcendental meromorphic solution of (6.1).

Example 6.3. The differential equation

(6.2) u' : --J--),yzz(z + l)
admits no meromorphic solutions. In fact, let u be a meromorphic solution of (6.2).
Then there is an entire function g such that u: -g'lg and that g satisfies the linear
differential equation

(6.3) s" + ,l =, g :0.6 z?*l)
By the Wiman-Valiron theory, g, must be a polynomial, say

g(z) : cnzn*cn-rzn-'+... +co, c, * 0,

Substituting g into (6.3) we get

(22 + z) [n (n - l) c n z" - 2 * (n - l) (n * 2) c, - r z" - s * ...1 * c, zn *. . . * c6 = 0.

Collecting terms of degree n we obtain

n(n-l)* 1 :0,
contradicting the fact that a is an integer.

6.2. A(z) admits at least one double pole.

At the double poles zo of A(z) we consider the Laurent expansion

A(z): §(z-2,))-2*..., § *0,
of A(z). We denote further

tr: {l -nzln is an integer =-2}.
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Theorem 6.4. Suppose A(z) admits at least one double pole. If there is a
double pole of A(z) such that 4§§8, then the dffirential equation

(1.2) u' : A(z)+uz

admits at rnost two distinct meromorphic solutions. Moreouer, d there is a double

pole of A(z) such that 4§:1, thm the equation (1.2) admits at most one meromorphic

solution.

Proof. Let z be a meromorphic solution of (1.2). Clearly it must have a simple

pole at zo. Let the Laurent expansion of u at zobe

(6.4) u(z):a(z-zs)-L*..., al0.

Substituting (6.4) into (1.2) we obtain

uzla+fr : g

and therefore

(6.5) 2a. : -t+yfr-4\.
Clearly 2qis ar integer if and only if 4BqBv {U. If 4fr{Bv {1}, then (1'2) admits

at most two distinct meromorphic solutions by Proposition 2.4.

Finally, suppose that A(z) has a double pole at zo such that 4l):1. Let now

u1, u2ba two distinct meromorphic solutions of (1.2). By (6.a) and (6.5) both of
them have at zo the Laurent expansion of the form

ui(z) : -+k-zo)-r+..., i : 1,2.

Therefore ut-Ltz is analytic at zo, and we have

w(zo) * O, where w - (ur-ur)-t.
By the equation

(2.1) w'+2ur(z)w : l,

w must have a pole of multiplicity p>l at zo. Substituting the Laurent expansions

w(z) : y(z-zn)-P*..., y * O,

and
w'(z) : - py (z - z)-u-lr ...

into (2.1) we obtain F: -L which is impossible.

Remark 6.5. The case, where 4§€B at all double poles of A(z), remains

somewhat problematic, even if A(z) is a rational function. Also, if there is a double

pole of A(z) such that 4fr+8, the framework given by Theorem 6.4 contains several

possibilities. The remainder of this section, consisting mostly of concrete examples

in both of the above cases, serves to illustrate some of these possibilities that may

occur.
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Example 6.6. The Riccati differential equation

(6.6) u'- f.9+.§',,i+ffi*ttz, where §o*0, §r,*

does not admit meromorphic solutions, if the coeffi.cients §0,
veniently.

Suppose u is a meromorphic solution of (6.6). Clearly u

z-0 and z: -1. The corresponding residues ro*0 and rr*0
equations

(6.7)

The function

0,

§, are chosen con-

has simple poles at
satisfy the quadratic

r7+ri*§i:0, i:0, 1.

w(z)-u(r)-ry-#

does not vanish identically, because u(z):y7rq-rrlk*l) does not solve the equa-
tion (6.6). Moreover, ur has only simple poles with residue -1. Therefore there
exists an entire function g such that w:-g'lg. Substituting

u(z):+-h-+
into (6.6) and applyine «.7) we obtain after some calculation

z(z + 1) g" -2(ro* (ro * rJ ,) g' *2ro\g - 0.(6.9)

In both possible cases, ro+rr*0 or rs*rr:Q, we see by the Wiman-Valiron
theory that g must be a polynomial, say

g(z) : crz'lco-rz'-t+... +co, cn * 0.

Substituting into (6.8) and collecting all terms of degree nwe geta quadratic equation

(6.9) nz -(2(ro* rr) + 1) n +2ror, - 0.

