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ON THE RAI{GE OF REAL COEFFICIENTS
OF FUNCTIONS WITH BOUNDED

BOUI{DARY ROTATION

(1)

HEIKKI HAARIO

Introduction

For k>2 let Bk denote the class of analytic functions

f(r) - z*arzz+...

which map the unit disc onto a domain whose boundary rotation is at most kz.
Each function of .Bo can be obtained as a solution of the equation

(2)

where p is a real Borel measure on /:(- n, frj satisfying

(3) 
_{ o, : r, _{ laul = r,.

Conversely, every function satisfying (2) belongs to Bp. For these basic facts of the
class .Bo see for example [7].

The function

(4) lo@): +l(E)r''-,] : §.n.s,'s,.

is the solution of (2) when p is a measure concentrated on the points e:0, E:n.
The coefficient conjecture for the class,Bo was la,l<A,(k), n=1, for all functions
(1) in Bp. The conjecture was proved in the papers [1] and [2].

It is known that every boundary point of a general coefficient body (ar, ..., an\

in the class Bo corresponds to a unique extremal function. The function is produced
by a measure p of finite support with at most n - I positive and n- I negative values
,*, Zlu^l:k, at points e:e^, m:1, ...,2n-2. Integration of (2) with such a
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measure gives the Schwarz-Christoffel representation

(5)
2n-Z

f'(r)- fi (1 -t,nz)-Y,n,t*:sis,n,
M:L

for the extremal function/ which thus always maps the unit disc onto a polygon [5].
The above proposition gives a general qualitative description of the extremal

functions. However, in many specific cases the essential difficulty is caused by the
explicit determination of the parameters t-, r-.For the first coefficients such explicit
information is available.

In order to study the coefficients of functions inverse to functions in Bo, Kirwan
and Shober [4] determined the sharp bounds for thefunctional Re {ar-aazr} (a real)
in Bo. By aid of this estimate they found for the inverse functions the sharp bound

of the third coefficient for all k>2 and the fourth coefficient for *=Z!.
3

The body (ar, ar) of ,Bo was determined in [3]. The aim of this paper is to find
the region of variability of the coeffi.cients ar, as, aa in the special case of real coeffici-
ents. We shall do this by considering a suitable coefficient combination with two real
parameters. Our method is quite direct, but some care is needed in choosing the para-
meters in an effective way. As an application, we get in the real case the maximum of

the fourth inverse coefficient also in the interval 2-k=2!.
3

1. The body (ar, as, at) of Bk for real coefficients

Write (2) in the form

1tzf"(') - 1r;^ =,,L-r/4m - r r- 
rrlrt,r. ,

where the coemcients cn are

9n-

The initial coemcients of f assume the expressions

Zar: cL

6a* - 4a?* cz

l2aa - - &a'r* lsarosT cs.

given by

1T,

[ ,-inq d{r,

(6)
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2k+6 " 4k+2, 3k+z
at < --T--TQ- r k-z Z+i#lni-ffi for kl2+r =Zla,l 

< k,

and

For real az, oa the region (az, oe) is given by the inequalities

as€ for 2lorl € klz+ l,

for 2lorl - kl2- l,

zcrk
Taa+ 6

2.rk
;aä-7JO

2k+6, 4k-2 3k+2
as = i W afi- 3 W larl+ W for kl2 - 1 = Zlarl = k;

cf. [3]. Figure I presents the region (az, as) in the case k:4. Equality is reached
for 2larl<kl2+l and 2larl=kl2-l by measures with support at the four points
0,nf2,n,3f2n, In the remaining cases equality is obtained by three-jump measures

whose support consists of the point 0 or z and of two symmetric points * rp for
which lcos(tE)l*l when larl*ft1).

Fig. 1.
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To determine the real body (ar, as,, ar) we have to find the extrema of an for
each arand a, in the body (az,as). We will achieve this byconsidering a suitable

coefficient combination.
Let t and u be real parameters. For real a21 ay an the formulae (6) yield

(7) l2au+ 8aZ- 1 Sarar* t (6as- 4aZ) a 2ua,

f (Ocos3 E + 2t cosz E + @ -_3) cos E)dt, -2t,_4

where we have used the normalization (3). Denote

and decompose
We should find

i

The derivative
the possible values

(e)

(8) o4: L++-p1Ä nG(t, u,

G(t, u, E) - 4 cos3 E +2t cosz E+@-3) cos E,

the measure tt into its upper and lower variatiofl, p- lt+ - lt-
the maximum of

G(t, u, E)d1,t - [ 
GG, u,E)dr,* - [ 

GQ, u, E) dp-

subject to the conditions tt+(l):kl2+1, p-(I):lal)-1.
The integrals with respect to p+ and p- can be maximized and minimized sepa-

rately. It follows that the maximum occurs if p+ and p- are measures supported
by sets on which the function G reaches its maximum and minimum, respectively.