The selection of the coefficients Bo, fr will be done in four different ways.

a) Suppose first that O<Bfll4 for i:0,1 and Bs*fi1>114. Then the
residues ts; \ zta both real and the discriminant Å of the quadratic equation (6.9)
satisfi.es

/:t_4(fo*fr)=0.

Therefore z is not real, which is absurd. Hence the equation (6.6) does not admit
meromorphic solutions in this case. Note finally that 48,§B for i:0, l. We
may have 4fr:l at both poles of A(z):Boz-,*fr{z+l)-2, resp. at one of the
two poles or resp. at neither of the two poles, just choosing, säy, §o:fir:114,
resp. Bo:114, fL:lls or resp. §o:§r:115.
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b) Supposinl 4fro:L-nf,, Br:l-nl fot some integets fii>2, i:0, 1, we

bave  B'€B and 4Pr(8. BV (6.7) there are two possibilities for both of the residues

fg, t1i
2ri*l:Xni, i :0, 1.

From (6.9) we obtain
2n*t : tnotntXl/ATd=,

with some combination of the three t signs. Choosing 1ow zq, a1 such that n?r1'

ni-lq{k'zlk(N} we infer that n cannot be an integer, a contradiction.

c) The special case of (6.6) with 4po:-48:l-72 and 481:-lJ:l-{z
is perhaps of some interest. We may apply the preceding case b) to conclude that

all possible meromorphic solutions of (6.6) are of the type

u(z):2*#-*,
where g is a polynomial. The possible residues ro, r, of u(z) at z:O, z:-1 will

be deflned by
2rotl:*7, 2rr*l:*4,

and all possible degrees n of the polynomial g arise from

2n*l : t7 xatltt4;4az-1: t7t4t8
with convenient combinations of the t signs. Since a is to be a positive integer,

four combinations are actually possible, determining then also ro and rr. These

combinations yield
to:3, \:312, n:1;
fo: 3, \: 312, n :9;
fo: 3, \: -512, n : 5;

fo: -4, \: 312, n : 2.

Determining the coefficients of the polynomial g, we obtain the corresponding solu'

tions of the equation v' : - 12r- z - (15 I 4) (z + l)-2 + uz :

?31
ur(z) : :_ + 

Xz + D_ z+e1r, ;

. 3 3 6328+14427*8426+Cuc(z):1+u*g-ffi, c;c:

3 5 35za -402s +3022 -16z * 5
1' l rl 

-u2\.) - r- rd +i- 7 z5 _ l\za +loz3 _gz2 + 52 _2,

us(z) :- o *=,1- - = !!'r!'r'='2-212+l) 7zz*l8z*12
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Referring to Proposition 2.3 we remark that urQ) arises from u"(z) with C: -3
and ur(z) with C:0.

d) Finally, if 4\o:l and 4§r:l-n!€8, the discriminant Å ofthe quadratic
equation (6.9) must be of the form

/ : n?_1.

Therefore a determined from (6.9) cannot be a positive integer, a contradiction.
Thus the equation (6.6) cannot admit meromorphic solutions.

Example 6.7. Let g(z) be an entire function and B+0 be a constant. We
consider the Riccati differential equation

(6.10) ,,' - L-,u, : ,+g(z)+uz

dividing our considerations into several subcases.

a) If 4B:l and g(z):0, the equation (6.10) admits exactly one meromorphic
solution, namely the rational function

u(z):-a'2z'

b) Suppose then 4B:1 and CQ)*o. By the Frobenius method, the linear
differential equation

(6.11) *" *+ e'* s(z)E : o

possesses an entire solution E*0. We observe immediately that

u(z):-] -E'zzE
is the only meromorphic solution of (6.10); see also Theorem 6.4. This solution
may be rational or transcendental, depending on g(z). For instance, the equation

,'- ]--rz+2+u,
+2"

admits a rational solution
Iulz): -2* z,

while the equation

,lu': *;*l*uz
admits a transcendental meromorphic solution. In the latter case, the linear dif-
ferential equation (6.11) takes the form

z2E" + zE'* z,E : 0.
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This will be solved by the Bessel function

roQ): 5,ffiePl*
of order zero. Since Jr(z) is an even entire function of order one, it has infinitely
many zeros. Therefore

t fi(z)ulz): - U--tr6
is a transcendental function.

c) Let us consider now the case 4B{Bv {1} assumingthat g(z):0. By Theo-
rem 6.4, there exist at most two distinct meromorphic solutions of (6.10). Let
ur, arbe the (distinct) roots of the quadratic equation

(6.12) uz+aa B :9.

Then we observe that the equation (6.10) admits exactly two distinct rational solu-

tions, namely

urk) :2 and u,() : !L.

d) Suppose now that 4pQBv {1} and that g(z)*0. Let again ar, a, be the
(distinct) roots of (6.12). By the Frobenius method, the linear differential equa-

tions

E" -+ E' + g(z)E : o, i : 1,2,

both admit an entire solution, szy er, Er, respectively, such that gr(0):gr(0):1.
It is again an immediate observation that

ut(z):+-g and d'2 ELk)
' z Q{z) uz\z): r-EJ4

both satisfy the equation (6.10). Since 91(0):Er(0)*0, u, and urhave different
residues at z:0, Therefore u, and a2 are distinct meromorphic functions. Again
rational and transcendental solutions may appear. To see this fact we consider some

specific examples.

We first consider the differential equation

(6.13) u' : fi*]-,,+u,
solved by the rational function

3
u1(z):_ 4r-+r.
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The second meromorphic solution uz of (6.13) must be of the form

where E is an

(6.14)

ur(z)

entire solution of the

Q:0

such that E(0):1. Now E cannot be a polynomial, since otherwise cp"fE and
g'fq would tend to 0 as z*-, and the differential equation (6.14) woutd give a
contradiction. Therefore we may apply the Wiman-Valiron theory to determine
the order of E resulting o(E):2. The equation (6.1a) is also satisfled by hQ):
EGr). lf q(z) and E(-z) were linearly independent, then all solutions of (6.1a)

would be entire functions. This is impossible, since the indical equation r2-rf2:0
for (6.14) at z:O implies that (6.14) admits a non-entire solution of the form
zrlza(z), where arl0 is entire (see, e.g., [6], p. 157). Therefore we must have

E@):CrpGz) for some complex constant C. Since E(0):1, we find C:l and
g muSt be an even function of order o(E):2. Suppose now E has only finitely
many zeros. Therefore EQ):P(z) exp (azz), where P(z) is a polynomial of degree

a. Since EQ):exp(azz) does not satisfy (6.14), we have z>1. Substitution into
the equation (6.14) results in

(6.rs) $$*oo,,,a+*ff*+#*3o+]:- ,,.

Letting z+@ we conclude from (6.15) that

4az : I and a(4n*3) : -512.

This is impossible because r is a positive integer. Therefore E must have infinitely
many zeros and the solution ur(z) of (6.13) must be transcendental.

Our second specific example is the differential equation

-- 
1 

-E'k)4z E@) 
)

linear differential equation

8,,+|r,.[; _rr)

(6. 16) s,:#*r*u,

,r,3 ,
8,,+ 2,8,+Q:O

,lr"++ rlt'+*:O
/.2

admitting two distinct transcendental meromorphic solutions. In fact, the linear
differential equations given by the Frobenius method

(6. 17)

and

(6.18)
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both admit an entire solution *O and the corresponding meromorphic solutions

of (6.16) have the form
3 E'@)ur(z) : _E_ 

E6
and

, \ | tlr'Q)
uz\z) : _E_\tr@ .

Let us consider more closely the solution urQ). We may again prove rl to be tran-
scendental by showing that E has inflnitely many zeros. A similar reasoning as in

the preceding example shows that E must be an even function. Now g cannot be

a polynomial, since otherwise q"f E and E'lE wotld tend to 0 as z*-, and the
differential equation (6.17) would give a contradiction. An application of the

Wiman-Valiron theory determines the order of g resulting o(E):l. If E has

only finitely many zeros, it must be of the form q(z):P(z)exp(az), where P(z)
is a polynomial and al| is a constant. This is absurd, since g is to be even. Finally,
we may apply a similar reasoning to prove that u, is transcendental just using (6.18)

instead of (6.17).

e) Suppose now that 4§(B and that g(z):0. Then the equation (6.10) has

the form

, l-nzu'- aftuz,
where a is an integer >2. This equation has rational solutions only, namely the

function

u1(z) -
n+l

2z

and the one-parameter family of rational functions

u(z) : -+ -lr*., -il-', "rr.
f) Finally, suppose that 4fr(B and that CQ)=O. In this case the equation

(6.10) has either one meromorphic solution or a one-parameter family of mero-

morphic solutions. Both of these two cases may actually occur. The possible residues

of any meromorphic solution z of (6.10) at z:0 are the distinct roots ar:(n-l)12
and ar: -(n+l)12 of the quadratic equation uz+aa B:0. The linear differential
equation corresponding to a1 is

(6.19)
tl n-lE,,_=E,+Sk)e:0

whose indical equation has the roots r:0 and r:n>2. By the Frobenius method,

the equation (6.19) admits at least one entire non-vanishing solution g. We have

two cases to consider.
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1) The equation (6.19) possesses

ez. In this case

ur(z) -n:l -@2z ErQ)

two linearly independent entire solutions Qt,

and ur(z):"-;)-ffi

are two distinct meromorphic solutions of (6.10) by the linear independence of It
and Er, Therefore the equation (6.10) admits a one-parameter family of meromorphic

solutions by Theorem 2.5.