Introduce the abbreviation

L - L(or, aB, t, u) - (- 4a'r*9ara,- t(3au-2a3+ t) - uaz)16.

The indentity (Z) then yields for the maximum of au the expression

-,P'#= nG(t' u' q)(+- 
')

for the points belonging t

,(+*,) -#
o spt Irof G with respect to E gives

Q:0, Q --ft, or

-t+ (t'-3u*9)rrzcosP-- 6 .

So, in accordance with the general result mentioned in the introduction, the measure

p has finite support consisting of (at most) six points. The reality of the integrals

cn, n:1, 2, 3 in (6) implies that the values of p at the symmetric points given by (9)

must be equal. This in turn implies the reality of all cn, n>3.



(10)

- | = a=1. The formula
Write the function G(t,u,
points of spt p are

(1 1)
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Observe that different points t, u may produce the same extremal ,tr (e.g., all
points with t2-3u*9<0 yield the function fo of @)). Our problem thus reduces

to the task of finding for t, u values which yield all the different functions belonging

to the boundary of (.ar, as, a4).

The boundary of (ar, os, ttt) consists of several parts corresponding to the dif-
ferent types of the measure p. Since stating a complete theorem which gives all the

different parts of the body and the extremal functions would result in a rather massive

collection of formulae, we prefer to formulate the equations briefly in the course of
the proof. We obtain each part of the body by rewriting the parameters t, u in suit-

ably selected expressions. The specific forms of the expressions were found by con-

sidering a few examples.
Our first choice is

t - -2(2a*L),

u - 4a2*8a*3,

(9) assumes the values cos et:o(, cos ez:(a* 2)13.

d more briefly as G (d. The values of G at the possible

G(0) - G(tEJ - 4u',

G(t ez) : 4(o+2)'(4o-L)127,

G(n) : -4a2- 164-8'

We can now immediatelygivethemaximum of anby selecting the largest and small-

est among the numbers (11) for different values of a. In what follows we use the

notation ä(0) for a probability measure with unit mass at the point E:0.
Let -ll2<a<.1. Since then G(0):611*)>G(XE)>G(n), we see that

the maximum of ao occurs if the mass of trr+ is distributed among the points g:0
and E:ter, and p is concentrated on E-lu That is, the measure p consists of
the four parts vä(0), (ll2)(kl2+1-v)ä(tE) and -(kl2-l)ä(z), where 0<v=
k12+1.

Note that there are two free paremeters «, v giving a slice of the body (ar, as)

as shown in Figure 1. The values of a, and as are computed from (6). We collect

the result as follows:

Case la. Let -lf2<u<1, O=v=kl2*|, and

2a, : (1 - q.) v * a(k | 2 + l) + k I 2 - l,

6a u : 4qz a 2 (l - az) v * uz (k + 2) - k.

The maximum of anis then giuen by (8), where max G:4a2, min G: -4a2-l6a-8,
and t,u are giuen by (lO).
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The value a:l belongs to the functionfr of (4) generated by the measure with
p+:(kl2+l)6(O) and p-:(-kl2+l)ä(z). For this function the formula (8)
yields the global maximum laol:(k3*8k)124 161.

Suppose next that a:-112. Now t:z:0 and the points of (8) satisfy
cosEl--l/2,cos ez:112. The maximum of G occurs at <p:Q and E-*qr,
the minimum at E:v and q- *gz, so the generating p consists of the measures
vö(0), (ll2)(kl2+l -v)ä(*qr), and -t'ö(n), (-ll2)(kl2-l -,)ö(!.tpr), where
O<v=kl2*1,0<f <kl2-1. The formula (8) assumes a simple form, and we can
state the result:

Case 2. Let O=v<kl2+I, O=v'=kl2-1, ancl let the cofficients a*a, be
giuen by
(12) Zar: (312)(tt],t')-kf2,

6a, : 4oz * 13 l 2) (v - t') - 1.

The sharp upper bound for an is

(13) an < (312)araz-Ql3)asz+klt2.

This inequality can of course also be obtained directly from (6).

Let - I <. a, <. - I 12. The order of the expressions (1 l) becomes G (0) :G ( + qJ >
G(n)>G(+tpr). Accordingly, the extremal ,u consists of the five parts vä(0),
(U2)(kl2+1-v)6(*9r), and (- U2)(kl2-l)ö(tqr), where 0--y= kl2+1. As in
Case la, the measure p determines the boundary of (ar, ar, au):

Case 3a. Let -1<.a<.-lp and O<v<kl2*|. If the coefficients ar,a,
are giaen by

2a, : (t - u) v + a (k | 2 * 1) - (1/3) (a + 2) (k | 2 - t),
6 a, : 4 oz - 2 + 2 (l * uz) v i- az (k + 2) - (l I 9) (q. + 2)2 (k - 2),

the maximum of an is calculated from (8), where maxG:4az, minG:4(u*2)2.
(4u-l)127, and t,u are as in (10).