As a specific example, let us consider the differential equation

,r,:Jff+nzzzo-z+u2,

where r is an integer >2. This equation has a one-parameter family of transcendental

meromorphic solutions, namely

u(z) : E' *n'"-' tat(c + zo)' c<c'

The corresponding linear differential equation (6.19) has now linearly independent

entire solutions Er(z):cos (z') and tpr(z):sin(2").

2) All entire solutions E of the equation (6.19) are linearly dependent. In

this case, the equation (6.10) has exactly one meromorphic solution. To prove this,

let q be an entire non-vanishing solution of (6.19). Then

n-l E'@)ur(z):_T;_ ,p6
is a meromorphic solution of (6.10). If

n-l ,lt'(r)u\z): 2, _ 
,tr@

is another meromorphic solution of (6.10) with r/ an entire function, then ry' must

satisfy (6.19). Therefore {:CE for some complex constant C and we get il:?t1'
A1l other possible meromorphic solutions z of (6.10) must be of the form

u(z):-+-#
where/is an entire function. Defining rla@):z"f(z) we conclude that

n-| t'r?)ulz): 2z 
_ffi

Since ry'6 is an entire function, we have u:u, applying the same reasoning as above.

Therefore u, is the only meromorphic solution of (6.10).
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To illustrate this case, we consider the equation

1u,:-fi;+t+uz.

The equation (6.19) takes now the form

,r7V"-VQ'*9:O'

Under the transformation f(z\:z-'EQ) we get

zzf"+zf'+(22-l)f :9.
This is Bessel's equation of order one whose entire solutions all are linearly depend-
ent. Therefore the same is true of (6.19) in this special case. Hence the equation
u':-Ql4)z-2+l+uz has only one meromorphic solution, namely the function

I (zJr(z))'ur(z):D--;ff
where ,I, is the Bessel function of order one.

Example 6.8. A concrete example slightly different to Example6.T is given by
the Riccati differential equation

(6.20) u':::=-: I-' 6422 8; - Z+ u'

which admits a rational solution
3lur(z):-i-Z

and a transcendental meromorphic solution ur(z). Since 4PqB, these are the only
meromorphic solutions of (6.20) by Theorem 6.4. To find out the transcendeatal
solution ur(z) we consider the linear differential equation

(6.21) f +(r+fi)f :0,

which has a regular singular point at z:0 wilh the indicial equation r(r-l)*
3rl4:0 whose roots are r:ll4 and r:0. By the Frobenius method, (6.21) has a
solution of the form y (z): z'tn E Q), where E is an entire function such that E (0) : l.
Substituting back into (6.21) results

(G.») o" +(r + *A) o' + *L e : o.

Therefore the meromorphic function
§ I E'Q)u2(z):-V-Z-ö
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satisfies (6.20). It remains to show thatu, is transcendental by showing that E has
infinitely many zeros. If g were a (nonconstant) polynomial, then, by equating the
leading coefficients in (6.22), we infer that the degree of g would be -114, which
is absurd. Therefore g is transcendental and we may apply the Wiman-Valiron
theory to conclude okil:112. A theorem of Borel (see, e.g., pl, Theorem2.9.2\
implies that E must have infinitely many zeros.

Example 6.9. Let us consider the Riccati differential equation

(1.1) w' - a(z)+b(r)* * c(z)wz, c * 0,

with polynomial coefficients. It is well-known that all solutions of (1.1) are mero-
morphic functions. Transforming (1.1) into the normal form (1.2) tells us that
all solutions of (1.2) must be meromorphic in this case. Since A(z) in (1.2) has

the form

(1.4)

(6.23)

Further, all
the form
(6.24)

b2b'3
Å - ac- 4 + 2 -T

u,(z):+(#+e,(,)) .

solutions u#ut of (1.2) are ftxeromorphic and can be represented in

(+)'-+i+++

we see that all possible poles of A(z) appear at the zeros of c(z). Writing c(z):
y(z-z)-t(l+QQ)), wherc QQ) is a polynomial such that Q@)*-1, n is an
integer >2 and y*0 aconstant, we see that A(z) must have a double pole at zo.

The Laurent expansion of A(z) at z6 satisfies  fi:l-nz(B in this case, see Theo-
rem 6.4.

The following Proposition describes a fairly general situation which turns out
to be a special case of the preceding Example 6.9.

Proposition 6.10. (i) Suppose that the dffirentialequation(1.2)witharational
cofficient A(z) admits two meromorphic solutions u, and u, such that at least one

of them, say ur, is rational. If w:(ur-ur)-t has a pole at all poles of ur, then there
exist two polynomials P*0 and Q such that

u (z) : L:LQ) - P (r) sQ@) lC + g(z)7-r,

where C is a complex cortstant and g is a primitiue of the function Pea,

(ii) Conuersely, if a rational function u, is of the form (6.23) and a meromorphic

function u is of the form (6.24), then both of them are solutions of a dffirential equa-
tion (1.2), where the cofficient A(z):4i1r1-ur(z)z is a rational function. In the
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particular case when Q'@):a(C, (6.24) reduces into the form

s'(z)+d,s(z)ulz): ur(4- sGfreö,
where C is a complex constant and S is a polynomial.

Remark 6.11. 1) Proposition 6.10 is a special case of Example 6.9. In fact,

by a straightforward computation we observe that the equation (1.2) with A(z):
uiQ)-ur(z)z, ur(z) given by (6.23), arises from the differential equation

*' : q'(z)w*p(z)wz
via the transformation (1.3).

2) We note that the family of solutions given by (6.23) and (6.24) contains

exactly two rational functions, if Q'Q1:o40. All solutions in this family are rational

functions, if 9'121:9.

Proof of Proposition 6.10. (i) Clearly w satisfles the linear differential equation

(2.1) w'a2urw : l.

Since w has a pole whenever z. has a pole, all poles of z. must be simple and the

residue of 2uratanypolemustbeapositiveintegerbyinspectionof (2.1). There'

fore, there is an entire function å such that 2ur:fu'lh. Since er, is rational, å must

be of the form h:Peq, where Pl| is a polynomialand Q is an entire function.
By differentiating we get 2ur:Q'+P'lP. Again, since a, is rational, Q must be a
polynomial and we have (6.23).

Let now g be a primitive of å. Substituting (6.23) into (2.1) we observe that
w' *(h'lh)w:l. Hence hw:Ct*S for some complex constant Cr. Now we may

apply Proposition 2.3 and its proof to deduce that all solutions u*u, of (1.2) are

meromorphic and can be represented in the form

u (z) : ur(z) - h(z)lCr* g(z) + C rl-1,

where C, is a complex constant. Denoting C:C.*C, we obtain (6.24).

(ii) The flrst assertion in (ii) is a straightforward computation which may be

omitted. To prove the second assertion, suppose that Q'Q):a(C. h is easy to
see that there is no loss in generality if we assume that Qk):az in (6.24). By the

method of undetermined coefficients, we can find a polynomial S such that ,S'*
aS:P. Then u:,Seo satisfies lt':PeQ. Therefore u:g*.|, where y is a con-

stant. Henca g:Seo'-7. From (6.24) we obtain the second assertion in (ii).

6.3. A(z) admits at least one pole of multiplicity >3.

Theorem 6.12. Suppose A(z) admits at least one pole of multiplicity m>3.
If there exists at least one pole of odd multiplicity m>3, then there exist no solutions
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of the dffirential equation

(r.2) s' : A(z)*uz

meromorphic in the complex plane. If all poles oJ' A(z) with multiplicity m>3 are

of euen multiplicity, then there exist at most two distinct meromorphic solutions of
(1.2). Moreouer,if A(z)hasapoleof euenmultiplicity >4 atzn,artdt4,uzaretwo
distinct meromorphic solutions of (1.2), then ur*u2 has a simple pole at zo with

residue -m[2.
Proof. Suppose uris a meromorphic solution of (1.2) and consider a pole of

A(z) of multiplicity m>3 at zn. Clearly a1 must have a pole of multiplicity a:ml2
at zo, since m>3. lf m is odd, the assertion follows immediately. Therefore, we

may assume that m:2a>4 is even. Suppose that the Laurent expansions of A(z)
and ur(z) at zo are

Substituting tlese expansions into (1.2) we obtain c?:-d^. Let u2 be any other
meromorphic solution of (1.2) with the Laurent expansion

ur(z): €o@-z)-n+...