Choose next
(14) t : -2(2a-t)

u: 4a2-8a*3,

-l=q=1. The expression (9) assumes the values cos(p1:dt, cosEr:(a-2)13,
and it follows that

G(tE):G(n):-4a2,

G (t E r) : 4 (a. - 2)z (4u * l) | 27,

G(0): 4a2-l6ul8'
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These numbers satisfy G(0)>G(+E)>G(Lrpr):Q(n) for -l=a=112, and

G(tqr)>G(O)-G(tEJ :G(n) for ll2<a-,1. The conclusions are completely
analogous to those in Cases la and 3a, and we merely describe the extremal p.

Case lb. For t, u given by (14), - 1aq<.1f2, the maximum of an occurs when

the support of the measure p consists of four points. The positive part of p is con-

centrated on E :0, the negative part is distributed among the point E:n and the
points where cos E:a.

Case 3b. For t,u given by (14), ll2-<a<1, the maximum of an occurs when

the support of pr consists of five points. The positive part of ,4 is distributed among

the points where cos E:@-2)13. the negative among the points e:n and

COS (p:66.

Note that one obtains the measures in the å-cases from those of the a-cases

by rotating the points of spt,a by n and changing the roles of p+ and p-.
The value a:-l in Case 3a implies maxG:G(0):G(z) and min G:G(q),

where cos A:113. The condition G(O):G(z) is turn gives rz:-1, but allows
the parameter I to be arbitrary. This case is also contained in the following choice

of parameters.
Let

t : lla-3a,

U: -1
0<a=l/3. The only admissible points calculated from (9) are given by cos et:d.
Now G(-lqr):-2,x(a'+1) and G(0):G(n):2fu-6a, so the maximum occurs

at E:Q and E:v, the minimum at E:tEr. The positive part of p consists of
the measures vä(0) and (kl2+1-v)ä(z), the negative of (-ll2)(kl2-l)ä(+EJ.
The expression (8) can be slightly simplified, and we arrive at the following formulae:

Case 4a. Let 0<a=1f3, O<v<klz+|. If the cofficients a2,a,r are giten by

2ar: 2v --17112+t)- u(kl2-t),
6au: 4aflak-a2(k-2),

the sharp upper bound for au is

a L = e 4aZ+9 a 2a,r* a ) | 6 + (U 3) (u - as) (k | 2 - l).

Case 4b. Choose t,u as in Case 4abut take a in the interval -ll3=u=0.
The result is an extremal ,r.l whose positive part is concentrated on the points where

cos E:6g, the negative part on Q:0 and Q:n. We omit the details.

Finally, the remaining parts of (a* ar) will be covered by

111

(1 5) t - +3(x+y)
u - llxy+3.
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The formula (9) implies for the support point candidates cos er: }.x, cos qr- * y.
For these points we choose the representations

x -- t (1 + fr)12,

y - t @u§ -3p -3)16,
where 0=a, f=1.

Take the minus sign in (15) (plus in (16)). At the possible points of spt pr we have

(17) G(t et): (1 + p)'(-1-fi*u§),
G (* ez) : (3 + 3P -aafiZ(3 +3fi - ct|)127

c(0) - 4afr' -3p'-6p + 1,

G (n) - -  afr'-\a§ + 3p' + 6p - L. ,

It is not difficult to check that for all 0<a, B=1 the maximum of G occurs at the
points E:XEr, the minimum at E:XE,. It follows from (16) that cos rp,

runs the interval -cos gl-<cos Er<(cos Ar-2)13 for every cos ErQlll2,l]. The
support of the extremal p consists of four points, and p has equal positive and equal
negative values at the respective points. We have:

Case 5a. Let 0=A, §=1, and let

^ 4x§ -3p -3Luz- 
6

the cofficients oz, as be giuen by

-'+(+-,),
$o§ -

(+.')
3B -z1z6a, - 4aZ*

The maximum of anis obtained by (8), where t,u are giuen by (15) and (16), and
maxG:G(tez), Uinc:G(tE) by (17).

Case 5b. Take the plus sign in (15). This effects merely a change of signs in (17).

So, if max G and min G have the same values as in Case 5a, we see that the maximum
of G equals -minG, the minimum -maxG, and these values occur at <p:Xqt
and tp:LE2, respectively. The boundary of (ar,aB,a4) is computed as in 5a.