Iak):d*(z-zJ-*+"'
lur?): co@-zo)-o+...

at zs. Then similarly e|: - d^
isfies

and therefore e?- c?. But \t): (ur- ur)-' sat-

w'+2urw - l,

and so h/ must have a zero

must necessarily have € o:
of (1 .2) and suppose that the
expansion

of rnultiptricity u at zo, because of d,>2. Therefore we

- cd. Finally, let uB be a third meromorphic solution
solutions ut, ttzand usate distinct. If uuhas the Laurent

uu@):fo@-zJ-

atzo,then, by repeating the above reasoning, we see that f,:-co, arrd therefore
eo:f,. On the other hand, beginning the above reasoning with u, instead of zt
and setting yy:(ur-us)-l we infer eo: -.fo, a contradiction.

To prove the last assertion, we observe that w:(q-a2)-1 satisfies

'+2urw - I

'+2u21'tl - _. I

and therefore
tv'

multiplicity a at zo, the t-unction u1*u2 must have a simple

- d,) at zo.

Iw
t,,

Since w has a zero of
pole (with the residue
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Corollary 6.13. If the Riccati dffirential equation (1.2) admits a meromorphic
solution which has at least one pole of multiplicity -2, then there are at most two
distinct meromorphic solutions of (1.2).

Proof. Let u be a meromorphic solution of (1.2) with a pole of multiplicity
a>2 at zo. Then Ak):u'(r)-u(z)z has a pole of multiplicity 2u>4 atzn.

Remark 6.14. The proof of Theorem 2.5 is now complete.

Example 6.15. Let h be a nonconstant entire function and let q>-2 be an
integer. Then the Riccati differential equation

,, - Ll!L-(h' ('))' *qk\ 2a-a2 e2h(z),,:- 2 4 zr_+-=4i_ 4r*-u,
admits exactly two transcendental meromorphic solutions

h'(z\ a eh(')u(z): i-E= zr" .

Example 6.16. Choosing lt:O in Example 6.15 we get the Riccati differential
equation

, 2a-a2 Iu: 42'-4s--ru-,
which admits exactly two rational solutions

d. Iulz): -EtZr,'
Example 6.17. The Riccati differential equation

(6.27) u' : 3z-4 - z-u +u'
admits exactly one meromorphic solution, namely the rational function

ur(z) : - 7-z'

To prove this assertion, let u, be another meromorphic solution of (6.27). By a

theorem of Wittich ([17], p. 283--284), z, inust be rational. Ther w:(ur-uz)-L
is a rational solution of the linear differential equation

(6.28) w'-22-3w : l.

It is easy to see that w has no poles and it must have a zero of multiplicity three at
z:0. Hence u, is a polynomial of the form

w(z): crzza "'lcnzn
with cr*O, cn*O and n >3. Therefore

lim lw' (z) -22-B w (z)): * -.

This contradiction with (6.28) proves the assertion.



Meromorphic solutions of the Riccati differential equation 397

Example 6.18. There are no meromorphic solutions of the differential equation

(6.29) u' : cz-a+dz-2tlt2,

where c*0 is a complex constant and d*0 is a real constant such that the equa'

tion f -y*d:0 does not have any positive integer roots. Suppose z would be

a meromorphic solution of (6.29). Then u must have a double pole at z:0. Sub-

stituting t}le Laurent expansion

(6.30) u(z): qz-2+bz-!*aolarz*...

into (6.29) we conclude that

a2*c:0 and 2ab:-2a.
Since a#0, we get b: -1. Therefore the expansion (6.30) must have the form

u(z) : az-z- z-r*uo*a1zl ...
Hence

w(z): u(z)-az-z

has only simple poles and the residue at each pole is - 1. Since the fwction az-z
does not satisfy (6.29), w#0 and there exists an entire function g such that
w:-g'lg. Substituting

u(z): o'-'-{
c

into (6.29) and taking into account a2*c:0 we obtain

(6.31) ,at"-2azg'*(dz*2a)g:Q.
By the Wiman-Valiron theory, g must be a polynomial, say

g(z) : cnzn * cr-12'-t+... +co

with c,t\. Substituting this into (6.31) and collecting terms of degree z*1 we get

n2-n*d :0.

By our condition imposed upon d, n cannot be a positive integer and we have a

contradiction.
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