All the points of (a2, au) are covered in a unique manner in the foregoing Cases

1a-5b and the maximal an has been found for each pair (ar, ar). The minima of ao

are obtained by the rotation f(r)* -.f(-z), which transforms the point (ar, as,, a)
into (-a* ag, -ar). (Equivalently, one can place the positive values of p at the
points where the function G reaches its minimum and the negative values at the
maximum points.)

For any boundary point of (a2, as, an) we get the extremal function/from (5)

by substituting the corresponding extremal measure p (we omit here the rather
lengthy expressions). These Schwarz-Christoffel mappings take the unit disc onto
polygons with at most six corners (or sides). There are at most three vertices where
the line segment turns to the left, and at most three vertices where it turns to the

18
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right. We see that all the possibilities concerning the number of both kinds of verti-
ces indeed occur.

In Figure 2 the surface (a2, ds, max ar) in central projection is shown in the case

t-'--

I_

i::-l'..

rl!-l I
I
l
!
I
I
I
I
I
I
I
I
I
I
I
t

The surface
(ar, oB) rTrax a+)

forBl ,k-4,as
seen from the

point (8, 1.6, E.5)

k:4. We are thankful to Prof. S. Mustonen for providing us with the program and
facilities needed in drawing the pictures.

2. On the inverse coefficients

Denote by Wr the class of functions inverse to functions in,Bp. Let Fo:.f*'
and for F(Wr write

F(w): '+ ) A,*'.

F1(n): w+ Z A,,(k)w".
tt:2

a3

-e--

l,

Fig. 2.

I
t

II
J

J

t
I
I

Oa

o2 
,i'
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If F-€f-t, where/'is given by (1), we have

(r 8)

Åz:-Gz,

As : - as*Zaf;,

At: - a** Sar(ar- al).

The bound lArl=Ar(k):kl2 tollows immediately. In [a] Kirwan and Schober

showed that lArl=Ås(k) forall k>2, and iA4l=A,(k) for k=2l.Inbothcases
3

the extremum is reached by the function F1, (or by a rotation of it). On the other
hand, it can be seen, cf. [4], that the function Fo is not extremal for An with larger
values of n (for instance with n : 1 0), if k is sufficiently close to 2. Thus it might have

been expected that ,Fo was not extremal for Anforsomevalues 2-k-2+. However,

we shall see that lo is maximized by Fo, at least in the real case.

Since we have the parametrical representations for the boundary of (ar, az, aE)

in the class Bo, the formulas (18) give the corresponding parametrizations for the
boundary of (Ar,A*An)of Wp. Thustheformulaeintheprecedingchaptertogether
with (18) in fact give the coefficient body (A2, As, A) of Wo in the real case.

Now we can compute the maximum of lAul for any k>2. Becalse of the rota-
tion F(w)* -F(-w) it suffices to find the minimum of An. We do this by mini-
mizing the expression (18) of z4n in all the different parts of the boundary of (ar, a* an)

and picking the smallest among these local minima. For each part we substitute in
(18) the expressions of a.r, aa,and of the maximal a, in terms of the given parameters.
This leads to polynomials of third degree in two parameters. For example, in (the
simplest) Case2 a substitution of the formulas (12) and (13) into the expression of
ln yields the polynomial

Aa(v, v') :

: y# 
- 
y#L p +,1 + $ o' - D + # k b' + v)'z + !(v' -,") - { o +,' 1'

O<v=kl2*|, O<t'=kl2-l. A straightforward computation shows that for
k=2 the minimum of the polynomial is reached with the values v:kl2*1, {:
kl2-1, i.e., with the function F*. Accordingly, the maximum occurs with the func-
tion -fo(-w).

In a similar manner we could produce the polynomials of Ao in the remaining
cases. However, the expressions are more involved and the computations become
exceedingly lengthy. Under these circumstances we were glad to leave the minimization
to the computer. A standard minimum finding program was applied to each of the
Cases la, lb, 3a, 3b, 4a, 4b, 5a,5b. In Cases la and lb the ninimum occurred for
all tested k>2 wilh the parameter values giving the function Fo.ln all the other
Cases 3a-5b the minimum was clearly larger than the value -k(k2-2)14 given
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by

is

F*. The situation is visualized in Figure 3, where the surface (Ar,A*maxAn)
I

presented for k:2 
+ 

.

(0,0, I) (1.125, 1 .72-1)

Å)
1'

,/
.//At

The surface
(Ar, Ar, rnax An)
?ffw]-i_ 2+, as

seen from the
point (2, 1.2, 2\

Fis. j.

On the basis of the numerical evidence we can state the followin-e conclusion:
If F(Wk, F(w):vtar4zte?*..., where the cofficients A2, As, An are real, then

I t | _ k(li2-2)
;Å1, -- 4

-fo, oll k>"2. Ecluality holcls only if l'(w) -r l-*(rw) w,ith z - * I.
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